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i 3.
Viewing such ordered sets as words, and the
collection of words as a formal language, we

9.1, INTRODUCTION arrive at the general definition of

et
PUS—

Greedoids were invented around 1980 by B. Korte and L. Lovdsz, Originally,
the main motivation for proposing this generalization of the matroid concept
came from combinatorial optimization. Korte and Lovdsz had observed that the
optimality of a "greedy" algorithm could in several instances be traced back
to an underlying combinatorial structure which was not a matroid - but (as they
named it) a "greedoid". In subsequent research greedoids have been shown to be

interesting also from various non-algorithmic points of view.

The basic distinction between greedoids and matroids is that greedoids are

modeled on the algorithmic comstruction of certain sets, which means that the /[

ordering of elements in a set plays an important role. ‘C‘;—;;;;;g;;’
- Aas a finite prefix~closed language satisfying a matroid-

type exchange axiom. It is a pleasant feature that greedolds can also be
characterized in terms of set systems (the unordered version), but the language

formulation (the ordered version) seems more fundamental.

Consider, for instance, the algorithmic construction of a spanning tree in
a connected graph. Two simple strategies are: 1. Pick one edge at a time,
making sure that the current edge does not form a ecircuit with those
already chosen. 2. Pick one edge at a time, starting at some
given node, so that the current edge connects a visited node with an unvisited
node. These well-known strategies are used in Kruskal's apd in Prim's
minimal spanning tree algorithms; respectively. In both cases, the collection
of feasible sequences of edges, i.e., sequences which are generated by the
allowed strategy, form a greedoid. However, in the first case, but not in the
second, any permutation of a feasible sequence of edges is also feasible, so
that ordering is irrelevant. This is so because the first greedoid, but not the
second, is a matroid. The optimality of Prim's algorithm, which is not explained

by matroid theory, is indeed covered by greedoid theory;

In this chapter we will give an introduction to greedoids. Our aim is to
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explain the basic ideas and to give a few glimpses of more specialized topies.
In spite of its youth the subject is already large enough to make a complete

account impossible in the available space. Due to the space limitatlon we have
frequently chosen to omit detailed proofs, particularly when good proofs exist
in the literature. Also, to unburden the main text, all references to original

papers and additional comments are gathered in the form of "Notes and Comments"

. . . the end of each section.
Hereis an outline of the contents. at
Section9.2 discusses the axiomatics of greedoids and explains the equivalence

of the ordered and unordered versions of the concept. Many of the basic
definitions in the area are given here. In particular, the important class of

interval greedoids is defined.

Many examples of greedoids are described in Section 9.3.0ne of the interesting
features of the greedoid concept is that it admits such a variety of combinatorial
examples in addition to matrodds: branchings in graphs, order ideals in posets,
convex hull closures in Euclidean and other spaces, Gaussian elimination

sequences, retract sequences, and many more.

In Section9.4various structural properties of greedoids as combinatorial
systems are discussed. Just like matroids, greédoids have cryptomorphic
_descriptions in terms of a rank function and a closure operator. Deletion,
contraction and some other operations on greedoids are defined, as well as a

suitable notion of connectivity.

Connections with combinatorial optimization are presented in Section 9.5.
For a certain kind of objective function, the greedy algorithm is optimal over
a greedoid. In fact, greedoids can be characterized in terms of this algorithmic
property. Examples of greedoid optimization include, e.g., Dijkstra's shortest
path algorithm. Linear objective functions pose special problems which are

briefly discussed.



Section 9.6 discusses a certain polynomial which is associated with every
greedoid. It is a greedoid version of the Tutte polynomial of matroid theory.
The polynomial has applications of an algorithmic and of a probabilistic nature.
For instance, it is possible to express in terms of this polynomial the
probability that rank will not decrease if elements are independently deleted with
probability p . Finally, there is a brief discussion of what aspects of matroid

duality can be said to exist for general greedoids.

Antimatroids form a special class of inﬁerval greedoids with considerable
additional structure. They are discussed in Section 9.7 as dual objects to
convex geometries. Among the interval greedoids, matroids and-antimatroid§ are
from several points of view opposite classes. Each is connected with a closure
operator, which for matroids abstracts linear span and for antimatroids convex

hull in Euclidean spaces.

In Section 9.8 the connections between greedoids and posets (particularly
lattices) are discussed in some detail. Each greedoid has a poset of flats, which
in general is not a lattice. For interval greedoids the poset of flats is a

semimodular lattice, and every finite semimodular lattice arises this way.

The following additional topics are briefly discussed in Section 9.9:
(1) Characterization of Certain classes of greedolds by excluded minors,
(2) The maximum number of feasible pivots needed to move from one basis to any
other basis in a greedoid ; (3) Examples of greedoid languages which allow

repetition of letters within feasible words.
Notes and Comments

Greedoids were introduced in Korte and Lovéasz (1981) and their basic properties were
developed in Korte and Lovész (1983, 1984a). The theory has since then been extensively
developed by its creators and others. A book-length exposition will appear in Korte,
Lovész and Schrader (1989).

There had been some earlier attempts to develop order-dependent versions of matroids,
by Dunstan, Ingleton and Welsh (1972) and by Faigle (1979, 1980), but the more compre-
hensive work of Korte and Lovasz seems to criginally have been independent of these
antecedents. In Korte and Lovdsz (1985a) Faigle’s structures are shown to correspond to

" a certain class of interval greedoids (cf. §9.3.5).
- This chapter was written in 1986-1987, and it covers most of the basic properties of
greedoids known at that time. The forthcoming monograph by Korte, Lovasz and Schrader
(1989) will presumably be more comprehensive. . ' '



9.2, DEFINITIONS AND BASIC FACTS

9.2.1. Ordered and unordered versions
There are two equivalent definitions of greedoids, one as set systems and

the other as languages. We will start by defining and discussing greedoids as
set systems. The equivalence of the two approaches will be heavily used later
by freely choosing, depending on context, whatever formulation seems more
convenient or natural.
In the following, we will work over a finite ground set E . The set of
" all subsets of E will be denoted by ZE , and a set system over E is a

nonempty family F < ZE .

9.2.1. Definition. A greedoid is a pair (E,F) , where FC 2E is a set system

satisfying:
'(Gl) TFor every nonempty X €F there is an x € X such that X-x EF.

(G2) TFor X,Y €F such that [XI> Y], there is an x€X-Y such that YUx £F.

The axiom (G2) is the usual matroid exchange axiom. In fact, every matroid
is a greedoid, and a greedoid is a matroid exactly i1f it is hereditary, that is,

if the axiom

M) If XE€F and YS X, then YEF,
is satisfied. (Ml) is a strengthening of (G1), (ML)} and (G2) together

define a matroid.

Many examples of greedoids which are not matroids will be given in the next

" gection. To illustrate the definition, let us now look at one of these.

let I'= (V,E,r) be a rooted graph, and let F be the family of gubtrees
in I which contain the root node r . We think of these subtrees as edge-sets,
so Fc 2E . Now, if X # @ is such a tree, then it must have at least one leaf
other than r , aﬁd if x is the edge adjacent to such a leaf then also
X-x € F . Also, the cardinality IX| of a subtree X equals the number of

vertices other than r which are reached by X . Consequently, if |X|> Y|



there must be some node v € V-r which is reached by X but not by Y .
Follow the unique path in X from r to v and let x be the first edge
along that path which is outside Y . Then clearly Y u x 1is also a subtree
in F . We have verified axioms (Gl) and (G2), so (E,F) is a greedoid.

The greedoids which arise in this way (called "undirected branching greedoids")
will be further discussed in Section 9.3.3. For the particular greedeid given by
the rooted graph (V,E,r) in Figure 9.2.1 we observe e.g. that {b}, {a,c},

{b,c,d} E F and {a}, {a,d}, {a,b,c} & F.

Figure 9.2.1.

The axiom (Gl) states that F is an accessible set system. It implies -
because E is finite and F nonempty — that F contains the empty set.
In fact, by (Gl) every X E'F can be dismantled by successively removing
elements to get a sequence @ = XO = Xl € ,..c Xk = X, where every Xi is
a set in F of cardinality 1, 0 £41i£ k . But the same also follows from

(G2): if we assume @ € F, then repeated application of (G2) implies the

. _ cx = _ _ 4
existence of a sequence @ XO c XICZ ves Xk X, where XiE F and |Xil i

for 1 £1i £ k . Hence, in Definition 9.2.1, (Gl) could be replaced by the weaker
axiom
(Gl') ¢ € F.

Just as for matroids, it is again sufficient (using (Gl)) to require the

exchange property of (G2) only for I[X| = 1¥Y] + 1:
(G2') For X,Y € F, IXl = I¥Yl + 1 , there isan x € X - Y such that Yux€ F.

The axioms (Gl) and (G2') together define greedoids as well as (Gl') and

(G2). However, (G1') and (G2') together clearly do mot suffice.



The following terminology will be used. For greedoids the sets in F are

called feasible (rather than "independent"). As usual, the matroid exchange
{inclusion-wise i)
axiom (G2) implies that all the maximal feasible sets, the bases, have the
same size r , called the rank r = r(F) of the greedoid (E,F). For an
arbitrary subset A of the ground set E we define its rank by x(A) =
and only if

=max{IXl: XS A, X €EF} . Thus A 1is feasible if) r(A) = [Al , and it is a
and only if
basis if} r(A) = lAl = r(F) . The characteristic properties of the greedoid

rank function will be discussed in § 9.4.1.

A basis of a subset A CE is a maximal feasible subset of A .

Equivalently, this is an X € F such that XS A and r(X) = r(A) , because
the exchange axiom (G2) implies that every maximal feasible subset of A has
size r(A) . In fact, for ény set system (E,F) the

property

(cardinalitcy
(B) For any subset A £ E all maximal feasible subsets of A have the same)

is implied by the exchange axiom (G2). On the other hand, (B) together with (G1)
does not imply (G2), as shown by E = {1,2,3} and F = 2F — {{1,3},{2,3}}. See also
Exercise 9.1,

A coloop in a greedoid (E,F) 4is an element x € E which is contained in
every basis, and a loop is an element which is contained in no basis. If x is
a loop then r({x}) = 0 , but not conversely. Another difference from the matroid
case is that r({x}) = 0 is possible for a coloop x . These facts are
particularly easy to visualize for branching greedoids, cf. § 9.3.3.

We will sometimes write just UF for the union of all feasible sets. Clearly,

x is a loop if and only if x€E - uF. (Note that in matroid theory a coloop is often
called an "isthmus"). .
We will now describe the equivalent "ordered" version of greedoids, in terms

of exchange languages.

For the finite ground set E , let E* denote the free monoid of all words

over the alphabet E . We use greek letters t,B,Ys ... for words in E* and



latin letters X,y.Z, ... £for "letters", i.e., elements of E . The con-
catenation of o and B (the string o followed by the string B) will be denoted

by aB. For any word o € E* , leel denotes the length of o , that is the

number of (not necessarily distinct)} letters in o . The support o of a is

the set of letters in o . A word o is called simple if it does not contain

~

any letter more than once, that is,if fal = ldl.

A language L over E 1s a nonempty set L & E* of words over the alphabet
E ; it is called simple if every word in L is simple. Every simple language
over a finite set E 1s again finite. Let .E:-mdenote the {finite) set of
simple words in E* . By the support T of the language L we mean the set

system F=1{%:a€L}.

9.2.2, Definition. A greedoid language over a finite ground set E 1is a pair

(E,L) , where L 4is a simple language L C E: satisfying:

(L1) If oa=Rfy and o € L, then B € L, i.e., every beginning section of

a word in L is again in L[ .

(L2) 1f o,REL and lal > 1Rl , them @ contains a letter x such that

Bx € L .

Here (L1) states that L is a (left) hereditary language, (L2) is an exchange
axiom. Again, it would be sufficient to require that (L2) holds for ol = 1Bl + 1 .

The words in L are called feasible. The maximal words in L (that is, the

words that do not have extensions in [ ) are called basic words. We call a
language pure if all its maximal words have the same length. In particular, due
to the exchange axiom (L2), greedoid languages are pure. The common length of

all basic words is called the rank of the greedoid (E,L) .

Let us illustrate Definition 9.2.2by again considering a rooted graph

T = (V,E,r) , as in the discussion preceding Figure 9.2.1. A string X Xger Xy of
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distinct edges X, € E will be considered feasible if the subgraph

{%. s%nse+-»%X, ,} connects the root node r to one endpoint of =, but not
1°%2 i-1 P i

1~

to the other, for 1 £ i s k . It is instructive to check that the language L

of such feasible strings is a greedoid language. For instance, in Figure 9.2.1

we find that b, ca, cbd € L , but a, ac, bde € L .

Definitions 9.2.1and 9.2.2are tied together by this basic result.

9.2.3, Proposition. Greedoids and greedoid languages are equivalent in the following

sense!
(i) If (E,L) 1is a greedoid language, then the support LT is a greedoid.

(i1) If (E,F) 1is a greedoid, then

1A

€ E*: {X.,Xoss0es%,} EF for 1212 k}
s 1°72 i

L(F2 = {xlxz...xk

is a greedoid language.

(iii) Furthermore, L(I) = L and I(F) = F , so these constructions give a

one-to-one correspondence between greedoids and greedoid languages.

The verification of parts (i) and (ii) is straightforward and very easy.
For part (iii), the only point which requires a small argument is the inclusion
L(I) cl, which follows by induction on length of words from the exchange axiom

(L2) together with the simplicity of the language L .

In view of this equivalence between greedoids (as set systems) and greedoid
languages, the two concepts will from now on be used interchangeably. For a
greedoid G we will freely write G = (E,F) = (§,L) , and if the ground set
is clear from context G will often be denoted by just F or L . (If the

ground set is not given by context, one can always take E =uF or E=ul to

recover it, except for loops.)

Tt is often convenient to think of a greedoid (E,F) as a poset (F,g) ,
with the partial order given by inclusion. This poset has a least element o,

and every unrefinable chain from ¢ to a maximal element 3 (i.e., a basis)
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has the same length r(F) = !B| . More generally, if A< C, A,C € F, then
every unrefinable chain A = AD C'Al<? .es C'Ak = C in F has the same length
k = 1C-Al , since A can be repeatedly augmented from C one element at a time,
.
For instance, let E = {a,b,c,d} and consider the greedoid F =
= 2E -{{a,b,c,d}, {a,b,c}, {e,d}} . (A systematic reason why this is a greedoid

is given in Exercise 9.4.) The poset F is depicted in Figure 9.2.2(a)},

where for simplicity set brackets are omitted.

a,b,4d a,c,d b,c,d

Figure 9.2,2

To see the connection with the language version (E,L) of F wvery clearly,
reformulate the posét F of picture (a) into an abstract edge-labeled poset
as in picture (b). Here_eéch covering edge X Y 1is labeled by the single
element of 'Y - X . Then the words in L = [(F) can be read off as the sequences
of labels along unrefinable chains starting at the bottom. For instance, the
basic words.beginning with "b" are: bad; bed, bda and bdc. Also, the feasible
set corresponding to an element in this abstract labeled poset can be re-
constructed as the set of labels on any unrefinable chain from the bottom to

that element.

We remark that non-isomorphic greedoids can have isomorphic unlabeled posets

of feasible sets (non-trivial examples § 9.8.4). Hence,

are mentioned at the end of § 9.4.5, sem
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the edge-labels, as in Figure 9.2.2(b) are essential for such a poset

representation of a greedoid.

9.2.2. Interval greedoids and antimatroids
The following "interval property" characterizes a very large class of

greedoids which covers many of the main examples (see Sectionm 9.3). Greedoids

with this property, usually called interval greedoids, behave better than

general greedoids in many respects. In some types of study the interval property

has to be assumed to get meaningful results.

9.2.4, Definition. A greedoid (E,F) has the interval property if AS B<S C,

A\BLCEF,x€EE-C, Aux €F and Cux € F, imply that Bux € F .
Equivalently, in terms of greedoid language (E,l) this means that ax,aByx € L

implies afx € L .

We observe that the greedoid in Figure 9.2.2 does mnot have the interval
property, since e.g. @, i{c}, and {b,c} are feasible, and the first and third
can be augmented by d but not the second. Clearly, every greedoid of rank less

than three has the interval property.

The following exchange property characterization of interval greedoids is

often useful.

9.2.5. Proposition. A hereditary language (E,L) is an interval greedoid if and iny if

it satisfies the following strong exchange property:

(L2'y If a,B €L and lal > Il , then o contains a subword a'

of length la'l = lal - IRl such that Bo' € L .

Here a subword of o = X Kge oo X is a not necessarily consecutive substring

of o, i.e., a word of the form o = 1 2 X

Obviously, the axiom (L2') implies the regular exchange property (L2).

X, X, sesX, with 1841, <4i.<...<1i, £n.
ip1p i
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Proof. We will here prove that (L2') implies the interval property. The proof
of the converse will be postponed until § 9.8.3.

Suppose that ox, aByx € L . Strong exchange gives, since L 1is simple,
that oxBy € L . Since L is left hereditary, oB,axB € L , and a second

application of‘strong exchange yields afx €L . O

A relatively special but very important class of interval greedoids are
the antimatroids. Some of their special properties will be discussed in

.Section 9.7.

9.2.6.Definition. A greedoid (E,F) is called an antimatroid if it satisfies

the following interval property without upper bounds: if A & B, A,BEF,

x € E-B and Aux € F, then Bux € F . Equivalently, in terms of greedoid

' language, if oax,0B8 €L and x €6, then oBx€ L .

In many cases, the easiest way to recognize an antimatroid is via the

following characterization.

9.2.7. Proposition. Let F < ZE be a set system. Then the following conditions
are equivalé.nt : |

(i) (E,F) is an antimatroid.

(i1) F is acéessible and closed under uniom.

(iii) # € F and F satisfies the exchange axiom

(A) For X,Y € F such that X&¢ Y , there is an x € X - ¥ such that

Yux €EF.

Proof. (ii) = (iii). Suppose that F is accessible (i.e., satisfies axiom (Gl))
and is closed under union (i.e., A,B € F implies AuUBE F). Let X,Y€ F such
that X & Y . Accessibility means that we can find a sequence @ = X.O = ch oee
ik . Lt i be the

A

R Xk =X such that X, € F and Xl =1, for 0
i i

- least integer for which X, ¢ Y. Then YU X, =Yux € F, where x€ X, - YEX-Y .
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(ii1) % (i). Axiom (A) implies axiom (G2), and axiom (Gl') is assumed, so F
is a greedoid. Suppose that A, B, AUx € F , Ac B and Aux ¢ B . By axiom
(A), the set B can be augmented from the set {(Aux) - B = {x}, 80 Bux€F.

