M.Sc. Christopher Mühl
AG Informationssicherheit
Institut für Informatik
Fachbereich Mathematik und Informatik
Wissenschaftlicher Mitarbeiter
Differential Privacy, Trustworthy AI
Adresse
Takustr. 9
14195 Berlin
14195 Berlin
Publikationen
Personalized PATE: Differential Privacy for Machine Learning with Individual Privacy Guarantees
Mühl, C., & Boenisch, F. (2022). Personalized PATE: Differential Privacy for Machine Learning with Individual Privacy Guarantees. arXiv preprint arXiv:2202.10517.
Splitting the Interpose PUF: A Novel Modeling Attack Strategy
Wisiol, N., Mühl, C., Pirnay, N., Nguyen, P. H., Margraf, M., Seifert, J. P., ... & Rührmair, U. (2020). Splitting the interpose PUF: A novel modeling attack strategy. IACR Transactions on Cryptographic Hardware and Embedded Systems, 97-120.