Reminder: Eigenvalues and eigenvectors

- Suppose $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and $A \in \mathbb{F}^{n \times n}$ is a matrix.
- $\lambda \in \mathbb{F}$ is called an eigenvalue of A if there exists an eigenvector $v \in \mathbb{F}^{n}, v \neq 0$ such that $A v=\lambda v$.
- Characteristic polynomial

$$
\chi_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}-\lambda
\end{array}\right|
$$

\rightsquigarrow polynomial of degree n

- Lemma. λ is an eigenvalue of A if and only if $\chi_{A}(\lambda)=0$.

Stability analysis of two-dimensional linear systems

- $\dot{y}=A y$ with $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ non-singular
- Characteristic equation:

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-(\underbrace{a+d}_{S}) \lambda+(\underbrace{a d-b c}_{P})=0
$$

- Eigenvalues

$$
\lambda_{1,2}=\frac{1}{2}\left(S \pm \sqrt{S^{2}-4 P}\right)
$$

- Different cases depending on whether or not
- λ_{1}, λ_{2} are real or complex,
- λ_{1}, λ_{2} (resp. their real part) are positive or negative.

Possible cases

- $S^{2}-4 P \geq 0:$ Real roots λ_{1}, λ_{2}
$-\lambda_{1} \cdot \lambda_{2}>0:$ Node
$-\lambda_{1} \cdot \lambda_{2}<0$: Saddle point
- $S^{2}-4 P<0$: Complex conjugate roots $\lambda_{1,2}=\alpha \pm i \beta, \beta \neq 0$
$-\alpha \neq 0$: Focus
$-\alpha=0$: Center

$$
\text { Real eigenvalues } \lambda_{1} \neq \lambda_{2}
$$

- Diagonalization $\dot{z}=D z$, with $D=T^{-1} A T=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$
- Solutions: $z(t)=\binom{z_{1}(t)}{z_{2}(t)}=\binom{c_{1} e^{\lambda_{1} t}}{c_{2} e^{\lambda_{2} t}}$
- In phase plane: $\left|z_{2}\right|=c\left|z_{1}\right|^{\lambda_{2} / \lambda_{1}}$
- Case $\lambda_{2} / \lambda_{1}>0$: parabolic orbits Node

$$
-\lambda_{1}, \lambda_{2}<0: \quad \text { stable }
$$

$-\lambda_{1}, \lambda_{2}>0:$ unstable

- Case $\lambda_{2} / \lambda_{1}<0$: hyperbolic orbits Saddle point

Real eigenvalues $\lambda_{1}=\lambda_{2}$

- $\lambda_{1}=\lambda_{2}<0$:
- Two linearly independent eigenvectors v^{1}, v^{2} : the orbits are half-lines towards the origin star node
- Only one eigenvector v : the orbits become parallel to the half-line defined by v degenerate node
- $\lambda_{1}=\lambda_{2}>0$: Analogous, but orbits running in the opposite direction.

Complex eigenvalues

- $\lambda_{1,2}$ complex conjugate: $\lambda_{1,2}=\alpha \pm i \beta, \beta \neq 0$
- Complex solutions: $e^{(\alpha \pm \beta i) t}$
- Real solutions: Linear combinations of $e^{\alpha t} \cos \beta t$ and $e^{\alpha t} \sin \beta t$
- Three cases:
$-\alpha=0$: Circle
Center
$-\alpha<0$: Inward spiral
Stable focus
$-\alpha>0$: Outward spiral
Unstable focus