This proves the interval property without upper bounds.

(1) = (ii). We leave this step, which is entirely similar to the other two, as

an exercise for the reader. 4

Notice that, since F is closed under union, every subset in an anti-

matroid has a unique basis.

The following result expresses some of the ways in which interval greedoids
and antimatroids are related. The proof is a simple exercise with the interval

property, with and without upper bounds.

9.2.8. Proposition. Let (E,F) be a greedoid. Then:

(i) (E,F) 1is an antimatroid if and only if it is an interval greedoid

and has a unique basis.

(i1) (E,F) 4is an interval greedoid if and only if the restriction to each

feasible set X € F , meaning {YEF: YC X} , is an antimatroid.

A greedoid (E,F) is said to be full if E € F . It follows from the
preceding result that if an antimatroid has no loops then it is full. In any
case, an antimatroid has one and only one basis, namely UF . We remark in this
connection that the wéalth of examples of antimatroids, all with only one basis,
shows that greedoids cannot in general be reconstructed from or axiomatically
characterized in terms of their set of bases. On the other hand, a greedoid is

of course completely determined by 1ts basic words.

For a general set system Fg 2E , define its accessible kernel (with some
" mild abuse of set notation) by: (SuCh that @ < F ) : |
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AP = {{x.,...,x, }EF: {x,,...,x,} EF for all 1 =12k},
1 k 1 i
or - recursively - by:

X € A(F) iff X €F and X =@ or there is an x € X such that X-x € AP .

The hereditary closure of a set sysﬁem F is defined as

H(F) = {YC E: YC X for some X € F}.

Thus, for every greedoid F , (Gl) states that A(F) = F,and F is a
matroid precisely when H(F) = F . But we note that in general for a greedoid

F, HfF) need not bega greedoid.

/the collection of feasible sets of )

S e

Notes and Comments

Most of the material here is from the early papers of Korte and

Lovasz (1981, 1984a). However, Proposition 9.2.5 (due to BjOrner and Lovész )

is from Bjidrnmer (1985) , and Propositiom 9.2.7 is from BjBrner (1985) and Korte

and Lovdsz (1984b). Interval greedoids without loops were studied under the

name selectors in Crapo (1984), see also Korte and Lovdsz (1985c).

Antimatroids have been written about under several names: APS greedoids,

upper interval greedoids, antiexchange greedoids, shelling structures, and

locally free selectors. Of these, the name shelling structure is very un-

e

fortunate, since shelling'has a precise and well-established meaning in combina-

(APS= alternative precedence stnlctui:éD
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((see Chapter 7 of this volae)

— ~ e

torics*which finds use also in greedoid theory {(cf. § 9.6.3). To add to the
confusion, convex geometries (the dual objects to antimatroids) are in some

papers called "antimatroids".

While on the subject of names, it could be mentioned that the suitability
of the word greedoid itself has been heatedly debated. If already the name
matroid is "ineffably cacaphonic", as was claimed by Crapo and Rota (1970), then

much worse.

greedoid is undoubtedly)kwen-more—s¢. Alternative names which have been proposed

for related structures include exchange language (Bjdrner (1985)), selector

(Crapo (1984)) and exchange system (Brylawski and Dieter (1986)). However, the

name greedoid is distinctive and catchy, albeit a bit frivolous-sounding, and

there is no doubt that it is here to stay.
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9.3.EXAMPLES

In this section we will survey some major classes of greedoids. Many other
classes are known, and the reader will find new examples constructed in nearly

every paper on the subject.

9.3.lfMatriods.

As was remarked before , the independent sets of a matroid form the feasible

sets of a greedoid. Much of the terminclogy for greedoids is adapted from matroid

theory, so that there is no translation problem. Especially,the rank function and
bases of a matroid and its associated greedoid coincide. Matroids are clearly
interval greedoids. In fact, they can be characterized as greedoids satisfying

the "interval property without lower bounds": If B& C, B,C €EF and x € E-C ,

then Cu x €F dimplies Bux €F ., This is equivalent to the statement that

BS C, C&F implies BEF s i.e., that F is hereditary.

Matroids give rise to greedoids in more than one way. For example, the

following construction produces "twisted matroids". Let M = (E,I) be a matroid

and fix an independent set A € I . We define a simple language L by

M,A

= *. < 4 <
LM,A {al...ék € ES. A A-{al,...,ai} €1 forall 1 £1ig k} . Here, AAB

denotes the symmetric difference (A-B) u(B-A) . This language is clearly left
hereditary and the exchange axiom (L2) can be checked. For A = @ we get the

standard matroid greedoid [ = LM o . -However, L depends heavily on A ,
]

M,A

and is in general not an interval greedoid. The feasible sets of the twisted

matroid LM A are the sets whose symmetric difference with A is independent.
B

The basic words describe the ways to move from A to a basis of E-A through

a sequence of intermediate independent sets.

Some greedoids are related to matroids in the following way: The greedoid
G = (E,F}) is a slimming of the matroid M = (E,I) if G and M have the same
set of bases (which implies that F £ I). For instance, the twisted matroid

(E, L

M A) defined above is a slimming of the direct sum of the free matroid on
3 .

A and the.restriction M-A . We will encounter another example in § 9.3.3.
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9.3.2, Antimatroids

Antimatroids are in several ways "opposite™ to matroids. For example, while

matroids are precisely the greedoids satisfying the interval property without

lower bounds, antimatroids are precisely those characterized by the interval

property without upper bounds. Also, whereas the matroid ¢closure operator is

characterized by the MacLane exchange axiom, the closure operator of antimatroids

can be characterized by the opposite "anti-exchange" axiom (see § 9.7.1).

We will now describe several classes of antimatroids occurring "in nature™.

They are all easy to identify using the following criterion (Proposition 9.2.7):

A set system F & ZE ig an antimatroid exactly if it is accessible and closed

under unioen.

(1) Let P = (E,<) be a finite partially ordered set and F the set of ideals

(2}

of E (a subset AGC E is an ideal if x £y € A implies x€ A ). Then

(E,F) is an antimatroid, the poset greedoid of P . In this case F is

closed both under union and intersection and hence (F,S) forms a
distributive lattice. Conversély, by a theorem of G. Birkhoff, every finite
distributive lattice occurs this way. The basic words of the poset greedoid

are the linear extensions of P .

let T = (V,E;,r) be a finite rooted graph, and let V' = V-r be the set

of vertices distinect from the root .r . Then the vertex search greedoid of
I is (vV',F) , where F is given by F ={X<c V': XU r is the vertex seﬁ
of a éonnected subgraph of G}. If [ 1is connected, the basic words of this
antimatroid correspond to the orderings in which nodes are visited by the

standard search procedures starting at T .
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(3) In the case of a rooted digraph A = (V,E,r) , we again let V' be the set

of vertices distinct from the root r , and F={xcVvV:Xur is the
vertex set of a tree in A that is directed away from r} . Then (E,F)

is the vertex search greedoid of the digraph A

" (4) let E be the vertex set of a tree and F the collection of complements

of subtrees. Again, (E,F} 1is an antimatroid, the vertex pruning

greedoid of the tree. The same construction can be repeated for the edge-set

of a tree, to get the edge pruning greedoid of the tree, also an antimatroid.

(53) Both the vertex pruning and the edge pruning greedoids of trees are special cases of the
simplicial vertez pruning greedoids of graphs. A vertex of a graph (V, E) is simplicial if
all its neighbors are pairwise adjacent. Successive removal of simplicial vertices gives a
hereditary language (V, L) which is easily seen to be an antimatroid.

For £ to be nontrivial a sufficient supply of simplicial vertices in (V, E) and its sub-
graphs is needed. This is guaranteed if the graph is chordael, meaning that no induced
subgraph on k vertices is a k-cycle, for k¥ > 4. Chordal graphs are characterized by
the property that every induced subgraph has a simplicial vertex. It follows that the
simplicial vertex pruning greedoid of a graph is full if and only if the graph is chordal.
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(6) Our final example is crucial for the geometric interpretation of an;i-
matroids. Let E be a finite subset of IEP, and for A S E define A
to be the convex hull of A intersected with E . We call AC E convex
if A =24 , and define F to be the family F ={X <2 E| E~X is convex!} .

Then (E,F) 4is an antimatroid, the convex pruning greedoid on E . This

example in fact generalizes straightforwardly to oriented matroids with an

appropriate notion of comvexity.

Antimatroids have a lot of additional structure, which makes them quite
special among greedoids. We will study antimatroids in greater detail in

Section 9.7,and proceed here to describe more general classes of greedoids.

9.3.3. Branching Greeddids

Let A= (V,E,r) be a finite rooted directed graph. Let F be the
collection of edge sets of trees in A that contain the root and are directed

away from it (such trees are called branchings or arborescences). Then (E,F)

1s a greedoid, the directed branching greedoid (or line search greedoid) on 4 .

Every nonempty tree in F has a leaf, which can be removed to get another tree
in F . This verifies axiom {Gl1). To check (G2), one observes that for two trees
Xand Y in A , 1Xl > 1¥l implies that X reaches a vertex v that Y does

not reach (|X| is the number of vertices of V-r reached by X). Now the first

arc along the path in X from r to v that reaches a vertex not reached by Y

can be added to Y .
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Figure 9.3.1 illustrates a particular rooted digraph A and the associated

branching greedoid F :

\ AVAVAYS
NP

Figure 9,3.1.

This greedoid is of rank 2 with bases {a,d}, {a,e}, {b,c} and {b,d} .

The language 1is L = {Q,a,b,c,ac,ad,bc,bd,ca;cb} .

The rooted digraph in Figure 9.6.2(a) gives a branching greedoid of rank 6.
That greedoid has two loops and two coloopS,which shows that these greedoid

concepts in this case do not have their standard graph-theoretic meaning.

was also,
It is clear, asVobserved with the example of Figure 9.2.1, that an analogous
construction works for'every finite rooted undirected graph T = (V,E,r) . The

construction then yields the undirected branching greedoid (E,F) , where F is

the set of trees in I that contain the root. We note that - ignoring the root -
the graph I also gives rise to the graphic mat?oid (E,]J) . If T 1is connected,
then the bases of the branching greedoid and of the graphic matroid are the same,
namely the spanning trees of T . Hence, (E,F) is a slimming of (E,]) , or

equivalently, the hereditary closure of F is the graphic matroid.

The common algorithmic search procedures on a rooted graph (directed or not)
visit the nodes ome at a time so that the currently visited node (originally
just r ) is at each stage reached along some edge from a previously visited
ﬁode. It is clear that the bgsic words of the associated branching greedoid
records the sequences of edges generated by such search procedures. Similarly,
the associated vertex search greedoid (defined in § 9.3.2) records the

possible orders in which the nodes are reached.
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Both directed and undirected branching greedoids are interval greedoids.
If an edge x 1is a legal continuation at any given stage, that means that x
leads from a visited node v to an unvisited node u . But then clearly x
Will remain a legal choice at a later stage if and only if u remains unvisited.

This verifies the interval property.

For many purposes branching greedoids can serve as '"canonical examples™
of greedoids. Being easy to represent graphically they play a role similar to
the role graphic matroids play in matroid theory. However, branching greedoids
are relatively well-behaved and do not exhibit all the pathiologies that can
occur. For example, the intervals in the poset (F,2) are distributive lattices-
given any two branchings X Q Y in A , the interwval [X,¥] of F corresponds
to the order ideals of YNX , ordered by "precedence along the paths in Y
emanating from the root". Greedoids with the property that all the intervals in

F are distributive are called local poset greedoids. This name comes from the

fact that F is a local poset greedoid if and only if the restriction of F
to any feasible set is a poset greedoid ("restriction" will be defined in
§ 9.4.4 as a straightforward generalization of the matroid operation), From

this it is easy to see that all local poset greedoids are interval greedoids.

The following class of greedoids is closely related to the branching greedoids. Let
(V,E,r) be a rooted undirected graph, and let .4 be the collection of edge-sets of all

connected subgraphs covering r. Then (E,A) is a greedoid, in fact an antimatroid. An
analogous construction associates an antimatroid with every rooted directed graph.

The construction of these greedoids is part of a much more general procedure: if (E, F)
is a greedoid and A is the collection of unions of feasible sets from F, then (E, A) is an
antimatroid. See Exercise 9.5.



204,

9.3.4. Polymatroid Greedoids

A pair (E,f) , consisting of a finite ground set and a function f: 2E-+ ™,

is called a polymatroid if for all X,Y ¢ E:
(PM1) £(®) =0,
(PM2) X < Y dimplies £(X) £ £(Y) ,

(PM3) f(XNnY) + £(XuY) £ £(X) + £(Y)

Polymatroids are generalizations of matroids: £ dis the rank function of

a matroid if in addition £(X) £ IX| for all X C E .
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Polymatroids give rise to greedoids in the following way. Suppose that

(E,f) 1is a polymatroid, and let

L= {xlxz...xk: f({xl,...,xi}) =1 for 15 1i¢g k}.

Then (E,L) is a greédoid, called polymatroid greedoid. Such greedoids are

local poset greedoids (as defined in § 9.3.3) , and hence they have the

interval property.

We give three examples of polymatroid greedoids that have been discussed

before:

(1) 1If (E,f) is a matroid, then the polymatroid greedoid is the greedoid
usually associated with this matroid (cf. § 9.3.1) . In fact, the above

construction will recomstruct any greedoid L from its rank function f .

(2) Let I' = (V,E,r) be a rooted undirected graph. For X C E , let f£(X) be
the number of vertices in VN r covered by X . Then it is easy to check
that (E,f) 1is a polymatroid. The associated polymatroid greedoid is the
undirected branching greedoid of T , since if {xl,...,xi_l} is 'a tree
in [' containing the root r , then the same is true for {xl,...,xi} if

and only if X, covers exactly one additional vertex.

In contrast, directed branching greedoids are not in general polymatroid

greedoids.

(3) Poset greedoids are polymatroid greedoids. The
corresponding rank function measures the size f(X) of the ideal in P

generated by a subset X of P = (E,s) .

9.3.5. Faigle Geometries

For this class of greedoids the ground set is assumed to be partially
ordered in a way which is suitably compatible with the greedoid structure.

Both matroids and poset greedoids belong to this clgss.
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A Faigle geometry is a triple (E,L,$) where (E,L) is a greedoid

language and (E,$) a poset such that:

(F1) TFor X;X,...¥ €L, xi < Xy implies i £ j (that is, the ordering of

every word in L 1is compatible with the partial order on E ).

(F2) 1f A S B are ideals in (E,$) , then every p € A that occurs in every
maximum length word in B* n L also occurs in every maximum length word

in A*n L .

We note that when the poset {E,g) is an an_ticha_in (meaning that x £y implies
x=y), the axiom (F1) is vacuously fulfilled, and (F2) implies that (E,L} is a
matroid. In general, if (E,L,é). is a Faigle geometry then (E,L) 1is an
interval greedoid. However, mot every interval gfeedoid admits the structure of

a Faigle geometry (e.g., some branching greedoids do not).

There is a second rank function £ on a Faigle geometry (E,L,£) , which
is in general different from the greedoid rank function T of (E,L) . This

ideal rank function £: 2 » IN is defined by
£(X) = r(I(X)) , for X & E,

where TI(X) denotes the ideal generated by X, i.e., I(X) ={y€E:r y=sx

for some X € X} .

The ideal rank f of a Faigle geometry is a polymatroid rank function, i.g.,
it satisfies axioms (PM1)-(PM3) of § 9.3.4. The corresponding polymatroid
greedoid is also a Faigle geometry (E,L',£) over the same poset and with the
same ideal rank function, and L < L' . However, in general L *# L' , which

shows that a Faigle geometry is not uniquely determined by its ideal rank

. function.

9.3.6. Retract Greedoids

A retract of a poset (E,£) 1is a subposet Q € E such that there is an

order preserving map r: E > Q with r(x) =x for -all x€ Q . In this case
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r 1is called a retraction of E to Q . We are going to consider retracts sﬁch
that [Ql = |El - 1 , that is, Q corresponds to the deletion of a single
element x from E . There are two cases; either x and r(x) are incomparable,
or one of x and r{x) covers the other. In the second case Q 1is the poset
obtained from E by deleting a meet or join irreducible element x (i.e., an
element with a unique cover or a unique cocover). We will call this a monotone

re_tract .

This situation gives rise to the following two greedoids, the retract

greedoid (E,L) given by

L ={x,x

Koo e ¥y for 15ifk, E-{xl,...,xf} is.a retract of E-{xl,...,x. 1}

i-1

and the dismantling greedoid (E,L') defined by

L'= {xlxz...xk: for 151k, E-{xl,...,xi}is a monotone retract of E-{xl,..”xi_ﬁ];

For instance, consider the following poset:

Figure 9.3.2.

Here, b €L, ab& L and achb € L . Also, e¢d € L', ced € L' and cead € L' .

This example shows that the greedoids (E,L) and (E, L") din general fail

to have the interval property. Also, they may have many loops. Observe thatc

by definition L' g L .

There is a straightforward generalization of retract sequences and dis-
mantling sequences from posets (i.e., comparability graphs) tec finite digraphs,
_ which leads to a generalization of the corresponding greedoids. In this case,
one works with digraphs with a loop at every vertex and defines retracts as

above, using graph maps instead of order preserving maps. For monotone retracts,
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the additional requirement is that every vertex is mapped to an adjacent vertex.

The following construction gives a very general framework for retract
greedoids. Let & be a set of mappings of a finite set E into jtself, which
' {s closed under composition and contains the identity (in other words, ® is a sub-
monoid of EE ). Call a subset X CE a retract if X = 9(E) for some

idempotent element ¢ € ¢ . Now, define a left hereditary language by

- . < < - {x i
L {xlxz...xk. for 1 €1 £k, E {xl,...,xk} is a retract] .

Then (E, ) 1is greedoid. Taking ¢ to be the monoid of order preserving
self-maps of a poset (E,S) we get the gpecial retract greedoids that were
originally defined.
. n
A general formulation of dismanthglgreedoids along similar lines is also

possible.

9.3.7. Transposition Greedoids

A greedoid (E,F) is said to have the transposition property if it

satisfies the axiom

(TP) 1If A, Aux, Auy € F  and Auxvuy & F , then AuxuB € F implies

AuyuB € F, for all BCE - (Auxuy) .

1f an accessible set system has the transposition property then it is a

greedoid, but not conversely. Hence, the axioms (Gl) and (TP) form an axiom

system for a proper subclass that we call transposition greedoids.

