Abstract: A set of lines passing through the origin in Rr is called equiangular if every pair of lines makes the same angle. In 1973, Lemmens and Seidel asked to determine the maximum number Nα(r) of equiangular lines in Rr with common angle arccos(α). Recently, B., Dräxler, Keevash, and Sudakov showed that Nα(r) ≤ 2r-2 for any fixed α ∈ (0,1) when r is exponentially large in 1/α, with equality if and only if α = 1/3. Building on their work, Jiang, Tidor, Yao, Zhang, and Zhao were able to determine Nα(r) completely for all α such that there exists a graph whose spectral radius is (1/α-1)/2 and when r is at least doubly exponentially large in 1/α. In both cases, the approach crucially relies on using Ramsey's theorem in order to bound the maximum degree of a corresponding graph.
In this talk we will discuss how we can use orthogonal projections of matrices with respect to the Frobenius inner product in order to overcome this limitation and thereby prove new bounds on Nα(r) which effectively bridge the gap between 2r(1+o(1)) when α = Θ(1) and (1-o(1))r2/2 when α = Θ(1/r1/2), as well as significantly improving on the only previously known universal bound Nα(r) ≤ 2/3 · r/α2 · (1+o(1)), due to Glazyrin and Yu.
Using the connection to real equiangular lines, our methods can also be used to obtain bounds on eigenvalues of the adjacency matrix of a regular graph. In particular, we show that for any k-regular graph on n vertices whose adjacency matrix has second and last eigenvalue λ2 and λn such that the spectral gap satisfies k - λ2 = o(n), we have λ2 ≥ (1 - o(1)) max(k1/3, (-λn)1/2). In fact, our bounds work up to O(1) provided that the spectral gap is slightly smaller than n/2, and since we do not need an assumption on the diameter, this can be seen as the first generalization of the Alon-Boppana theorem to dense graphs.
Finally, we note that our method provides new inequalities involving the corresponding Gram matrix, which become equalities whenever there exist r·(r+1)/2 equiangular lines in Rr. We also derive analogous inequalities for complex equiangular lines and time permitting, we will discuss how our results generalize to this setting.
|