Differential equations: Qualitative theory

System of differential equations: $\dot{x} = f(t, x)$ or $\dot{x} = f(x)$

Basic questions

- 1. Do there exist equilibrium solutions x(t) = a?
- 2. Let x(t), x̃(t) be two solutions with x̃(0) close to x(0).
 Will x̃(t) remain close to x(t) for all future time, or will x̃(t) diverge from x(t) as t approaches infinity ? Stability
- 3. What happens to solutions x(t) as t approaches infinity? Do all solutions approach equilibrium values? If not, do they at least approach a periodic solution?

Stability of solutions

- The solution x(t) of $\dot{x} = f(x)$ is *stable* if for every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that for every solution $\tilde{x}(t)$ with $||x(0) \tilde{x}(0)|| < \delta$ we have $||x(t) \tilde{x}(t)|| < \varepsilon$, for all t > 0.
- The solution x(t) of $\dot{x} = f(x)$ is *unstable* if there exists $\varepsilon > 0$ such that for all $\delta > 0$ there exists a solution $\tilde{x}(t)$ with $||x(0) \tilde{x}(0)|| < \delta$ but $||x(t) \tilde{x}(t)|| \ge \varepsilon$, for some t > 0.
- $||a|| = ||a||_{\infty} = \max\{|a_1|, \dots, |a_n|\}$ denotes the (maximum) *norm* of the vector $a = (a_1, \dots, a_n) \in \mathbb{R}^n$.

Stability of linear systems

• Consider a linear system

$$\dot{x} = Ax$$
, with $A \in \mathbb{R}^{n \times n}$ (*)

- Theorem (cf. Braun, Differential equations, Chapt. 4.2)
 - Every solution x(t) of (*) is stable if all eigenvalues of A have negative real part < 0.
 - Every solution x(t) of (*) is unstable if at least one eigenvalue of A has positive real part > 0.
 - If all eigenvalues of A have real part ≤ 0 and λ₁,..., λ_s have zero real part, let k_j be the multiplicity of λ_j.

Every solution x(t) of (*) is stable if A has k_j linearly independent eigenvectors for each eigenvalue λ_j , j = 1, ..., s. Otherwise, every solution x(t) of (*) is unstable.

Reminder: Linear approximation

- One dimensional case
 - $f: I \rightarrow \mathbb{R}$ differentiable, $I \subseteq \mathbb{R}$ interval, $a \in I$
 - Linear approximation

 $f(x) = f(a) + f'(a) \cdot (x - a) +$ higher order terms

- Taylor expansion

$$f(x) = f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2}(x - a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^k + \dots$$

- n-dimensional case
 - $f: D \to \mathbb{R}^n$ differentiable, $a \in D \subseteq \mathbb{R}^n$
 - Jacobi matrix

$$\frac{\partial f}{\partial x}(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(a) & \dots & \frac{\partial f_n}{\partial x_n}(a) \end{pmatrix}$$

– Linear approximation

$$f(x) = f(a) + \frac{\partial f}{\partial x}(a)(x - a) + \text{higher order terms}$$

Linearisation around a critical point

- x = a critical point of $\dot{x} = f(x)$
- Linearisation

$$\dot{x} = \frac{\partial f}{\partial x}(a)(x-a) + \text{higher order terms}$$

Study linear equation with constant coefficients

$$\dot{z} = \frac{\partial f}{\partial z}(a)(z-a)$$

- Shift point *a* to the origin by putting y = z a and $A = \frac{\partial f}{\partial x}(a)$.
- Linearised system

 $\dot{y} = Ay$

Asymptotic stability

- Consider the autonomous system $\dot{x} = f(x)$.
- A solution *x*(*t*) is *asymptotically stable* if it is stable and if every solution *x*(*t*) which starts sufficiently close to *x*(*t*) must approach *x*(*t*) as *t* approaches infinity.

Stability of equilibrium solutions

Theorem (cf. Braun, Differential equations, Chapt. 4.3)

- Consider the system $\dot{x} = f(x)$ and suppose f has continuous second-order partial derivatives.
- Let x(t) = a be an equilibrium solution and $A = \frac{\partial f}{\partial x}(a)$.
- The equilibrium solution x(t) = a is asymptotically stable if all the eigenvalues of A have negative real part.
- The equilibrium solution x(t) = a is unstable if at least one eigenvalue of A has positive real part.
- The stability of the equilibrium solution x(t) = a cannot be determined from the stability of the equilibrium solution y(t) = 0 of the linear system $\dot{y} = Ay$ if all the eigenvalues of A have negative real part ≤ 0 and at least one eigenvalue of A has zero real part.