The best known way to prove that a retract greedoid actually is a greedoid
is to verify (Gl) and (TP). In fact, both retract g:eedoids'and'dismantling
greedoids are transposition greedoids. Examples of greedoids which lack the

transposition property canl be found among the twisted matroids.

Let us now verify (TP) for an arbitrary interval greedoid (E,F) . In the

given situation Auy can be augmented from the larger set AUxUB to a set
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AUyuUB'EF , where B' € Bux and I[B'l = IBl . Because of the interval
property x & B' , i.e., B' = B . So, all interval greedoids have the trans-

position property.

For later use we record the following trivial strengthening of the
preceding paragraph: Property (TP) with the last words replaced by "for all
BS E - A" , is satisfied by every interval greedoid. Note that this stronger

formulation is not possible for transposition greedoids in general.

9.3.8. Gaussian Eﬁﬁﬂ&&&?/ Greedoids.

The Gaussian algorithm for solving systems of linear equations gives rise
to greedoids in the following way. Let M = (mij) be an m x1n matrix over an
arbitrary field. Perform Gaussian elimination working downward row by row from
the top and keep tréck of the column indices of the pivot elements. Each
possible such procedure gives rise to a sequence of column indices (for row 1,
row 2, and so on), and these sequences are the basic words of the Gaussian

elimination greedoid (E,F) of M, E= {1,2,...,n} . Equivalently, this

greedoid can be defined directly by
F={ACE: th bmatrix M i i 1 .
{ e submatrix My , .1 1S nonsingu a;}

Gaussian elimination greedoids are not in general transposition greedoids,

as may be checked on the matrix

whose associated greedoid ({1,2,3,4},F) has {1}, {2}, {1,3,4} € F, but

{1,2}, {2,3,4} €F. o
We now first specialize and the) generalize this idea.
ﬂba—éoiiuwtng—e%&ﬁs-4d_gxeednids_4s_a;sa—a£—£h&e—geae¥aé~£yp;5;Suppose that

= (V,u,E) 1is a bipartite graph, E < VxU, and fix an ordering u;,u,,...,u,

of the elements of the color class U . Now, let

= {AC V: A can be matched to. _{ul,uz,...,ulAl} in T} .
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Then (V,F) 1is a greedoid, called a medieval marriage greedoid.

Every medieval marriage greedoid is a Gaussian elimination greedoid over
a suitable field. To see this, take the UxV incidence matrix and replace the

ones, if necessary, by algebraically independent field elemeEE£:>

- (given above
The matrix N Yis the incidence matrix of a bipartite graph, which

shows that/medieval marriage greedoids in gemeral lack the transposition
@D v _

property.

7 A more general class of greedoids is obtained as follows. Suppose that M; = (E, I;), i =
0,1,...,m, is a sequence of matroids on the same ground set E such that (1) if AC E is
closed in Mj_; then it is closed in M;, for 1 <i<m, and (2) rank M; =1, for 0<i <
m. A greedoid (E,F) of rank m is then defined by F = {A C E : Ais a basis of Mj,}.
Greedoids of this kind are called Gaussian. Clearly the elimination ones are special cases
(take for M; the column matroid determined by the first ¢ rows of the given matrix).
Notice that in a Gaussian greedoid the matroids M; can be uniquely recovered from F,
namely, M; is the hereditary closure of the feasible sets of cardinality . ?

// - .
/~ Also, every matroid M is a Gaussian greedoid (for Mi take
{

@ i truncation of M) . : /,_/
.—‘/.
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9,3,9, Relations Among Classes of Greedoids.

We have discussed several cases where ome class of greedoids is seen to be
a generalization of or a specialization of another class. For overview, these
containment relations between classes of greedoids are gathered in the form

of a poset diagram in Figure 9.3.3. (The containment of the class of matroids
in the classes of twisted matroids and Gaussian greedoids is not indicated in

the diagram.)

Greedoid

Twisted oy Gaussian
Matroid ﬁ&ansp051tlogj Tdeion .
[ Dismantling| Intervall Retract ﬂiﬁ;:::i

Antimatroid| Fajgle ]Polymatroidj
{Vertex Convex Posot Matroid Undirected Directed
Search Pruning Branching Branchin

Figure 9.3.3.
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9,3.10. Notes and Comments

§9.3.1: Twisted matroids were defined in BjSrner (19853), and
slimmgd matroids in Korte and Lovdsz (1984c) where also several procedures for
"slimming" a matroid were discussed. A notion of "trimmed" matroids, equivalent to
the nmotion of "meet" defined in Exercise 9.11, appears in Korte and Lovdsz (1985b, 1989b).

§9.3.2: These standard examples of antimatroids and many others are described

in e.g. Bidrner (1985), Edelman and Jamison (1985), and Korte and Lovdsz (1984a,
1984b). See alsé the comments bn-Section—9-+f in § 9.7.4.

§9.3.3-4 : Branching greedoids originate in Korte and Lovdsz (1981, 1984a),
polymatroid greedoids and local poset greedoids in Korte and Lovéasz (1985b).

§9.3.5: Faigle geometries were defined by Faigle (1979, 1980). The connection
with greedoids was studied in Korté and Lovdsz (1985a).

§9.3.6~7: For retfact greedoids, see Crapo (1984) and Korte and Lovasz
(1985¢c, 1986a) . Transposition greedoids and dismantling greedoids were defined
in Korté and Lovisz (1986a). The original example of dismantling sequences is
due to Duffus and Rival (1978).

§9.3.8:CGaussian greedoids are due to Goecke (1986,1988). The concept was
rediscovered by Serganova, Bagotskaya, Levit and Losev (1988). Axicmatic as

well as algorithmic cha:_:acterizations of this class of greedoids are kuown,

see Goecke (1986,1988) and Exercise 9.34. Medieval marriage greedoids were

defined in Korte and Lovasz (1986a). The name was coined by J. Edmonds in reference
to same '

generic "medieval” king, in whose opinion a sequence of suitors is feasible if

and only if they will marry his daughters in order of decreasing age.

§ 9.3.9:Figure 9.3.3is adapted from information in Korte and Lovdsz (1985e,

- 1986a). '
Several known
Ea—additicn—to—theffexamples of greedoids{which havelbeen discussed here.
For instance, _ classes

femari-—that (Korte and Lovisz (1984a, 1986a) have described several other pcamies
of greedoids arising in graph theory: ear decomposition greedoids, blossom

greedoids (Edmonds' matching algorithm), perfect elimination greedoids, series-
' Goecke, Korte and Lovasz (1987) provide
parallel reduction g:eedoids,hfff;//’an extensive s v of les.
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9.4, STRUCTURAL PROPERTIES

In this section we will discuss the greédoid rank function and the closure
operator to which it gives rise. Just like matroids, greedoids have cryptomorphic
definitions in terms of rank and closure. Also, varicus elementary gonstructions

on greedoids will be defined.

9.4,1. Rank Function

Recall that the rank function of a greedoid (E,F) is defined by r(A) =
=max {IX|] : XS A, XEF}, for ACE . Clearly, F={Ac E: r(a) = [Al},
which means that the greedoid F is completely determined by its rank function.

This proves the last sentence of the following result.

9.4.1. Theorem. A function r: ZE + IN is the rank function of a greedoid if and

only if for all A,BSC E and x,y € E:

(R1) r(AY £ {Al ,
{R2) AC B implies r(A) £ r(B) ,

(R3) r{A) = r(Aux) = r{(Auy) implies r(A) = r(Auix,y}) .

Furthermore, the greedold with rank function r 1is then uniquely determined.

Let us check the necessity of these axioms. (Rl) states that r is sub-
cardinal. This is clear from the defiﬁition of r , and especially implies
(@ = 0 . (R2) states_that r is monotone; this is equally clear by
definition. (R3) essentially codes the exchange axiom (G2) and 1s easily proved

from it.

A greedoid rank function on E 1is the rank function of a matroid if

additionally it satisfies the unit increase property: r(Aux) £ r(a) + 1 for

every A E and x € E . Together with r{(@) = 0 this impiies (R1), and

together with the other axioms it is sufficient to prove submodularity of the

matroid rank function:

r(AnB) + r(AuUB) = r(A) + r(B), for all A,BC E.
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To get some intuition for the failure of the unit increase property and of
submodularity on a general greedoid, consider the undirected branching greedoid
(E,F) of a rooted graph T . Let X €F be a large tree in [ that contains
exactly one edge x adjacent to the root. Then we have r{X) large, but

r{ix}) =1 and r(X-x)=0.

9.4.2. Closure Operator

Using the rank func;ion, we define the (ramk) closure operator 0:_2E - 2E

of a greedoid {E,F) by

g(a) = {x € E: r(Aux) = r{(a)} .
Clearly, o is increasing: A & o(A) . Furthermore, for all ACE
r(a) = r(oa)) . (9.4.1)

To see this, suppose t(A) < r{o(A)) and let X and Y be bases of A and
6{(A) , respectively. Then X can be augmented by some ¥y €Y so that X uy
is feasible and of cardinality r(A) + 1 . But, then r{Auy) 2 r(Xuy) =r(A)+1,

which means that vy & o(A) , contradiecting y € Y c o(4)
As a consequence of the preceding we find that o© is idempotent:
oo (&) = a(8) , (9.4.2)

for all A C E . Namely, if x €co(A) , then r(o(A)) = r(a) £ r(Aux) =
r(ofa) ux) = r(c(a)) , where the first equality is by (9.4.1) and the last by

the definition of the closure of 0(A) . So, x € 0o(A) implies x € 0(A)

A serious shortcoming of greedoid closure is that it is not necessarily

monotone, i.e., A S B does not in general imply o(A) € o(B) . For an easy
.counterexample, take the full greedoid with exactly one basic word xy . In
this greedoid, which is both a poset greedoid and a branching greedoid,

o) = {y} , o({x}) = {x} . The closed sets (i.e., A = 0(A)) of this greedoid

are {x}, {y} and {x,y} .
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The failure of monotonicity means that greedoid closure is not a closure

ng.e., as defined e in § 9.7.1) )

operator in the usual sense| Many of the characteristic properties of ordinary

closure are absent, for instance the intersection of two closed sets is not
always closed, and the closed sets ordered by inclusion do not form a lattice.

It can be shown that greedoid closure o is monotone only in the matroid case.

In spite of what has just been said, it turns out that greedold closures

can be axiomatically characterized in a way which is reminiscent of matroid

closure.

9.4.2, Theorem. A function 0O: ZE + 2E is the rank closure operator of a greedoid

if and only if for all A,BS E and x,y €E:

(RC1) A c o(a) ,
(RC2) ACBC o(A) implies o(B) = o(A)
(RC3) Suppose x € A, 2z & o(Aux-z) for all =z € Aux . Then

x €g(Auy) implies y € o(Aux) .

Furthermore, the greedoid with closure ¢ is uniquely determined.

Suppose that (E,F) 1is a greedoid with closure operator 0 . Now,
F={AgE: x € o(A=x) for all x € A} , so the greedoid can be uniquely
reconstructed from o . Axiom (RC2), a weak form of monotonicity, is easy to
verify for ¢ using property (9.4.1). Axiom (RC3) states that if x & A and
Aux € F, then x € o(Auy) implies y € o(Aux) . This generalizes the
MacLane exchange axiom for matroid closures, where the requirement Aux € F
is replaced by x ¢ g(A) . The MacLane exchange axiom is in general not satis-

fied by greedoid closure.

1t turns out to be convenient to consider also the monotone closure

ogeratorv U 2E ¢-2E obtained from o by the following construction:
u(a) =n{oX): Ac o), XSE} .

It is easy to check that A & u(A) & o(a) and Lu(a) = u(A) for all ACE,
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and that A £ B implies u(A) € u(B) . So, U 1is a closure operator in the
usual sense. However, U doeg not determine F , since u = id for all full

greedoids.

9.4.3. Rank and Closure Feasibility

We have seen that greedoid rank and closure lack some of the good behaviour
of their matroid counterparts. However, loosely speaking, they behéve better on
‘certain subsets of the greedoid than on others. This motivates the introduction
of two special feasibility concepts, which are trivial for matroids, but give

useful structural information about greedoids.

Let G = (E,F) be a greedoid, and define the basis rank of A S E by

B(A) = max{ 1ANX!| : X € F

equivalently, 8 (A) is the maximal size of the intersection of A with a basis.
It is clear that B(A) 2 r(A) , for all A C E . For matroids equality

always holds, but this is not true for greedoids. For suppose that A& B,
AGEF, BE F; them r(A) < |Al =B(A) , since A = ANB . Hence, R (A) = r(4)

for all subsets A if and only if G is a matroid.

A set AC E is called rank feasible if R(A) = r(A) , that is, if

fAnXI £ r(a) for all X € F . The collection of all rank feasible subsets is
denoted by R or RG . It is clear that F & R, and that for a full greedoid
F = R (because then PB{A) = |Al). Also, we have seen that RG = 2% if and only

if G is a matroid. The collection RG is an interesting set system associated

with the greedoid G . Many properties valid for F generalize to R .

Here is a characterization of :ank feasible sets.

9.4.3. Proposition. Let (E,F) be a gree&oid, A C E . Then the following con-

ditions are equivalent:
(i) A is rank feasible,

(1i) r(AuUX) S r(A) + IXl , for all XS E=A,
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(iii) X g a < uX), for some X € F .
Property (ii) shows that r has the unitmincfease property on rank feasible
sets. Also, it allows}to conclude that for A,BC E :
B(AUB) + r(AnB) s B(a) + B(B) ,

which implies that on rank feasible sets, r =8 is semimodular. Property (iii)
easily implies that R 1s an accessible set system. However, (E,R) is not

in general itself a greedoid.

In some situations it is useful to consider a stronger property than rank

feasibility: A £ E is said to be closure feasible if A& 0(X) dimplies

A C u(X) for all subsets X & E . Equivalently, A is closure feasible if
ACo(X) and X< YC E imply A € o(Y) . We denote the éollection of closure

feasible sets by C or CG . Here are some basic properties.

9.4.4. Proposition. Every closure feasible set is rank feasible: CcR.

Furthermore, the set system C is closed under union.

9.4.5. Proposition. The following conditions are equivalent:
(i) (E,F) is an interval greedoid,

(ii) FcC,

(iii) C=R.

Since R 4is an accessible set system, it follows from Propositions 9.2.7,

9.4.4 and 9.45, that (E,C) = (E,R) is an antimatroid if (E,F) has the interval

property.

9.4.4, Constfuctions

The basic matroid constructions of deletion, contraction, truncation and

direct sum generalize to greedolds in the following way.
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let G = (E,F) be a greedoid and A & E . Define:
FNA={XcE-A: X€ F} , (9.4.3)
and, if A. is feasible:
F/a={Xc E-A: XUAE F} . (9.4.4)

It is not hard to check that the set systems obtained are in both cases
greedoids on the ground set E' = E-A . One says that GYNA = (E',F\NA) is
obtained from G by deletion of A , or by restriction to E-A , and that
G/A= (E', F/A) 1is obtained by contraction of A ., Also, by a minor of (8,F)
‘we shall mean any restriction of a contraction, i.e., any greedoid of the form

(E~ (AUA'Y, (F/A)NA') , where A€ Fand A' S E-A .

Observe in this connection that restriction and contraction commute:
(F/A)NA' = (F\A')/A = {X S E - (AUA"): XUAEF} for AnA' =@, ACF and A'CE.
Thus minors can equivalently be defined as contractions of restrictions.
Minors of minors of a greedoid are again minors of the greedoid, and hence

"being a minor of" defines a partial order on the set of isomorphism types of

greedoids. For more about this, see § 9.9.1.

Let r,r' and r" denote the rank functions of G , GNA and G/A,

respectively. Then for all X <€ E-A:

r'(X) = r(X) and r"(X) = r(Xuli) - r{a) . (9.4.5)

Definition (9.4.4) produces a greedoid only if A is feasible, since
otherwise @ € F/A . It is possible to extend the definition of comtraction
F/A in the following cases: (i) F arbitrary greedoid and A rank feasible,
_ (However,
or (ii) F interval greedoid and A arbitrary subsegﬁ) the contraction
F/A 1is not a meaningful concept for general F and A.) In case (i) one extends
the rank formula (9.4.5), while in case (ii) one picks a basis B of A,

contracts by B , and then deletes A-B . It is instructive to try to visualize

the second case in terms of branching greedoids.
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It is easy to formulate the ordered versions of deletion and contraction.
For instance, the contraction of a greedoid language (E,l) by the feasible

word o 1is defined by
L/ia={BE g: : aBEL} , (9.4.6)
which is clearly again a greedoid language.
If (E,F) is a greedoid of rank v and 02 k £ r , then the k-truncation
F ix e FooIxl s k) | (9.4.7)
is a greedoid as well.

There are two ways to define the sum of greedoids. Let Gl = (El,Fl) and

G2 = (EZ’FZ) be two greedoids on disjoint ground sets. Then their direct sum

is the greedoid G, @ G, = (EIU E

1 9 Fl @ Fz) » where

2’

F.@F ={x1ux

1 9 X. € F. and X2 € F2} . (9.4.8)

28 M1 N
Their ordered sum is the gfeedoid G1 & G2 = (EltJEz, Fl @ Fz) , where

Fla F2 = Fl” {BuX: B is a basis of Fl, X € F2} . (9.4.9)

Clearly, G, & G, and G1 @G

1 2 have the same family of bases. Also, the

2
language of feasible words of G1 ] G2 is the shuffle product of the two

component languages.

All constructions discussed in this section take interval greedoids into
interval greedoids, and similarly for local poset greedoids. The same is true
for antimatroids, except that the k~truncation of an antimatroid is in general
only an interval greedoid. Conversely, the restriction of an interval greedoid
to any feasible set is an antimatroid (cf. Proposition 9.2.8). A special

operation for antimatroids, called trace, will be defined in § 9.7.3.

Unfortunately, the duality operation of matroid theory has no counterpart
for greedoids, Only a weak notion of diality operation exists for general

greedoids, see § 9.6.3.
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9.4.5. Connectivity

The concept of connectivity of greedoids is modeled to generalize the graph-
theoretic connectivity of rooted graphs in the case of branching greedoids. In
this context a rooted digraph A = (V,E,r) is called comnnected (or l-connected)
if there is a directed path from the root to every vertex. More generally, A is
k-connected if every vertex v € V can be reached from the roof by a directed
path after removal of at most k-1 vertices in V - {r,v}. Equivalently; by
Menger's Theorem, A is k-connected if there are k vertex-disjoint directed

paths from the root to every vertex v € V-r such that (r,v) is not an arc in E.
Similar definitions apply to rooted undirected graphs.
The digraph A is connected if and only if the associated vertex search

greedoid is full. In contrast, connectedness of A is not encoded in the

directed branching greedoid of A .

The case of higher conmnectivity (k > 1) suggests the following definition.

9.4,6. Definition. Let (E,F) be a greedoid of rank r, and let X € F . A set

AC E-X is called free over X if for every B S A , XuB 1is feasible. The
greedoid (E,F) is called k-comnected (1 £ k £ r) if for every X € F there is
a free set A over X of size min{k, r-r(X)} . Equivalently, (E,F) is
k-connected if for every X € F there is a Y € F such that Xc Y , |¥Y-XI| =

= min{k, r-r(X)} and the interval [X,Y] of the poset (F,g) is Boolean.

Obviously, every greedoid is l-connected, and every k-conmnected greedoid
is also (k-1)-connected for k 2 2 . Matroids are r-connected (i.e., maximally

connected), but this does nmot characterize matroids.

If A is free over X € F, then it is contained in the set
T'(X) = Exo(X) ={a € E-X:Xvua € F}

of continuations of X . In antimatroids, we know (é.g. from Lemma 9.7.9) that

the free sets over X are exactly the subsets of [ (X) . Thus an antimatroid is
k-connected if and only if for all X€ F ,

IT(x)! 2 min{k, r-r{X)} .



35.

The following result shows that (for k > 1) Definition 9.4.6 describes a

reasonable generalization of graph comnectivity.

9.4.7. Proposition. Let A = (V,E,r) be a connected rooted digraph. Then the

following are equivalent for k > 1:
(i) A is k-connected,
(11)  the branching greedoid on A is k-connected,

(iii) the vertex search greedoid on A is k-connected.

Proof: Since (ii) <> (iii) is a special case of Propositiom 9.8.9, we will only
demonstrate (i) < (iii).

If the digraph A is not k-connected, then there is a cut-set A S V' =
= V-r of size |Al < k that separates a vertex v € V'-A from the root.
Consider the feasible set X =uU{YEF : Y V'-A} of the vertex search
greedoid (V',F) . We have IAl + r(X) < r = IV'i , since v & XUA . But the
. free sets over X are contained in T(X) € 4 , and Al < EEB{k- r-r(X)} . Thus
(Vv',F) 1is not k-connected.

Conversely, if the vertex search greedoid is not k-connected, then there is
a set X € F such that IT(X)} < min{k, r-r(X)} . But then I(XUT(X)| =
= r(X) + INX)I! <r, so T(X) is a cut-set of size less than k which

separates all vertices of V' - (XuT(X)) <£from the root. 0

In closing, we observe that the case of undirected rodted graphs and their
associated greedoids can be reduced to the previoﬁs directed case by a standard
graph theoretic construction: for an undirected, rooted graph I = (V,E,r) let
A= (V,E',r) be the rooted digraph on the same vertex set which has a pair of
antiparallel arcs for every edge of T ., Then T is k-connected if and only if
A is k-connected, and the vertex search greedoids of T and A coincide. The
branching greedoids of T and A diffgr already in the sige of their ground sets,
but the associated posets (F,c) are isomorphic. This proves the analogue of Pro-
position 9.4.7 for undirected graphs via the observation that k-connectedness of

a greedoid can be determined from the unlabeled poset (F,S) alone.
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9,4.6. Notes and Comrents

All material in §§ 9.4.1-4 comes from Korte and Lovasz (1983),
except that Theorem 9.4.1 was proven in Korte and Lovdsz (1984b). An

alternative closure operation, called kernel closure, which is idempotent,

monotone for interval greedoids, but not in general increasing, is defined and

studied in Schmidt (1985a), see Exercise 9.9.

Two—connectivity.in greedoids was defined and studied in Korte and Loviasz
(1985d), k-connectivity in BjSrner, Korte and Lovdsz (1985). The connectivity

properties of branching greedoids are studied in more detail in Ziegler (1983).
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9.5.0PTIMIZATION ON GREEDOIDS

As mentioned in the Introduction, greedoids were originally developed to

give a unified approach to the optimality of various greedy algorithms known

in combinatorial optimization. Such algorithms can be loosely characterized

as having locally optimal strategy and no backtracking.

In this section we will formulate a greedy algorithm for hereditary
languages, define compatible objective functions on such languages, and then
characterize greedoids as those languages on which the greedf algorithm is
optimal for all compatible objective functions. The well-known algorithmic
characterization of matroids in terms of linear objective functions is here

viewed in a broader context.

To illustrate the results, we will discuss Kruskal's and Prim's algorithms
for minimal spanning trees and Dijkstra's shortest path algorithm as instances

of greedoid optimization.

3.5.1. The Greedy Algorithm

In the following, let (E, L) be a simple hereditary language over a finite ground set E.
We do not assume a priori that £ is pure. As usual, maximal words in £ are called basic.
We will be interested in the following optimization problem.

Given an objective function w:L-+R, find a basic word a

which maximizes w{a) .

The greedy approach to this problem is expressed by the following algorithm.

GREEDY: (1) Put a.i=@ , and 1i:= 0,

{(2) Given a, , choose X4 € E such that
(1) X €L,

>
(ii) w(onixiﬂ) 2 w(aiy) » for all y € E such that oy € L.

(3) Put ui 1= o, X

+1 i+l

(4) If the word a1 is not basic, put i :=i+1 and go back to (2).
(5) If it is basic, put @ = a;4; and stop.
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Whether GREEDY works (that is, whether the greedy solution o produced

by GREEDY actually maximizes ww(a)) must obviously depend on both L and w -

they have to be "compatible".

9.5.1. Definition. An objective function w:l =+ R is compatible with L if it

satisfies the following conditions:

For ox € L such that w(ox) 2 w(ay) for every oy €L ("x is a best choice

after a "),

(C1) afxy € L and aBzy € L imply that w(apBxy) 2 w(@Bzy)

("x iz a best choice at every later stage'), and

(C2) axBzy €L and ozBxy € L imply that w(axBzy)2 wlazBxy)
(it is always better to choose x first and z later than the other

way around'").

Of course, if ® 1is stable,in the sense that w(a) only depends on the

underlying set & , then (C2) is vacuously satisfied.
The following main theorem characterizes greedoids algorithmically.
9,5,2., Theorem. Suppose (E,L) dis a simple, hereditary language. Then

_ gives)
(E,l) 1is a greedoid if and only if GREEDY ) (an optimal solution for every

compatible objective function on L .

Proof. (1) We will show that GREEDY works on interval greedoids - the
proof for general greedoids is similar but more complicated. All examples
discussed below involve interval greedoids and are therefore covered by this
proof.

Let (E,L) be an interval greedold, w a compatible objective function
and Y a greedy solution. Choose an optimal solution ¢ so that the common
prefix with vy is of maximal length, i.e., {al is maximal with v = oy’

and & =0a6" . We claim that v = a = 6 .
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If this is not the case, then Yy' = xy" , &' = Y ¥gre ¥y where x # v, -
Now augment ox from B =0Yyee-Yy o using the strong exchange property (12')
for interval greedoids: ax yl...i?k...yn € L, for some 1 £k £n . Here, "§k"
denotes that Vi is deleted.

A

For 1 i £ k-1 define

Bi i) SRR UL S FEREL SRR S
and let

Bk ol ZACTTRPRTERTURE AMRLS SNERE) Sy
We know that Bl SAXY eeaYpen oYy € L , and augmenting Qypee¥y from Si €L,
using strong exchange (L2'}, we get Bi+1 € L . Hence, 81’82""’Bk_ € L.

Now, x 1is a "best choice" after a (since Yy 1is greedy), so conditions

(Cl) and (C2) give

1\

w(Bl) ‘w(Bz) 2 ... 2 w(Bk) s
and (Cl) implies

w(Bk) = w(uyl...yk_lxyk*l...yn)

v

w(ayl...yk_lykyk_!_l...yn) =w{d) .

Hence, w(Bl) 2z w(8§) . But then Bl is an optimal basic word having a longer

common prefix ox with Y than does § . This contradicts the choice of §

(2) For the converse, we define generalized bottleneck functions on L : they

are the objective functions of the form w(x1x2"fxn) = mln{fl(xl),...,fn(xn)} s
where the fi: E~-TR (1 £isgr) are functions satisfying fi(x) g fi+1(x)

for every x € E , 1 & %_i‘f_ibpeneralize& bottleneck functions are compatible

with all hereditary languages, as is easily checked.

Now, suppose that o,B € L and lol = k > m = {8l . We want to show that .
there is some x € @ such that Bx € L , For this, let A =0 U B and define

a generalized bottleneck function w by:
Here r denotes the maximal length of a word in L.
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0, if x €A

It
[

fl(X)

= £, (%)
k 1, if x € A

1, if x €A
f

(x) £_(x)
ktl r 2, 4if x €A .

Let & = 06" be a basic word extending o . Then w(8) = 1 . Next, let
Y= Bxlxz...xP be a greedy solution extending B . Such solutions clearly

exist. Since GREEDY is assumed to be optimal, we have

1

)

w(d) £ wly) & fm+l(x1) ’

which since m+l £ k implies that X, € A . Now, B}H_E Ll , since L is

hereditary, and therefore X, € A-Bc @, since L is simple. We are dome. D

9.5.2. Examples

(1) Matroid Optimization.

An objective function w:l » TR is called linear if it is of the form

n
w(xlxz...xn) = 151 u(xi) ,

for some given weight function u: E-+ 1R

If (E,L) is a matroid then all linear objective functions are compatible
and hence can be greedily optimized. One easily checks condition (Cl), and

(C2) is clear, since linear objective functions are stable.

. For example, if I = (V,E) 1is an undirected connected graph with weight

function u: E +TR, then a2 minimal spanning tree (that is, a spanning tree

TS E minimizing % ufe) ) will be obtained by applying Kruskal's
. e €T
algorithm. From a greedoid point of view, we apply GREEDY to the linear

objective function w(T) = - I wu(e) on the graphic matroid (E,L)
e€ET
associated with [ -

(2) Breadth-First-Search.

Let (E,L) be the branching greedoid of a2 connected rooted digraph
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A = (V,E,r) , and assume that d: E +]R+ is a length function on the arcs.

Define an objective fupnction w: L+ R by

n
m(xlxz...xn) = - _Z d(r,vi) R
i=1
where the vi=head (Xi) are the nodes reached by the branching XyeeX

and d(r,vi) is the sum of the lengths of the arcs on the unique path from

T to W, n .es .
i i x1x_2 xn

We have to check that w is compatible with L: (C2) is again clear

because w is stable; the easy argument for (Cl) is an instructive exercise.

Hence, the theorem implies thaf GREEDY, which executes Breadth-First-Search
on A , finds a spanning arborescence with minimizes the sum of the distances
from the root. Such an arborescence must, in fact, also minimize each
individual distance, since, as is easy to see, there exist spanning arborescences
which simultaneously minimize all the distances from the root to the other
vertices. This particular instance of GREEDY gives the shortest path algorithm

of Dijkstra.

It is noteworthy that the objective function -w (corresponding to Depth-

First-Search) is not compatible with the branching greedoid language. For

instance, GREEDY fails to optimize =-w for the following greedoid:

Figure 9.5.1.

9.5.3. Linear Objective Functions

Linear objective functions (as defined in § 9.5.2 ) cannot in general
be greedily optimized over greedoids. However, for some special linear functions

and for some special greedoids the situation is better.
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Let (E,F) be a greedoid, R ¢ 2E its collection of rank feasible sets,
and u: E+ R a function. The linear objective function tn(xlxz...xn) =

n

= I u(xi) is called R-compatible if {%x € E: u(x) 2 c} ER, for all c€R,
i=1
that is, if all the level sets of u are rank feasible.

In the situation of the preceding paragraph, suppose that c1> c2> e P =,
are the values assumed by u , and let Ci ={x € E: u(x) 2 ci} + Clearly,
GREEDY will first pick a basis of C1 , then augment it to a basis of C2 , and
so on. Hence, if B is a greedy basis then IBrWCiI = rank C; , for 1£isk .
Since C; € R, an arbitrary basis B' must satisfy I[B'n Cii $ rank C, ,

1£isk . It easily follows that w(B') £ w(B) , i.e., we have proven the

following:

9.5.3. Proposition. Let (E,F) be a greedoid. Then GREEDY is optimal for every

R-compatible linear objective functionm.

As observed in § %.4.3 , (E,F) is a matroid if and only if R = ZE ,
that is, if and only if every linear objective function is R-compatible. So
Proposition 9.5.3 again generalizes, but in a different way than Theorem 9.5.2,
the fact that matroids have the property that all linear objective functions

can be greedily optimized.

However, not every greedoid with that property is a matroid, as we will

TIOW See.

9.5.4. Proposition., Let (E,F) be a greedoid. Then GREEDY is optimal fof every

linear objective function if and only if the hereditary closure (E, H(F}) is

a matroid and every set which is closed in (E,F) is also closed in (E, H(F)) .

An example of a greedoid which satisfies these conditions is the undirected

branching greedoid of a connected rooted graph I = (V,E,r) , for which the
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hereditary closure is the corresponding graphic matroid. Greedy optimization
of linear objective functions over this branching greedoid is equivalent to

Prim's algorithm for finding a minimal spanning tree in T

see also Goecke, Korte
and Lovasz (1987).

9.5.4, Notes and Comments.

The material in §9.5.1 and ﬁhn—eﬁﬁ&p&s&dﬁi§9.5.2 is from Korte and

Lovdsz (1981, 19843);)1t should be said that there exist optimal discrete

algorithms which are of a greedy nature, but which do not come from an under-
 lying greedoid structure. For instance, no greedoid can be discerned behind

the greedy algorithm for knapsack problems of Magazine, Nemhauser and Trotter

(1975), also treated in Hu and Lenard (1976),

The algorithms of Dijkstra, Kruskal and Prim are discussed in every book
on combinatorial eoptimization. Fe—s.eemaen;§%§;jan (1983) and the interesting
historical discussion in Graham and Hell (1984). Korte and Lovisz (1981, 1984a)
show that also some machine scheduling algorithms of Lawler fit into the
greedold framework - the question is of optimizing some generalized bottleneck

function over a poset greedoid.

The fact that Depth-First-Search is not compatible with branching greedoids
was pointed out by Korte and Lovisz (1981, 1984a}). They remark that the problem

is NP-hard, since it includes the problem of finding a Hamiltonian path.

The results about linear objective functions in- § 9.5.3 are from Korte

and Jovdsz (1984c).

Optimization of linear objective functions over greedoids is also discussed in Brylawski
(1986), Faigle (1985), Goecke (1986, 1988), Goecke, Korte and Lovdsz(1987), Goetschel
(1986) and Serganova, Bagotskaya, Levit and Losev (1988). In connection with linear
objective functions Gaussian greedoids have special properties, see the cited papers by
Brylawski och Goecke, and also Exercise 9.34. '

Bagotskaya, Levit and Losev (1988, 1989) define structures called “fibroids”, designed
to incorporate some optimization features of dynamic programming. Fibroids contain
Gaussian greedoids as a special case. Optimization over (W, P)-matroids (see §9.9.4) is
discussed in Zelevinsky and Serganova (1989). See also the work of Bouchet (1987).
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9.6. THE GREEDOID POLYNOMIAL

With every greedoid is associated a polynomial, which reflects some of the
combinatorial structure. In this section we will present the basic properties
of this polynomial and also discuss the related notions of greedoid invariants

and dual complexes.

9.6.1. A Greedoid!Polynomial

Let G = (E,F) be a greedoid with n = |El and r = rank G . Give the

underlying set E a total ordering §{ . This induces a total ordering of the
set BG of bases of G as follows: B <Q B' if the lexicographically first

feasible permutation of B 1is lexicographically smaller than the lexico-

graphically first feasible permutation of B'

For instance, consider the branching greedoid of this directed graph:

b

r

Figure 9.6.1,

There are two bases: B1 = {a,b} and B, = {a,ce} . If © 1s a < b < ¢ then

2

B1 < BZ s but if Q is b < c¢c <a them B, < B_ .

Now, for a basis B E BG we will say that x & E=B is externally active

in B if B< (BuUux) -y , for all y € B such that (Bux) -y is a

bagis, Let extQ(B) denote the set of externally active elements, and define

!eng(BN
}‘G Q (ty = & ¢t . (9.6.1)
* BEBG

Let us again exemplify with the small branching greedoid above:

o extQ(Bl) _EXHR(BZ) AG,Q(t)
a<b<e {e} ] 1+t
b<e¢c<a [ R {b} 1+t
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The crucial combinatorial fact about this notion of external activity in
bases is stated in the following lemma. Recall that a subset A € E 1is said

to be spanning if it contains a basis.

9.6.1. Lemma. For each spanning set A there exists a unique basis B such that

B AC BtJextQ(B) .

The basis B with this property is the first one (in the'ordering induced
by £ ) which is contained in A . The partitioning of the set § of spanning sets
into Boolean intervals implies part (iii) of the following theorem, which in turn

implies part (i).

9.6.2, Theorem. Let G = (E,F) be a greedoid of rank r and cardinality n .

(1) AG(t)== AG Q(t) is independent of the ordering { of E .
. ;
(ii) AG(t) is a monic polynomial of degree n-r with nonnegative integer
coefficients.

(iii) If G has Sj spanning sets of size j , for r= j£ n , then

n-r i
A4t = I s ., t7 .,
G 1=0 r+i
(iv) _ kGle(t) . if {e}€F and e 1is a coloop,
,AG(t)z AG/e(t) + AG‘\e(t) s if {e} €F and e is not a coloop,
AG (t) AG (t) , if G is the direct or ordered sum
1 2
of G, and G

1 2°
The polynomial AG(t) is a greedoid counterpart to the Tutte polynomial.
If G is a matroid with Tutte polynomial TG(x,y) and dual matroid G* , then

TG(l,t) = AG(t) and TG(t,l) =i . (t) .

G*
Every greedoid of positive rank must have some feasible siﬁgleton. There-

fore part (iv) of the theorem gives a recursive algorithm for computing the

polynomial AG for any greedoid G . The algorithm will stop at the trivial

greedoids of cardinality k and rank zero, whose polynomial is tk . In general,
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if G has k 1loops and G' is obtained by deleting these loops, then
xG(t) = tk-AG,(t) , since § is then the direct sum of G' and the loops.
For instance, if G 1s of rank ¢dne with k feasible singletons, then

k-1

Ag = tn_k(1+t+...+t ) . Notice (e.g.,from (9.6.1))} that if G dis full

(i.e., EE F ) then AG(t) =1.

Let us as a small example compute AG for the branching greedoid G in

Figure 9.6.2(a).

Figure 9.6.2.

One sees that the arc e is a feasible coloop (i.e., it emanates from the
root and lies in every spanning arborescence). Hence, it may be contracted away

without affecting AG . Now, G/e =G, & G2 s Where G is the branching

1 1

greedoid in Figure 9.6.1 and G2 that in Figure 9.6.2(b). Hence, AG = (1+t)'XG ,
‘ 2

and deleting the two loops in G2 (i.e., the arcs going into the root) we get

AGZ = tz 'AG » where G, 1is the greedoid on Figure 9.6.2(c). Using deletion-
3 .

contraction or simple counting, part (iv) or part (iii) of Theorem 9.6.2 quickly

3 5

gives A, = 2t+t2 . Hence, )\G(t) = (l+t) » t2° (2t+t2) = 2t” + 3t4 + &7 .

G3
We have seen that the degree of AG(t) as well as the coefficients of
AC(l+t) have direct combinatorial meaning. Also the subdegree of kG(t) has
an interesting interpretation,in terms of a certain algorithmic property. By

~the subdegree of a nonzero polynomial CO + clt + e + cktk we mean the least

integer d such that 4 0.
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Suppose that we want to design an algorithm which for arbitrary subsets
A C E decides whether A 1is a spanning set in the greedoid G = (E,F) .
Think of A as being represented by its incidence vector XA (a O-1l-vector
of length n with ones in the positions corresponding to A ), and suppose
that the algorithm may read XA_ by inspecting only one position at a time,
If the best such.algorithm can decide whether A 1is spanning or not after k
inspections for ail Ac E, and if k-1 inspections will not suffice, then wé

say that k is the argument'comglexitz of the spanning property in G .

For instance, it is easy to check that the argument complexity is 4 for
the branching greedoid in Figure 9.6.2(c). In other words: it would be redundant
to inspect all 5 arcs in order to algorithmically decide whether a subset of

arcs contains a directed path from the root to every other node.

9.6.3. Proposition. The argument complexity of the spanning property in G 1is

n-d , where d is the subdegree of AG(t) .

The result can be made more precise, since the method of prcocof implies an
explicit eptimal algorithm which will decide whether am arbitrary subset A is

spanning after at most n-d inspections of XA_' Briefly, here is what to do:

(1) Pick a feasible singleton {e} in ¢ and read the corresponding

position Xe of XA'

(2) 1If Xe =1 and rank G > 1 , put G := G/e and to to (1).

(3) 1f Xe =1 and rank G=1, go to (6).

(4) 1If xe =0 and e is not a coloop,put G #= GNe and go to (1).
(5) If Xe =0 and e is a coloop, go to (6).
(6) Stop.

There is one more characterization of the subdegree of AG(t) s which for
branching greedoids takes the following form: If G is the branching greedoid

of a rooted directed graph and if d is the least number of edges which must
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be removed in order to obtain a spanning and acyclic (no directed cycles)

subgraph, then 4 1is the subdegree of AG(t) .

9.6.2. Invariants and Reliability

Suppose that @ is a function which associates some complex number with
each greedoid G = (E,F) . For instance, @(G) could be the number of feasible
sets, the number of bases, or the cardinality of the ground set. Such a function

@ is called an invariant if the following axioms are satisfied:

(I1)  @(G) = ¢(Gfe) , if {e} is a feasible coloop.

(I2)  (G) = @(G/e) + ¢(GNe) , if {e} is feasible and not a coloop.

(13) g(G) = ¢(G1) 'w(GZ) , Sif .G 1s the direct or orderedrsum
of G1 and G2 .

(14) @(Gl) = ¢(G2) s if G, and G, are isomorphic.

(I5) @(G) # 0 for at least one greedoid G .

Let Gg denote the (up to isomorphism) unique greedoid of rank 0 and
cardinality n ., If ¢(Gé) =z , then @(Gg) =z . For n2 |l this is a
"direct consequence of axiom (I3). For =n=0 it follows from (I3) and (I5)

together. Notice that this together with (Il) implies that @(G) = 1 for every

full greedoid G .

" There is a close connection between invariants and the polynomial AG(t) .

9.6.4. Proposition. Every invariant ¢ is an evaluation of the greedoid

polynomial. More precisely, if @(Gé) =z &€C , then ¢(G) = KG(z) for all

greedoids G .

Proof. By definition the invariant ¢ enjoys the same recursive properties as
thé polynomial evaluation KG(Z). Hence, the two will coincide for all greedoids
if they coincide for greedoids of rank zero. But we have already seen that this

is the case. O
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Some simple examples of greedoid invariants are the number of bases
(= KG(l)) and the number of spanning sets (= KG(Z)). The following probabilistic

example is, however, more interesting.

Let G = (E,F) be a greedoid of rank r and cardinality n . Suppose
that each element of E is colored red with probability p and blue with
probability 1-p , for some real number 0 < p < 1 . The coloring of each element
is assumed independent of the coloring of the others. Let Fc(p) denote the
probability of the event that the set of blue elements is spanning in

G: ﬁG(p) = Prob (blue spans) .

For instance, if G is the circuit matrold of a connected graph, then
ﬂG(p) is the probability that the blue edges will connect all vertices; if G
is the branching greedoid of a directed rooted graph then WG(p) is the
probability that each node can be reached along a path of blue edges from the
root; if G is the k-truncation of a poset greedoid then WG(p) is the
‘probability that the order filter generated by the red elements has size at
most n-k; 1if G is the k-truncation of a Euclidean convex pruning greedoid
then HG(p) is the probability that the convex hull of the red points has size
at most n-k . In examples such as tﬁese one may think of the greedoid as some
abstract stochastic system in which components may "fail" independently of
each other with probability p , and the questidn is to assess the probability
that the system will still "operate" in an appropriate sense (the "damage"

caused by failed components is sufficiently limited).

To analyze the function NG(p) , define ¢p(G) = pr-n (l—p)—r WG(p) . We
claim that ¢p(G) 1s an invariant. Only axiom (I2) will be verified here,

verification of the other axioms is either similar or trivial.

Suppose that {e} 1is feasible and not a coloop.Then Prob (blue spans) =
= Prob ( e is blue and blue spans) + Prob ( e is red and blue spans) , or
equivalently, WG(p) = (1-p) ﬁG/e (p) + p ﬂG“\e(p) . Multiplication of this

equation by pr-n(l--p)-_r gives wp(G) = mP(G/e) +-@P(G\e),.so (I12) is satisfied.
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1 -1
Since mp is an invariant, and clearly @P(GO) = p {all subsets of

Gé are spanning}, we conclude that @p(G) = AG(p_l) for all greedoids G .

Hence, we have proven the following.

9.6.5. Proposition. The probability that the set of blue elements is spanning

in ¢ is pn—r (1-p)r kG(p-l) .

For instance, using our previous calculation we conclude that the blue
arcs will reach every node of the graph in Figure 9.6.2(a) with probability

(1-p)® (1+3p+2p?) .

9.6.3. Duality

What parts, if any, of the matroid duality operation remain valid for
greedoids? The answer to this question will depend on what we mean by a

duality operation G —G* , sending a greedoid G = (E,F) to some structured

positive answers
set system G* = (E,F*) on the same ground set. To get reasonably general |
we must unfortunately give up the requirement that the dual (E,F*) itself

is a greedoid. Then there are two weak notions of greedoid duality.

The first is the complementation construction ¢ = {F — X : X € F}. For antima-
troids (Proposition 9.7.3), this leads to a dual object which is a convex geometry (it is a
greedoid if and only if the original antimatroid is a poset greedoid). A pleasant property
of this duality is that the original antimatroid can be uniquely recovered from its dual. A

- definite disadvantage is that the construction gives nothing of apparent interest for general
greedoids, with the following exception.

9.6.6. THEOREM. If (E, .7:) is & full Gaussian greedoid, then so is also (E,F°).

The second notion of duality, and the one that we will briefly discuss here,
associates with an.arbitrary greedoid a dual object which is a shellable
simplicial complex. One price paid for the generality is that the original
greedoid cannot be uniquely reconstructed from its dual. dn the other hand,

this duality operation commutes with deletion and contraction in the desired
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way and also generalizes some other matroid properties to arbitrary greedoids.
Last but not least, it throws additional light on the greedoid polynomial,

In the following discussion hereditary set systems will be valled simplicial

complexes, and we will assume familiarity with the concepts of shellability and

shelling polynomial of simplicial complexes. These and other related notions are

defined and discussed in Chapter 7 of this book.

For a greedoid G = (E,F) , define its dual complex G¥*=(E,F*)} by
F* = {A: AC E-B for.some basis B € BG} . So, F* 4is the hereditary closure
of the family of complements of the bases of G . It is therefore a pure
simplicial complex. Clearly, if G is a matroid then G* is the dﬁal matroid

- in the usual sense.

As a simplicial complex, a matroid can be characterized either by the
exchange property (by definition) or else by being sufficiently shellable (by
Theorem 7.3. 4). These two properties, exchange and shellability, go
different ways in the more general picture: the former is found in all greedoids

and the latter in their duals.

9.6.7. Theorem. The dual complex G* of a greedoid G = (E,F) is shellable, and

its shelling polynomial is AG(t) . Furthermore, if e &€ E , then

(1) G*Ne = (G/e)* , if {e} is feasible,

(i1) G*/ e (GNe)*, if e is not a coloop.

1

The deletion and contraction operation on simplicial complexes should be
understood in the natural way: G¥Ne = {A S E-e: A€ F*} and G*/e =
= {AC E-e: Aue € F*} if {e} € F¥ . The special requirements on the element

e in (i) and (ii) ensure that in each case contraction is well-defined.

Let us sketch the proof of Theorem 9.6.7 to the extent that its relevance
for the greedoid polynomial becomes clear. Start by assigning a total ordering

€ to the ground set E . As explained in the first paragraph of Section 9.6.1,
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this induces a total ordering of the set B of bases of G . The first main
fact is that the corresponding ordering of the basis complements is a shelling

order. In particular, G* is shellable. The second main fact is that the

induced b
restriction of the facet E-B this shelling order (as defined in Section
7.2 ) is E - B - ext.(B) . Consequently A .(t) =X {t) , as defined
Q G G,

in (9.6.1), is the shelling polynomial, Also, it follows that Lemma 9.6.1 is a

special case of Proposition 7.2.2.

9.6.4. Notes and Coments,

The material in this section is from §§ 5-6 of Bjdrner, Korte
and Lovdsz (1985). From a matroid-theoretic point of view §§ 9.6.1 and 9.6.2
extend parts of the theory of Tutte polynomials and Tutte-Grothendieck invariants
to all greedoids. For these toﬁics in matroid theory see e.g. Chapter 5
of this book.
A general discussion of the concept of grgument complexity can be found in
Chapter 8 of Bollobds (1978). The d=0 case of Proposition 9.6.3 appears in Bjbrmer,

Korte and Lovasz (1985).

There is a large literature on reliability analysis of stochastic networks
and other systems. See Colbourn (1987) for more information and

references in this area.

The lack of a full-fledged duality operation on the class of all greedoids
has been noticed by serveral authors. It appears that it is only\wﬁen the
demand for total symmetry between priﬁal and dual is abandoned, that some
interesting remnants of duality in greedoids can be discerned. Interesting
axiomatic discussions of duality (for matroids and some other set systems)
appear in Kung (1983) and Bland and Dietrich (1987,1988).

A 2-variable greedoid “Tutte” polynomial, defined by the corank-nullity formula

falt,2) = Z gr{E)—r(A) zlAl—r(A),
ACE
has been studied by Gordon and McMahon (1989), se also Gordon and Traldi (1989). Its

relationship to the polynomial studied here is : Ag(t) = fg(0,t — 1), as can be seen from
Theorem 9.6.2 (iii). ' "
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9.7. ANTIMATROIDS

Antimatroids were defined in Section 9.2 as the greedoids which have the
interval property without upper bounds. They were characterized in Proposition
9,2.7 as accessible set systems c¢losed under union and by a special exchange

property. Several examples were given in § 9.3.2.

In_this section we will discuss some of the special structure of antimatroids,
which makes this an exceptional class of greedoids. It turns out that anti-
matroids model some combinatorial properties of the convex hull operator in

. Euclidean spaces much like matroids model the combinatorial properties of the

linear span operator.

9.7.1. The Duality with Convex Geometries.

A closure operator on a finite set E is an increasing, monotone and idem-

potent function T: ZE +-2E . This means that for all A,B ¢ E:

{COL) A g T(A)
(Co2) AC B implies 7T(A) € T(B) ,

(C03) T1(A) = 1(4) .

Fixed sets A = 1(A) are called closed, and it follows from the axioms
that the family C of closed sets is preserved under intersection (i.e.,
A,BE C » AnB €C) . Conversely, if (' ¢ 2E 5 4 set system preserved under
intersection then T(A) = n{C € C': Ag C} is a closure operator, and this
gives a one-to-one correspondence between closure operators and intersection-
invariant set systems containing E . In particular, a closure operator can be

specified by giving the family C of closed sets.

The closure operator T(A) = {x € E: r{Aux) = r{(A)} of a matroid is

characterized by the additional MacLane exchange axiom:

(E) If x,y €T1(A) and y € 1(Aux) , then x € T(Auy) .
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Now, let E be a finite subset of R" and for subsets A S E let
T(A) = E n conv(A) , where conv{(A) denotes the convex hull of A in the

usual sense of Euclidean geometry, i.e., T(A) ={x € E: x = L liai ’ aiEE A,

0 =X, 21,3 Ai 1} . It is a very interesting fact that this comvex hull
closure 7T satisfies a property opposite to (E) , which we call the anti-

exchange axiom:

(AE) If x,y € 17(A), X%y and yvy€ t(Aux) , then x € T(AUuy) .

An intuitive illustration of this axiom is given in Figure 9.7.1.

Figurg 9.7.1.

This leads to the following general definition.

9,7.1., Definition. A convex geometry is a pair (E,T) where E 1is a finite

set and T 1is a closure operator on E satisfying the anti-exchange

condition (AE) .

To stay close to the geometric intuition it could have seemed mnatural to
demand that 7T(@) = ¢ , and even that T({x}) ={x} for all x€E, in a
convex geometfry. However, it will scon appear that from a greedoid point of view

such restrictions are unwise.

As the following characterization shows, convex geometries have several of
the well-known properties of Euclidean convexity, for instance with respect to

the role of extreme points. For a gemeral closure operator T: 2E > 2E » &

point x € A 1is called an extreme point of AC E if =x & T(A-x) . The set of
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extreme points of A is denoted by ex(A) . Observe that for general closures

(e.g., for matroid closures), ex(A) =@ is possible for sets A4 & (@) .

e E
9.7.2. Proposition. Let T: 27 = 2E be a closure operator on a finite set E .

Then the following conditions are equivalent:
(i) (E,T} 1is a convex geometry.

{(ii) For all closed sets A € B there exists =x € B-A such that Aux

is closed.

(iii) For every closed set A € E there exists x € E-A such that Aux

is closed.

(iv) All maximal chains of closed sets, T(@) = AO c A1 c ...C Ak = E ,

have the same length k = {E - 1(#)| .
(v) A = T(ex(4)) , for every closed set A .

(vi) Every A C E has a unique minimal spanning subset (i.e., the family

{8 € A: T(8) = 1(4)} has an inclusionwise least member).

Proof. (i) = (ii). Suppose C is a minimazl closed set such that AC CE B,
and let x € C-A . Then AuUx is closed. For, if y € 1(AuUux) - (Aux) , then
by the anti-exchange condition (AE) x € t(Auy) , hence A C T(AUyY) C C ,
which contradicts the minimality of C .

(ii) © (iii). Condition (iii) is a specialization of (ii). Suppose now that
(iii) holds, and let A € B be closed sets. By repeated use of (iii) we can
find a chain A=A, CA C ... C AS = E of closed sets A

0 1
={Al+4i,0£is s=I|E-Al . Since BN A

i with lAiI =

0 = A and Br\AS =B , we can find
some 1 such that |BFlAi| = Al + 1 ., Since BNA; = Aux is closed (being
the intersection of two closed sets), we are done. |
(ii) = (iv). A reformulation of (ii) is that an inclusion A c B is a covering
in the lattice of closed sets if and only if [B-Al =1 , from which (iv)
immediately follows.

(iv) 2 (v). Let A be a closed set. One easily sees that x € ex(A) 4if and

" only if A-x is closed. Hence, assuming (iv), we have that ex(a) = u{A-B:

A covers B in lattice of closed sets} . Now, 1f T(ex(A)) ¢ A , then
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T(ex(A)) € B = A-x , for some =x € ex(A) , which contradicts that =x € T(ex(4)) .
Hence, t(ex(A)) = A .

(v) 2 (vi). Let D = ex(T(A)) . Then, clearly, D £ S for every spanning subset
S§c A . Also, (D) = 1(A) , by (v).

(vi) = (i). Suppose that axiom (AE) fails, i.e., we have %,y £ T(A) , x +y ,
vy € 1(AuUx) and x € t(AUy) . Then T(Aux) = T(AUuy) . Let D be the unique
minimal spanning subset of T(Aux) . Then, since Aux and AUy are spanning
we get DS (Aux) n (Auy) = A, and hence T(D) c 1(A) € T(AuUx) ,

~ a contradiction. o

Here are a few examples of convex geometries (E,T):

(1) Let P = (E,£} be a finite poset, and for A £ E define

T(A) ={x €E: x

v

y for some y € A} ., The closed sets in this

geometry are the order filters (or, dual ideals) of P .

(2) Llet P = (E,$) again be a finite poset and take the interval closure

T(A)

A

. < -
{x € E: y; £x%y, for some Y 2Y9 €A},

(3) Let E be the edge set (or, vertex set) of a tree T and for ACE
let T(A) be the smallest subtree of T that contains A . The closed
sets of this geometry are the subtrees of T , and the extreme points of

a subtree are its leaves.

(4) Let E be.the arc set of an acyeclic digraph (i.e., a directed graph
with no directed cycles), and let T(A) be the transitive closure of
A S E, In particular, if E is the set of comparability relations of a
poset, then the closed sets of this geometry can be identified with the

subposets, and the extreme points of a subposet are its covering relations.

(5) let E be a finite subset of r" s and for AL E let " T(A) = En conv(A)
be the Euclidean convex hull closure. This example, which we already used
to motivate the anti-exchange axiom (AE), is particularly important for

providing geometric intuition.
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The preceding list of examples of convex geometries shows considerable
overlap with the examples of antimatroids given in § 9.3.2. In fact, the two

concepts are completely equivalent, in the sense of the following duality.

9.7.3. Proposition.Let E be a finite set and F C 2E . Then (E,F) 1is an anti-

matroid if and only if F* = {E-X: X€F} is the family of closed sets of a
convex geometry. Hence, there is a one-to-one correspondence F-+>F* between

antimatroids and convex geometries on E .

Proof. Condition (iii) of Proposition 9.7.2. shows that a set system C ¢ ZE

is the family of closed sets of a convex geometry if and only if C 1is closed
under intersection and for every A € C there is B € { such that AC B and
{Bl = |Al +1 . This means precisely that the family of set complements is closed

under union and accessible, i.e., an antimatroid. 0

The duality with convex geometries is very useful and illuminating for the
study of antimatroids. Examples are often easily recognized by their closure
operator, and the geometric intuition provided by the dual point of view is
most valuable. From now on we will.say that a subset A of an antimatroid is

convex if A is closed in the dual convex geometry, i.e., if E-A 1is feasible.

9.7.2. Some Characterizations of Antimatroids.

In this section we shall give some additional characterizations of anti-

matroids, both as set systems and as languages.

Let E be a finite set and let H be a mapping which associates with each
element x € E a set system H{(x) © ZE-X. This defines a left hereditary
language:

. = *, . .
LH {xlxz...xk = Es' for all 1<i<k there is a get A € H(xi)

such that 4 € xaxy,cx ) (9.7.1)
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The system H = (H(x)) will be called an alternative precedence system,
XEE 24

and the language LH that it generates an alternative precedence language.

In the context of scheduling and searching procedures it is often natural to
obtain feasible sequences this way: an item x becomes legal once at least
one "alternative precedence set" has already been processed. Examples will be

discussed after this result.

9.7.4. Propesition, Let L g E: be a finite simple language. Then the following

conditions are equivalent:
(1) (E,L} is an antimatroid.
(ii) L is an altermative precedence language.

(iii) @ € L and L satisfies the exchange axiom:

(A" For o,B € L such that & ¢ §, there is some x €% -B such that Rx € L.
(Note that (A') is the ordered version of axiom (&) in Proposition 9.2.7.)

Proof. (i) = (ii). Define an alternative precedence system by H(x) =
={%:ax € L} . Then, clearly L & LH . Conversely, suppose X X,...X € LH .

By induction on k we may assume that x ...xk_lE L. By definition of LH

1*2
there exists some &€ Ll such that R €L and © < {xl,...,xk_l} . Since

o~

. ' . _ o -
L is closed under union, we get that {xl,...,xk} = {xl,...,xk_l} U axk'E L.

Hence, by Proposition 9.2.3, X Xye oo Xy €L . So, LH c L.

(ii) » (iii). Suppose a,BE L = LH ,and G ¢8, o= aeeX

X%, -
let j be minimal such that xj € 3 . Then for some A€ H(xj) ,

A.Q{xl,...,x } ¢ B, hence ijE LH.

j=-1

(iii)} » (i). This was proven in the unordered version in Proposition 9.2.7. 0

Let us find alternative precedence systems giving rise to some of the

familar antimatroids.

(1) Let P = (E,£) be a finite poset, and for x € E let H(x) =

={{y €E: y<x}}. Then (E,L;) dis the poset greedoid.




58.

{2) Let (V',l) be the vertex search greedoid of a rooted graph (V,E,r),
V' = Vy-r . If x €V' is adjacent to the root let H(x) = @ ; otherwise

let H(x) consist of singletons, one for each neighbor of x. Then L = L

-

H

(3) et E be a finite subset of ZEP, and let {(E,L) be the convex pruning
greedoid. For each x € E let H(x) consist of the intersections of
" E-x with closed halfspaces having x on the boundary. Then L = LH .
The feasible sets of an antimatroid (E,F) ordered by inclusion form a
lattice, with lattice-operations: XV;Y = XuY , and XAY is the unique basis
of XNY . Lattices of this kind can be characterized in purely lattice-

theoretical terms.

A finite lattice L is said to be join-distributive {or, locally free)
if for every x €L - {1} the interval [x,j(x)]' is Boolean, where j(x) is
the join of all elements in L which cover x . Clearly, every distributive
lattice is join-distributive, and every join-distributive lattice is semi-modular.
In particular, every join-distributive lattice is graded, i.e., there exists a
rank function r: L+ I satisfying r(0) = 0 and r(x) = r{y) + 1 whenever

X covers VY .

9.7.5. Proposition. Let F & 2E be an accessible set system. Then the following

conditions are equivalent:

(1) (£,F) dis an antimatroid.
(ii) (F,&) is a join-distributive lattice.

(iii) (F,&) is a semimodular lattice.

Proof. (i) = (ii). The sets which cover X € F in an antimatroid lattice
(F,2) are of the form Xlei s, for some X, € E-X , 1£1is t.. Since F is
closed under unions, X uU{=x. , %X, , ... X, } € F , for all

1 ) 12 1v

1sg i, < i, < .ve X 1, £t . Hence, (F,&) is join~distributive.
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(ii) 2 (iii). Every join-distributive lattice is semimodular.
(iii) = (i). The assumption implies that cardinality is a semimodular rank
function on the lattice (F,Z), i.e., X € Y is a covering only if |X| + 1= |Y/|

and for all X,Y € F: IXAY!l + X vyl IXI+ 1Y},

Suppose that X,Y € F and X ¢ Y . Take a saturated chain XaY =
= [ong C [ = - : = i
Ay CA C...CA =X of sets AiE F, |Aii IXAY]l +1 . Let j be
maximal such that A, € Y . Then, clearly Aj = Y/\Aj+1 » and by semimodularity

J
£ - P - = . - -
1 s |Yv'Aj+l| Iy | = IAj+1| JYf\Aj+ll 1 Hence, for x € Aj+1 Aj cCX-Y

we have Yux = YLJAj+ = Yv'Aj+ € F . Thus, axiom {(A) has been verified, and

1 1

by Proposition 9.2.7, (E,F) is an antimatroid. 0

Antimatroids are related to join-distributive lattices in a stronger semnse
than that expressed by the previous result. The two concepts are essentially

equivalent.

9.7.6. Theorem. A finite lattice L is join-distributive if and only if L is

isomorphiec to the lattice (F,©) of feasible sets of some antimatroid (E,F) .

Proof. We shall merely sketch the construction, leaving the verification of a

crucial lemma aside.

let L be a finite graded lattice and let M(L) denote the set of meet-
irreducible elements in L . The lemma we need is that L is join-distributive
if and only if the natural map T: x+— {y € M(L): y £ x} embeds L into

2M(L)

the Boolean lattice preserving both rank and joims.

Now, if L dis a join-distributive lattice, let F := T(L) & ZM(L) . From

the properties of T omne concludes that F is accessible and closed under

union, i.e., an antimatroid, and that T gives an isomorphism L = (F,2) . o

This representation theorem is a natural extension of G. Birkhoff's

theorem, which says that L is distributive if and only if L
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is isomorphic to the lattice of ideals of some poset. As a direct comsequence

of Birkhoff's theorem we derive the following.

9.7.7. Proposition. A greedoid (E,F) 1is a poset greedoid if and only if F is

closed under both union and intersection.

Although quite special, poset greedoids generate all other antimatroids as

‘homomorphic images.

9.7.8. Proposition. Let £: P -~ E be a function from a finite poset P to a

finite set E , and let F = {f(A) € E: A is an ideal in P} . Then (E,F) is
an antimatroid. Furthermore, every antimatroid is induced in this way by a map

from some poset.

9.7.3. Circuits.

Let (E,F) be an antimatroid, and let T denote the convex closure operator
of the dual convex geometry. Recall the notions of X-free sets and extreme points,
defined in § 9.4.5 and § 9.7.1, respectively. Also, for X € F let T(X) =

={a € E-X: Xua € F}.

For a subset A C E , we define the trace F: A={XnA: X€ F} . Since

F: A is accessible and closed under union, (E,F:A) is again an antimatroid.

9.7.9. Lemma. For A C E , the following conditions are equivalent:

(i) F: A=2" .,
(ii) A =T(X) , for some X€ F.

(iii) A is free over X , for some X €F ..

(iv) A = ex(C) , for some convex set C .
(v) a & t(A-a) , for all a € A .

(vi) E-A 1is closed {i.e., o(E-A) = E-A ).
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We leave the easy verification as an exercise.

A subset A C E is called free if it satisfies the conditions in Lemma
9.7.9. Subsets of free sets are again free. Minimal non-free sets are called
circuits. A one~element circuit ig the same thing as a loop. (Notice that this
terminology is consistent with the matroid case. If (E,F) is a2 matroid then
the trace F:A equals the restriction to A , hence free {in sense (i)) means
independent. Notice also that for geheral interval greedoids ;he trace operation

does not necessarily produce a greedoid.)

Let C be a circuit in the antimatroid (E,F) . Then a € 1(C-a) for some
a €C, by condition (v). Let x € C-a , and put B =C -~ {a,x} . Then

a,x € T(B) , since Bua and Bux are free, and a € T{Bux) . Hence, by

anti-exchange, x & T(BuUa) T(C~x) .

We have shown that each circuit C has a unique element a such that

a € T(C-a) . This is called the root of C .

9.7.10. Lemma. For a &€ C £ E , the following conditions are equivalent:

(1) C is a circuit with root a .
(i) If B<£ C and x €C-B, then x € 1(B)S B = C-a .

(ii1) F:¢c = 2% - {{a}} .

Proof. (i) ® (ii). For Bux = C this was already shown. If Bux # C , then
Bux is free, hence x & 1(B) .

(ii) = (iii). Reformulate (ii) as follows: If B £ C then

B=1(B)YNC B % C-a . Since E-T(B) € F , this implies (iii).

(1ii) = (4). Every proper subset of C 1is clearly free.E

in
Let us exemplify these definitions éﬁrérthe familiar antimatroids.

(1) For a poset greedoid, the free sets are the antichains, and the circuits
are the pairs {a,b} € E such that a < b . The root of such a circuit is b ,

the larger point.
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(2) TFor the interval closure greedoid of a poset, the free sets. are the unions
of two antichains, and the circuits are the triples a < b < ¢ , with the root

in thg middle.

(3) For the vertex pruning greedoid of a tree, the free sets are the sets of

endpoints (leaves) of subtrees, and the circuits are the triples of points which

lie on some path, the middle point being the root,

(4) TFor a Euclidean convex pruning greedoid on E cR" , a subset ACE is

free if every point of A is an extreme point of the convex hull of A .

A circuit comsists of the vertices of a simplex together with a point in the
relative

interior of the simplex. The interior point is the root of the circuit. So,

the size of a circuit is at least 3 and at most n+2 .

It is clear from these examples that the circuits of an antimatroid do not
determine the greedoid. For instance, a poset P = (E,£) and the dual poset
P* = (E,2) in general have different poset greedoids, but these greedoids have

the same circuits. However, an antimatroid is determined by its rooted circuits

(C,a) , i.e., pairs such that C 4is a circuit with root a .

9.7.11. Proposition. Let (E,F) be an antimatroid and AC E . Then A€F if

and only if CnNA # {a} , for every rooted circuit (C,a} .

Proof. The condition is necessary for a feasible set, by condition (iii) of
Lemma 9.7.10. To prove sufficienﬁy, suppose that A € F , or, equivalently, that
F-A 1is not convex. Let x € A 0 T(E-A) , and let D = ex(7(E-A)) . That is,

D is the unique minimal spanning subset of E-A (cf. Proposition 9.7.2).

Since x € D and x € T(D) , the set Dux is not free, and hence contains
some circuit C . Since D is free (being the set of extreme points of a convex
set), we conclude that (C,x) is a rooted circuit. But CNA = {x} , since by

construction C-x € D & E-A . 0
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The previous result suggests that a characterization of antimatroids in
terms of rooted circuits might be possible. This is indeed so, as shown by the

following axiomatization, which has a curious resemblance to the circuit axioms

for matroids.

9,7.12, Theorem. Let C & {(C,a): a €EC g E} be a family of rooted subsets of
a finite set E . Then C is the family of rooted circuits of an antimatroid

if and only if the following two conditions hold:

(CI1) 1If (Cl,a), (C,,a) € C, then C, ¢ C,e
(CI2) 1If (Cl,al), (Cz,az) €C, a ¥ a, and a; € C1r102 , thgn there

exists (C,az) € £ such that C&€C, ucC, - a

1 2 1°

9.7.4. Notes and Conments.

Convex geometries were independently discovered by Edelman (1980)
and Jamison (1982), and later studied by them jointly. Edelman and Jamison (1985)
gives a good overview of their work on convex geometries, and all of § 9.7.1
is from that paper, except the duality with antimatroids (Proposition 9.7.3)
which was first observed by Bjlrner (1985); All examples of antimatroids which
have been mentioned in the text were originally known to Edelman and Jamison as
examples of convex geometries. The example of convex hull closure in Hﬁl

{and hence, dually, convex pruning antimatroids) was generalized to oriented
matroids in Edelman {1982). o
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in the bibliography only)
We have includedla limited mmber of references for antimatroids

(mainly those taking a greedoid point of view). See Edelman and Jamison

(1985) and Edelman (1986) for more extensive bibliographies (stressing the
convex geometry or lattice-theoretical point of view).

Theorem 9.7.6 showing the equivalence of antimatroids and join-distributivity
is due to Edelman (1980), in a dual version for convex geometries. The result
was rediscovered by Crapo (1984) using another terminclogy. The characterization
of antimatroids as alternmative precedence languages is‘due to Korte and Lovisz
(1984a, 1984b)..The characterization by exchange axiom (A) as well as by semi-
‘modularity of F is from Bjdrmer (1985). Propositiom 9.7.7. is from Korte and
Lovidsz (1985b), and Proposition 9.7.8 from Korte and Lovdsz (1986b), see also

Edelman and Saks (1986). For Birkhoff's theorem, see Birkhoff (1967).

All of § 9.7.3 is from Korte and Lovasz (1984b), exi;EB{Theorem 9.7.12 which

fo;:w

is due to Dietrich (1987)..



9.8. POSET OF FLATS

The geometric lattice of a matroid has two different generalizations in
greedoid theory, which coincide exactly on the class of interval greedoids.
Neither of them determines the associated greedoid completely. Nevertheless, a
substantial part of the structure theory of greedoids is captured by its order

and -lattice theoretic aspects.

9.8.1. Poset Representations and Flats

We will now construct the poset of flats of a greedoid as its "most
efficient" poset representation, define the poset of closed sets of a greedoid
{(which requires a more éomplicated ordering than inclusion) and then study the

canonical map from the poset of flats to the poset of closed sets.

In Section 9.2 we have described how a greedoid (E,F) .can be described by
the Hasse diagram of the ﬁoset (F,g) , in which every edge (covering relation)
X <¢Y is labeled by the one element set Y-X . From this labeled poset, the
language L can explicitly be read off: the words of [ are uniquely given by
the label sequences along the unrefipable chains in the poset (F,2) that start

at the least element @ .

However, it is more efficient to allow larger sets of labelsj; often the
greedoid can be given by the Hasse diagram of a smaller poset P with least
element 0 , whose edges s <t are labeled by sets Ai(s <t} € E of alternative

labels. A poset representation of a greedoid (E,L) 1is such a set-labeled poset

from which L arises (without repetitions) as the collection of words along
unrefinable chains starting at 0 that pick exactly one letter from each label

set. That is:

Lé{x :xiEJ\(si_l <-si) for 1 £i £k, where k20 and

lxz. -* .xk
0= g <"8; <" ... <5, is a chain in P} . (9.8.1)
Here repetitions do not occur exactly if A(s <'t1) N A(s <°t2) = ¢ whenever

tl # t2 both cover s €P .
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For example, Figure 9.8.1 gives two poset representations of the greedoid

that we have previously described in Figure 9.2.2. Set brackets for the label

sets are again omitted.

(2) (v)

Figure 9.8.1

How do such poset representations arise? Whenever the same set of words can
be read cff above two different poset elements, these elements can be identified,
resulting in a smaller poset and a more efficient poset representation. Now‘every
poset element s corresponds to a set of words - the words in L that are coded
-.along maximal chains from 0 to s . Thus two poset elements Sy and s, can be
.identified if the wdrds corresponding to s; and s, have the same continuations.

This suggests the following comstruction for the most efficient (or universal)

poset representation, using the contraction of greedeid languages as defined by

(9.4.6).

'9,8.1. Definition. Let (E,L) be a greedoid. We define an equivalence relation

on L by
o~ RS Lfa=L/B, (9.8.2)

that is, o and P are equivalent if they have the same set of continuatiens.
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The equivalence classes [al€Ll/~ with respect to this relation are the flats

of the greedoid [ . The poset of flats of the greedoid (E,L) 1is

®=(L/~s§):
where the flats are ordered by

{a]l cs[B8] & ay~B, for some Yy € L/a. (9.8.3)

The labeled poset of flats $ is the poset & together with the edge labeling

A of the Hasse diagram of ¢ that associates to every covering relation

{a]l < [B)] in ¢ the set

Allal < IgD) = {x € E: ax ~ R}, (9.8.4)

The verification that £ and A are well-defined by (9.8.3) and (9.8.4)

is straightforward.

Since o ~8 implies ial = {81, the rank function on L carries over to
Li~ , with r([aD = lal , for all ¢ € L . This makes ¢ into a graded poset
of rank r ; its unique minimal element is [@] s 1ts unique maximal element is
the equivalence class of all basic words.

Now since words with the same support are always related (@ ='E implies
o~R), one can use the equivalence between greedoids and greedoid 1anguages,as
described in Section 9.2,to give an equivalent definition of the poset of flats
in set-theoretic terms. For this,let (E,F) be a greedoid, and for X,Y € F
define X~Y if F/X = F/Y . From this we get a poset of flats @ = (F/.,<) ,
where "£" is the partial order induced by inclusion, that is, [xls [y] if
énd only if XuUZ~Y for some Z € F/X . Note that this in particular implies

[x} £ [Y] whenever X g Y.

9.8.2. Proposition. The map given by falb— [%] is an isomorphism of posets

This Proposition (which, using Proposition 9.2.3, is easy to verify) shows
that there is an essentially unique concept of poset of flats ¢ = %, and of

labeled poset of flats 3 .
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The labeled poset ¢ = (9,) is universal as a poset representation
of L , in the sense that for every poset represenfation (P,X') of L , there
is a unique, order preserving, rank preserving, surjective map
f: P > 0
such that for s,t € P , s <t implies that

Al(s,t) € A(£(s),£(t)) .

For an example, consider again the greedoid depicted in Figure 9.2.2, Its
labeled poset of flats is given by Figure 9.8.1(b). The canonical maps from the
poset representations in Figures 9.2.2(b) and 9.8.1(a) to the universal
representation are easy to see.

Here are descriptions of the poset of flats ¢ for some important classes
of g;eedoids.

(1) In fhe case of matroids, ¢ is (isomorphic to) the geometric iattice
of flats; since for two independent sets X and ¥ , X ~Y holds exactly-if

X and Y have the same closure. The edge labeling of ¢ is then given by

adxi < 1Y) = oY) - 0 (X) .

(2) If (E,F) is a greedoid with only one basis, then ¢ = (F,2) , and
A is the labeling by one element sets discussed in Section 9.2. This includes
the case of all antimatroids, so by Theorem 9.7.6 we see that the poset of flats

of an antimatroid is a join-distributive lattice.

More generally, for every greedoid (E,F) the canonical surjective poset
map f: (F,2) = ¢ , defined by £(X) = {x] , is injective on each interval

[x,Y] in F .

(3) Let (E,F) be a branching greedoid on a rooted undirected or directed
graph, as in § 9.3.3. . Clearly, two branchings X and Y are related,
X ~Y , if and only if they reach the same set of vertices. Thus there is a
bijection between F/~ and feasible vertex sets. One sees from this that the
poset of flats of the branching greedoid is isomorphic to the poset of feasible

sets of the associated vertex search greedoid, and is hence a join-distributive

lattice.
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9,8.2. Poset of Closed Sets

From the example in Figure 9.8.1(b) we can see that for greedoids without
the interval préperty, the flats cannot be identified with closed sets - the
greedold has fsur flats, but only three closed sets of rank 1 . What is the
structure on the collection of closed sets? How does it relate to the poset of
flats?

It is not natural to order the closed sets by inclusion - the resulting
posets have little structure and do not seem to encode relevant informationm.
An instructive example is the full greedoid with exactly one basic word: xy ,
whose poset of flats is a 3-element.chain but whose closed sets are {x}, {y}

and {x,y} . Instead, examples such as this suggest to order the closed sets by

A S$B if B contains a basis of A .

Equivalently, we could put
A £B if r{(AnB) = r(A) . (9.8.5)

Clearly, this generalizes the matroid case. However, it turns out that for
non—-interval greedoids, the relatiom "£'" defined by (9.8.5) is not in general
transitive. [ For example, if E = {a,b,c,d,e} and (E,F) 4is the greedoid defined
by F = 2E -{{a,b}, {byec,d}} , then {a,b}, {b,c,&} and {c,d,e} 'arerclosed
sets of rank 1,2.and 3, respectively. Here {a,b} < {b,c,d} and {b,c,d}< {c,d,e} ,
but r({a,b} n {c,d,e}) = r (@) =0 < 1 = r{{a,b})]. We are therefore led t§

consider the transitive closure of the relation defined by (9.8.5).

9.8.3. Definition. The poset of closed sets of a greedoid is the set

CL = {o(A) : AS E} together with the partial order for which A £ B holds
if and only if there areclosed sets AO = A’Al""’Ak = B such that for all 1

< < =
{1 £1 £k), Ai contains a basis of Ai—l » that is, r(Air1Ai_1) r(Ai_l) .

The poset of closed sets has reasonable combinatorial properties. It is
graded, and the poset and greedoid rank functions coincide for it. It is clear

that A £ B implies A £ B , but not conversely.
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For the greedoid of Figure 9.2.2, whose poset of flats is given by Figure

9.8.1(b), the poset of closed sets is drawn in Figure 9.8.2.

/E\
a,b,c a,d b,d -

a b c,d

Figure 9.8.2

For métroids, antimatroids and branching greedoids, the poset of flats ¢
(as constructed before) and the poset of closed sets C£ are canonically iso-
mbrphic. This is explained by the following result.

Let (E,L) be a greedoid. If a~R for a,B €L , then a~B by
Proposition 9.8.2, from which follows that oc@) = U(E) . Hence, we have a
well-defined map

¢ : [al — o@)

from flats to closed sets.

9.8.4, Theorem. The map ¢: & -—» C€ 1is order-preserving, rank-preserving and

surjective. Furthermore, the following conditions are equivalent:
(i) ¢ is an isomorphism of posets,
(i) ¢ dis injective,

(iii) (E,L) 1is an interval greedoid.

The greedoid of Figure 9.2.2 again illustrates this: the map ¢ from ¢
(Figure 9.8.1(b))} to Cf (Figure 9.8.2) is obvious. The interval property fails
(e.g., ¢, dac € L , but de € L ) and ¢ is not injective ( [ec] # [d] ,
although @ ([c]) = ¢([d)) = {c,d} ).

Observe that in general the composite map

F = Ffu = (D——_*C»f,
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is the closure operator 0 on F . This illustrates the divergence of the
concepts of flats and closed sets in non-interval greedoids: the closure operator

factorizes over the flats.

9,.8.3, Interval Greedoids and Semimodular Lattices

Interval greedoids are intimately related to semimodular lattices both via
the poset of feasible sets (F,c) and via the poset of flats ¢ . In fact, it
is reasonable to view interval greedoids as the combinatorial models for semi—_
modular lattices much like matroids and antimatroids are the combinatorial models
for geometric and join-distributive lattices, resﬁectively.

Here are some key facts about the lattice property and semimodularity

in posets of feasible sets.

9.8.5. Proposition. Let (E,F) be a greedoid. Then:

(1) (E,F) is an antimatroid © (F,S) is a semimodular lattice.
(ii} (E,F) is an interval greedoid < all closed intervals [9,X]
in (F,2) are semimodular lattices.

(iii) 1If (E,F) is an interval greedoid, then (F,2) is a meet-semilattice.

Proof. Part (i) is from Propositiom 9.7.5, and part (ii) follows from it via
Proposition 9.2.8.

For part (iii), let ; denote the poset (F,g) with a maximalrelement I
adjoined. To see thét meets (greatest lower bounds) exist in (F,2) , it suffices
(by a standard lattice-theoretical argument) to show that any pair X,Y € F  has
a join XvY (least upper bound) in ?. Now, if X and Y have an upper bdéund
Z in (F,&) , so XuYg Z €F , then from Propositions 9.2.7(ii) and 9.2.8(ii)

we conclude that XuY E F, so XvY=XuY . If X and Y do not have an upper

bound in (F,E) , then XvY =1 . 0

We remark in connection with the preceding result that for non-interval

greedoids the meet operation on (F,£) may or may not exist (both cases occur).
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Some of the special structure of the poset (F,£) for interval greedoids

" carries over to the poset of flats ¢ , and to its labeled version ¢ .

9,8.6. Lemma. Let (E,L) be an interval greedoid, and ax,uy € L with

lax] #[ay] . Then axy,oyx € L and laxyl = [ayxl .

Proof. This is a reformulation of the transposition property for interval

greedoids, as observed in the last paragraph of § 9.3.7. -

The lemma shows that for interval greedoids, & is a semimodular poset:

1f s € ¢ is covered by two different elements tl’tZ & ¢, then there is an

element u € © covering both t1 and t2 .More precisely, the following is true.

9.8.7. Theorem. If (E,F) is an interval gfeedoid, then the poset of flats ¢

. is a semimodular lattice. Conversely, every finite semimodular lattice arises

as the poset of flats of some interval greedoid.

Proof. (1) To prove the lattice property, we use the following simple lemma:
a finite poset P having a least element is a lattice if for sl,sz,t c P,

the join s,V 8, exists whenever 8 and Sy both cover t .

Hence, here we only have to show that in the situation of Lemma 9.8.6,

to the contrary
[axy] is the only minimal upper bound for [ox] and [ayl . AssumeYthat

laxyl =[oy8] is a different minimal upper bound (so, [laxyl% [axyl ), with

v = ¢i1€2...cx. We will prove by induction that azey...c;y € £ and azye;...¢; € L,
for 0 <7 < k, which will lead to contradiction.

The case ¢ = 0 is clear. For i > 0 we know by induction that azey...ci1y € £
and azyei...ciey € £, and hence [azey...cim1y] = [ezyer...cim1] 2 [azy]. On the
other hand, for azec;...¢; € £ we have [aze;...c¢;] 2 [azy] by assumption. Hence,
lazcy ...ci—1y} # [azey ... ], and Lemma 9.8.6 implies that aze;...ciy € £. Augmen-
ting azyc ...ci—1 from this yields azye;...c; € £, and the induction is complete.

We have in particular shown that azc;...cky = azyy € £. Since [azv] = [ayd] it
follows that aydy € £, which is impossible since £ is a simple language.

(2) For the converse, let L be a finite semimodular lattice, and let E = J(L)

be the set of join irreducible elements of L , that is, the set of those
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lattice elements which cover exactly one element in L . We label the edges in
the Hasse diagram of L by
A(s <-t) = {p €E: svp = t} .
Let L be the left hereditary language defined by the poset representation
(L,\) as in (9.8.1). Then (E,L) is an interval greedoid, and L is isomorphic
to its poset of flats. We leave the straightforward verificatioms to the reader.G
Contrary to what one might expect, semimodularity of ¢ does not |
characterize the interval greedoids. This is shown e.g. by the non-interval
greedoid with 6 basic words: xab, xba, yab, yba, xay and yax; whose poset of
flats is a semimodular lattice (the unique non-modular semimodular lattice of

rank 3 and order 7).

9f8.8. Lemma. Let (E,F) be an interval greedoid and 5 = (®,)) the labeled

<t,vt and

tECDantht<'t,thent2 1 2

poset of flats. If t,,t, 1M ey 1

?\(tlr\ t <'tl) < )\(t2 <t,vt

AN (9.8.6)

2

. Proof. The first claim is true in any semimodular lattice. If tlA t2 <-t2 » then

(9.8.6) follows directly from Lemma 9.8.6. In general, {9.8.6) has to be proven

by induction on rank(tz) - rank(tlA t2) , using Lemma 9.8.6 repeatedly.lj
We conclude with the following application of the results of this section.

Proof of Proposition 9.2.5 (necessity). Let (E,L) be an interval greedoid and

let o= a,a,..-a

122 B =bb

Kk ? 2...b2 €L, k> . Now, o determines an

unrefinable chain 0 = g <-sl < un <'sk in & by s; = [alaz...ai] for

0 isk . Let t gl . Since, by Theorem 9.8.7 , ¢ is a semimodular lattice,

each step in the following chain is an equality or a covefing:

= < < <
t tvso_tvsl_...,tvsk.
Now let 1 £ i1 < 12 LY im £ k be the sequence of those indices -ij for
which
tvsi_1<-tvsi_.
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Thus we have an unrefinable chain

t <*twvs {rtvs, £ veels tvs, =tvs, .
i i i k
1 2 m

Clearly, m = rank{tv sk) - rank(t) 2 k-4 .

Now, ay € }\(si_1 <'si) implies by Lemma 9.8.8 that a; € A(t\jsi.~1<' tv Si,)
) J J ]

for 1 £ j S m . Hence, the definition of ¢ allows us to read off

Ba, a, ...a, € L , where a' =a ag »eedg is a subword of o , of length

2 m il 2 m

9.8.4. Poset Properties

The unlabeled poset (F,S) #E—a—pweedesd carries important, but incomplete

information about a greedoid (E,F) . We will here discuss which greedoid

properties and invariants are poset properties, that is, completely determined

by the abstract peset (F,C) and not requiring explicit knowledge of the set
system F .
e
We haq/%een that (F,2) is a finite graded poset of rank r, size iFl ,

-~

with minimum element O =@ , and |B| maximal elements. The number of
unrefinable chains from O to some X € F is I|L| . From this it is clear that
r , {FI, |Bl, IL! and the number of basic words are poset properties.

As a contrast, IEl and |uF| are not poset properties. This follows e.g.
from the observation, made in § 9.4.5, that the branching greedoids of a rooted
graph and its associated digraph have isomnrphic-posets (F,g) . Thus, any
greedoid property that distinguishes the two branching greedoids cannot be a
poset property. For example, although A(l) is the number of bases, tﬁe greedoid
polynomial A(t) 1s not a poset invariant, and neither are the evaluations
A(2) and A(0) (i.e., the number of spanning sets and the Euler characteristic
of the dual complex). |

The interval property and being a matroid, antimatroid,poset or locai poset

greedoid are all poset properties. This follows from the following information,

which was gathered in earlier sections:
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(E,F) (F,9)
interval greedoid = all intervals are semimodular lattices
local poset greedoid Ed all intervals are distributive lattices
matroid = all intervals are Boolean lattices
antimatroid = semimodular lattice
poset. greedoid o= distributive lattice

Next we note that k-connectivity is a poset property by definition. In fact,
.we can define a ranked poset P of rank r with minimal element 0 to be
k-connected if for every X € P there is an element Y 2 X in P such that
.-the interval [X,Y)] of P 1is a Boolean lattice of rank min{k, r - r(X)} . With

this, a greedoid (E,F) is k-connected exactly if the poset (F,S) of feasible

sets is k-connected.

9.8.9. Proposition. For a k-connected greedoid (E,F) , the poset ¢ of flats

is also k-connected. If (E,F) 1is an interval greedoid, then the converse is

also true.

Proof. The first part follows from the remark, made in § 9.8.1, that every
restriction of the natural map (F,£)> ¢ to an interval is injective. The

second part follows from Lemma 9.8.8, O

Observe that this Proposition in particular implies the equivalence
(ii) & (1ii) of Proposition 9.4.7, since the poset of flats of a branching
greedoid equals the poset of feasible sets of the associated vertex search

greedoid.
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9.8.5. Notes and Comments.

The concept of poset representations of greedoids, the definition
of the poset of flats, and basic properties of ¢ and § are from Bjdrner (1985).
The poset of closed sets was first &efined for interval gréedoids (as in Exercise
9.26 ) by Korte and Lovdsz (1983), and then in general (as in Definition 9.8.3)
by Bjdrner, Korte and Lovdsz (1985). The relationship Between flats and closed
sets (Theorem 9.8.4), and also Proposition 9.8.5, is from. Bjbrner, Korte and
Lovidsz (1985).

A notion of "lattice of flats" for selectors was defined by Crapo (1984),
which can be shown to be equivalent to our poset of flats @ for the case of
interval greedoids. Theorem 9.8.7 (in terms of selectors) is due to Crapo (1984).
The latticg-theoretic lemma used in our proof is from Bjdrner, Edelman and
Ziegler (1987). A different proof for the lattice property (but not semi-
modularity), using the poset of closed sets, was given in Korte and Lovdsz (1983).

Poset properties were first studied in Ziegler (1988} , from where

Proposition 9.8.9 is taken.
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9.9. FURTHER TOPICS

9,.9.1. Excluded Minor Characterizations

For each of the main classes of greedoids arising among the examples, there
is a representation problem: How do we recognize if an abstractly given greedoid
is isomorphic to some greedoid in that class? This problem is in most cases
.unsolved. For instance, no effective way is known for telling whether a given

. . . . s n
antimatroid can be represented as the convex pruning greedoid of -a point set in IR".

There are two main ways of characterizing a class of greedoids, either
by structural conditions or by excluded minors. The following are examples of
structural characterizations : Let G = (E,F) be a greedoid. Then,

(a) G is an interval greedoid if and only if X,Y c 2 implies
XuY € F, for all X,Y,z € F .
(b) G 1is a local poset greedoid if and only if X,Y £ Z dimplies

XvuyY, XnY € F, for all X,Y,ZE€ F .

These statements are merely reformulations of information from Propositions
9.2.7, 9.2.8 and 9.7.7 . The following result is more substantial.

9.9.1.

G 1s a directed branching greedoid if and only if G is a local poset
greedeoid and o(X) no(¥Y) < o(XuY) € ofX) v o(Y) ,

for all X,YE F .

Hereditary classes of greedoids, i.e., classes closed under taking minors,

can be specified by listing the minimal non-members. (Here "minimal” is to be
understood as referring to the partial ordering of isomorphism classes of
greedoids induced by the relation "is a minor of", as discussed in § 9.4.4.)

These minimal non-members are the excluded minors of the hereditary class, and

clearly a greedoid is a member of the class precisely when none of its minors is
among the excluded ones. Examples of hereditary classes are: interval greedoids,
local poset greedoids, directed and undirected branching greedoids, polymatroid
greedoids, antimatroids and matroids.

‘There is no a priori reason to expect the list of excluded minors for a
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hereditary class to be finite or effectively describable. For the classes that
were mentioned the following can be said.

Let E={a,b} and F=2F - {{p}} , F' = 2% - {{a,b}} . Clearly, G = (E,P)
is not a matroid and G' = (E,F') 4is not an antimatroid, so they are among the

excluded minors for these classes. In fact, they are the only excluded minors.

9.9.2. Proposition. (i) A greedoid is a matroid if and omly if it has no minor

isomorphic to G .

(ii) A greédoid igs an antimatroid if and only if it has no minor
isomorphic to G' .

(iii) The classes of interval greedoids, directed branching greedoids,
undirected branching greedoids, local poset greedoids, and polymatroild

greedoids cannot be characterized by a finite set of excluded minors.

gzggg. (1) 1In a greedoid that is not a matroid there are feasible sets having
nonfeasible subsets. Pick one such feasible set X of minimal cardinality.
Then for some a € X the subset X-a 1is ﬁonfeasible, and accessibility gives
that X-b 1is feasible for some b € X . The choice of X implies that

Y =%X-{a,b} is feasible. Now, restriction to X and contraction by ¥
produces a minor isomorphic to G .

(ii) The lack of minors of type G' is equivalent to the property:
if X,Y and X NY are feasible and [X| = 1Yl =1XnY| + 1 , then XuY is
feasible. This implies that the poset of feasible sets is a semimodular lattice,
which by Proposition 9.7.5 implies that the greedoid is an antimatroid.

(iii) For k = 1,2,..., let o be a simple word of length k not
containing the letters x and y . Let Gk denote the full greedoid with exactly
two basic words: =xay and yax . The following facts are easy to verify:

() Gk lacks the interval property, (2) every proper minor of Gk is a
branching greedoid (both directed and undirected). It follows tﬁat Gk is a
minimal non-member for each of the five hereditary classes, and hence that

'(Gk)kzzl is an infinite list of excluded minors. .
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In spite of what has just been shown it turms out that undirected branching
greedoids and local poset greedoids can be characterized by finite sets of

excluded minors. The requirement for this 1s that attention must be restricted

to the class of interval greedoids only.

Let E = {x,y,z} and define greedoids G, = (E,Fi) , 1 =1,2,3,4, by
(with some obvious simplifications of set notation)

Fo=28 -1z},

1
F2 = 2E - {z, xz, yz} ,
F3 = 2B . {z, vz, xyz} ,
_ oE _
F4 =2 {xyz} .

In Figure 9.9.1 these greedoids are represented as vertex pruning of a tree,

poset, directed branching and graphic matroid, respectively.

Z
X z ¥ ' %
o—0—0 d ) : ) x v
J Z
2 G3

: G G

1 Gh

Figure 9.9.1

9.9.3., Theorem. Let G be an interval greedoid. Then,

(a) G 1is a local poset greedoid if and only if G has no minor

isomorphic to G1 .

(b) G 1is an undirected branching greedoid if and only if G has no minor

isomorphic to Gl’ G2, G3 or G4 .
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9,9.2. Diameter of the Basis Graph

Let (E,F) be a greedoid of rank r, and B its set of bases. Two bases
X,Y are adjacent 1if they differ in exactly one element and their intersection
is feasible, that is, IXnYl = |Xl -1 and XnY € F . By definition, the
basis graph of (E,F) has vertex set B , and two bases a;e joined by an edge

whenever they are adjacent.

We ask under which conditions the basis graph of a greedoid'is connected,

and what can be said about the diameter of basis graphs.

For matroids, the feasibility condition X nY € F 1is always true. Then
‘the exchange axiom (G2) produces a sequence of adjacent bases between X and Y ,
which shows that the basis graph of a matroid is always connected and has
diameter at most r . On the other hand, the distance between any two disjoint
bases of a matroid is exactly r .

The connectedness and diameter questions for basis graphs of general greedoids
are less trivial. For example the digraph of Figure 9.9.2(a) has a branching
greedoid (Figure 9.9.2(b)) with disconnected basis graph; the intersection of
its two bases is not feasible. The branching greedoid of the digraph in Figure
9.3.1(a) has rank r=2 , whereas its basis graph is a path of length 3; here the

diameter of the basis graph is larger than the rank.

(2) ()

Figure 9.9.2

In general, the following can be said.
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9.9,4, Theorem. Let (E,F) be a 2-connected greedoid of rank r .

(i) The basis graph of (E,F) is connected.
(ii) The diameter of the basis graph is at most 2r~1 . This bound is sharp.
(iii) If (E,F) is a branching greedoid of rank r > 0 , then the diameter

of the basis graph is at most r2 - r+ 1 . The bound is best possible,

Note that the branching greedoid of Figure 9.3.1 is 2-connected and serves

as an extremal example for the case r=2 . In fact, this case can be used to

prove connectedness of the basis graph and the bound in (ii)} on its diameter by
induction on r . Sharpness of the bound is then established by an explicit
construction.

To prove (iii), one has to exploit the surjective map of § 9.8.1

from the branching greedoid F to its poset of flats ¢ , corresponding to the

vertex search greedoid of the graph. The poset ¢ - a semimodular, coatomic
lattice - has special properties that can be lifted back to F and used there
to construct paths in the basis graph of F .

In general, highef connectivity of a greedoid decreases the possible diameter
of its basis graph, although most arguments for k-connected greedoids with

k 2 3 require the interval property.

9.9.5. Proposition. Let (E,F) be a k-connected interval greedoid of ramk r ,

r-k+l _

where 2 £k £r . Then the diameter of its basis graph is at most k2 1.

This bound is not sharp in general. However, for k=2 it reduces to the
sharp bound of Theorem 9.9.4(ii). For k=r it states that the diameter of the
basis graph of an r-comnected interval greedoid is at most 2r-1 . This bound is
sharp, even for branéhing greedoids. It is, however, still higher than the bound

r for matroids.

9.9.3. Non-simple Greedoids : Chip firing games and Coxeter groups

The way a greedoid is defined in Section 9.2, it is required that all

feasible words are simple (i.e., have no letter occurring more than once). If



80.

this requirement is dropped, one gets a more general motion of greedoid, and
such non-simple greedoids arise naturally in some examples.

Let E be a finite alphabet and L & E* a finite language. Consider the
axioms {notation is explained in Section 9.2):
(L1) If o = By, oo €L , then B E L .
(L2) 1f a,R €L, lal> I8!, then o contains a letter = such that fx € L .
(12') 1f o,B €L, lal> IBl, then o contains a subword a' of length

fa'l = loal=- IRl such that Boa' € L .

In this section only (and in Exercises 9.36-9.38) we shall use the
definitions: (E,L) is a'greedoid if it satisfies (L1) and (L2), and a strong
greedoid if it satisfies (L1) and (L2'). Thus, what was called a "greedoid" and
an "interval greedoid" in Section 9.2, would be called a"simple greedoid" and a
"simple strong greedoid",respectively, here. |

Much of the theory of simple greedoids, as developed in previous sections,
breaks down for non-simple greedoids. This is to a large extent due to the lack
of an unordered, or set-theoretic, version. However, some parts of the theory
which rely only on the ordered, or language-theoretic, version, survive the

generalization. In particular, each greedoid (E,L) has a poset of flats ]

{and a labeled poset of flats ) ), defined exactly as in Definition 9.8.1.
A proper subclass of greedoids, for which there is an unordered version, is

given by the following definition: a finite language (E,L) 1is a polygreedoid if

it satisfies (L1) and

(L2"™y 1f a,B €L ,ial > 18], then there is some letter x , occurring more

times in & than in B , such that Bx € [ .

Ciearly, all simple greedoids are polygreedoids. Also, the polygreedoids for
which all permutations of a feasible word are feasible, are equivalent to the
"integral polymatroids" of J. Edmonds.

The two exchange axioms (L2') and (L2") are logically independent. Any

simple greedoid without the interval property satisfies (L2") but not (L2").
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Conversely, an example will be given right after Proposition 9.9.7 below of a
greedoid which satisfies (L2') but not (L2"). |

Define the support & of a word O as the multiset of letters in o .,
E.g., if O = loophole then O = {e,h,22,03,p} . The support of a language L
is the multiset system T={d&: a €L},

In general, a greedoid [ cannot be uniquely recovered from its support
[, but this is the case if L is a polygreedoid. The multiset systems which
are the supports of polygreedoids can be characterized by accessibility and a
suitable exchange axiom, and this permits an equivalent unordered formulationm.
See Exercise 9,37 for the precise statement (which extends Proposition 9.2.3).
Because of this special property, polygreedoids occupy a middle ground between
simple greedoids and general greedoids, and several facts from simple greedoid
theory have straightforward extensions to polygreedoids.

Let us look at two situations where non-simple greedoids arise.

Suppose that we have a finite connected rooted graph (V,E,r) and an

integer k > 0 . This gives rise to the following chip firing game.

Think of the graph as drawn on a desk top. We have k chips which during
the game are placed on and moved around among the vertices. By a chip con-
figuration we mean a multiset Al V— TN, {A]l = k , which denotes that  A(v)
chips are lying on vertex v .

When the game starts all k chips lie in a pile on the root vertex r
(other initial positions work equally well). At this time or any later time a
legal move consists in firing a legal vertex. By this is meant the following.
For a given chip configuration A , a vertex v is legal if A(v) 2 deg(v) ,
i.e., if there are at least as many chips on v as_there are neighbors. To

fire v then means to remove deg(v) chips from v and distribute them along

the adjacent edges to v's neighbors, one to each;:)

‘The game will terminate in
(eatter—hov—it—is-plaved—after-a—fimtte-nunbor—of stepd(a chip configuration
is reached which permits no further legal move.ﬁ&hitzzsthﬂzznase;ﬂm::maﬁf
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For instance, consider the graph in Figure 9.9.3, and

Figure 9.9.3

iet k=4 . If b is the root, the game will terminate after 2 moves. If a 1is
the root the game will terminate after 6 moves. Finally, if ¢ or d 1is the root
the game will go on forever, no matter how it is played.

The chip firing game determines 2a language L < v* of legal firing
sequences: X ;X,...X €L if X, 4is a legal vertex in the chip configuration

2 k

obtained after firing xl,xz,...,xi_l , for 1

A

i € k . This language is here-
ditary (i.e., satisfies (L1)), and in general not simple. For instance, if b is
the root of the graph in Figure 9.9.3 and k=6 , then babedbaa €L but

babecb €& L.

Assume from now on that the chip firing game terminates for some

sequence of legal moves.

9.9.6. Propositiom. The chip firing language (V,L) is a strong polygreedoid.

Its poset of flats is isomorphic to the poset of chip configurations.

It is easy to verify axiom (L2"), and an approach to axiom (LZ') is suggested
in Exercise 9.38. The poset of chip configurations consists of the legal con-
.figurationé (those which can occur in a game) ordered by: A £ B if and only if
some sequence of legal moves transforms ‘A into B .

The preceding result contains some combinatorial information about the
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chip firing game which is not a priori evident. For instance, one sees that every
maximal sequence of legal moves has the same length, and also that there is a

unique final chip configuration to which all such sequences lead.

The other example where non-simple greedoids arise comes from group theory.
Tet W be a group, S a generating subset, and assume that all elements in §
are of order two (i.e., s =s for all s € S). Then every group element w €W
can be expressed as a product w = 8185008 » 5, € 8 , and we call such an
expression reduced if k is minimal, i.e., if w cannot be obtained as the
product of a shorter sequence of generators, The reduced expressions can be
thought of as words in the alphabet § , and the collection of all reduced
expressions for all group elements forms a language L & 5% . The ianguage of
reduced expressions (S,L) has the following strong heredity property: If
a=8B8y,a &L, then B,y EL. In particular,.it satisfies axiom (L1).

The pair (W,S) 1s called a Coxeter group if all relations among the

pairwise relations)
generators are implied by of the form {st)

m(s't)=e , 8,£€ 8 . Examples

of finite Coxeter groups are the symmetry groups of regular convex polytopes and
the Weyl groups of siﬁple complex Lie groups. In fact, every finite Coxeter group
is of either of these types or a direct preduct of such.

The set W of group elements in a Coxeter group has a well known partial

ordering, called weak order (or, weak Bruhat order), which can be defined as

follows: For u,w EW s U £w if some reduced expression for u (u=sl...si)

i

1A

can be extended to a2 reduced expression for w (w=sl...s e o8y k). The weak

ordering of W is a graded lattice, if W is finite.

i

.The symmetric group Zn of all permutations of {1,2,...,n} , together with
the generating set of all adjacent transpositions S={(i,i+1): 1 £ 1 £ n-1} ,
is a Coxeter group. For example, if n=3 and 8 = {a,b} one sees that the
language of reduced expressions is L = {@,a,b,ab,ba,aba,bab} , and the weak

order is the hexagon lattice.

9.9.7. Proposition. The language of reduced expressions (S,L)} of a finite

Coxeter group (W,S) 1s a strong greedoid. Its poset of flats is isomorphic to
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the weak ordering of W .

Coxeter group languages are not in general polygreedoids. E.g., in the
language of 23 given above, "ba" can be augmented from "aba" only by "b" ,
which occurs exactly once in both words.

The Coxeter group greedoids have an interesting geometric interpretation.
In fact, they could be defined geometrically with no reference to group theory.
We will sketch this geometric picture in one tangible special case only.

Let (W,S) be the symmetry group of the 3-dimensional cube C . This is
‘a Coxeter group of order 48 , ISl = 3 , and its language (S,L) of reduced
expressions is of rank 9 with 42 basic words. Let A be the barycentric sub~-
&ivision of C's boundary. Then A consists of 48 triangles, and we pick one of

these as a root. See Figure 9.9.4, where the root triangle is shaded.

a a
a c b C
2 a
b b o
a e a
b
a a
\\ L\\'\\\ C b a
al ¢ .b::§§> a
N o
b b
. A 5,
a c b al
a
a a

Figure 9.9.4

Consider now all walks from the root triangle Ty » by which we mean
sequences of triangles (TO’TI""’Tk) such that Ti—l and Ti are adjacent
(share an edge) for 1 $1i Sk . If the edges of A are labeled by a,b and c
as in Figure 9.9.4, then there is an obvious one-to-one correspondence between
the walks from TO and the set 8* of all words in the alphabet S ={a,b,c}.
For instance, the walk indicated in the figure corresponds to the word "acabc" .

Call a walk (TO’Tl""’Tk) geodesic if no shorter walk from fTO to Tk
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exists. The geodesic language L' ¢ §* consists of all words which correspond

to geodesic walks from Ty - It is clear by symmetry that L' does not depend

on the choice of TO .

The basic fact now is that L' is isomorphic te L , i.e., the Coxeter
group greedoid of the cube group is the same thing as the geodesic language of
the subdivided cube. Similarly, the greedoid of any finite Coxeter group can be
obtained as the geodesic language of a simplicial sphere, which in the case of

polytopal groups is the subdivision of the boundary of the corresponding regular

polytope.

The examples we have discussed in this section show that even when the
alphabet E is finite it makes sense to consider infinite greedoids L ¢ E* ,
A non-terminating chip firing game played on a finite graph, and also an infinite
Coxeter group (W,S) with finite S (e.g., an affine Weyl group or the symmetry

sufficiently)
group of a{regular tesselation of IR ), gives rise to such an infinite non-31mple

greedoid.

9.9.4, Notes and Comments.

The excluded minor characterizations of local poset greedoids
‘and undirected branching greedoids (Theorem 9.9.3) are due to Korte and Lovédsz
(1985b) and Schmidt (1985, 1988 )}, respectively. See also Goecke and Schrader

(1986) for a shorter proof. The characterization of directed branching greedoids

in Thecrem 9,9.1 appears in Schmidt (1985}).
The minor-poset of isomorphism classes has long been studied for matroids
: is known
and particularly for graphs. From work of N. Robertsom and P. Seymour it
that infinite antichains do not exist in the minor-poset of all graphs,lequivetently,

infinite
raraphie—matroidsdy However,|jwe —

(do exist)
antichains{in the minor-poset of all matro:l.ds5 Also, infinite antichains of

branching greedoids exist (cf, Exercise 9. 27). \\Hz:;__ﬁyate (1986) , p_155iij)
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The basis graph of a greedoid was introduced in Korte and Lovdsz (19854),
where it was shown that a 2-connected greedoid has a connected basis graph.
Basis graphs of matroids had earlier been studied by Maurer (1973). The bounds
on the diameter for greedoids (Theorems 9.9.4 and 9,9.5) are due to Ziegler (1988).
A higher-dimensional analogue of the basis graph, the basis polyhedron, was
investigated in Bj8rner, Korte and Lovdsz (1983), and it W#s shown that a
k-connected greedoid has a (topologically) (k-2)-connected basis polyhedron.

Non-simple greedoids were first studied in Bjbrner (1985), and this was
mainly motivated by the example of Coxeter group greedoids. See Bjdrnmer
(1984, 1983) for more information about Coxeter groups énd their weak partial

extens

ive
ordering, and for references to the (?iierature about these topics. The

greedoids of graph chip~firing games were discovered by Bjdrner, Lovdsz and Shor

(1988), Polygreedoids appeared in Bjdrner (1985), Also Faigle {1985)
 discusses non-simple gfeedoids. for integral polymatroids see
e.g. White (1987), p. 181.

A different connection between greedoids and Coxeter groups was discovered by Gel’fand
and Serganova (1987a, 1987b). For each finite Coxeter group (W, S) and each subset P
of the generating set S, they define a class of subsets of the family of left cosets WP =
W/ < P >, the members of which they call (W, P)-matroids. The definition involves a
certain minimality condition in terms of Bruhat order on W¥, For the symmetric group
W=3% and P={(i,i+1):1 <i<n-1,7i%#k}, the (W, P)-matroids are precisely
the ordinary matroids of rank k given by their bases (as sets). The characterization of
matroids obtained this way is equivalent to that of Gale (1968): for every ordering of the
ground set there is a point-wise minimal basis. For P = {(i,i+1): k+1 < i < n} the
(W, P)-matroids are the Gaussian greedoids of rank k given by their basic words. Taking
W to be the symmetry group of a cube and for a certain choice of P, the (W, P)-matroids
coincide with the symmetric matroids of Bouchet (1987). [For those who undertake to
read the papers of Gel'fand and Serganova, let us point out that part (b) of Theorem 2
in (1987a) and the definition of Bruhat order given there are incorrectly stated.] Many
details about (W, P)-matroids can also be found in Zelevinsky and Serganova (1989).
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9.10. EXERCISES

Remark: The following Propositions and Theorems, which were stated
without proof or with incomplete proof in the text, make suitable exercises:
9.2.3, 9.2.7, 9.2.8, 9.4.1-9.4.5, 9.5.4, 9.6.1-9.6.3, 9.7.8, 9.7.9, 9.8.2,

9.8.4 and 9.9.6.

(the two axioms)
9.1.Show that a set system (E,F) is a greedoid if and only if it satisﬁg

(G1")0 € F andfor all X,Y € F such that Y C X thereisan z € X —Y such that
X—zeF.

(B) For any subset A C E all maximal feasible subset of A have the same cardinality.

TN
5 (Korte and Lovdsz, 1986a) )
A —
9,2. TLet F ¢ ZE » and consider the axionm

(G2") If ASE, x,y,z € E-A such that Aux, Auy, Auxuz € F

and Auxuy & F, then Auyuz € F .

Show that the axioms (Gl) and (_GZ") together define greedoids.



88.

9.3. Prove the following sharpening of the strong exchange property (L2') of
Proposition 9.2.5

(Eor interval greedoids (E,L):

all strings (i ,i,,...,1,) such that Bx, x, ...x, € L, the
1°72 k i,71, i,
lexicographically first one satisfies 1, < i, < < i

r — 1 2 LN k L]
(Korte and Lovdsz, 1984a}/

e L e o e Rt £ o v e e

9.4, wlet E be finite and P < 2" a system of nonempty sets such that

lal = |B] and |A-B! =1 dimply AnBE P, for all A,BE P .

(i) Show that <(E, 2E- P) is a greedoid. (Called a paving greedoid.)

(ii) Show that (E, 2B P} in general lacks the transposition property.

£~(Crapo, 1984; Korte and Lovdsz, 1985c)

9.5.¥Let (E,F) be a greedoid and A ={uF': F' € F} . Show that
(1) (E,A) is an antimatroid,
(ii) FcAc R, if (E,P 1is an interval greedoid,

(iii) both inclusions in part (ii) can be strict.

9.6, Let I = (V,E,r) be a finite, connected undirected graph with root
r €V . Let (E,Fb) be the branching greedoid on [ , and (V-r, Fs)

the vertex search greedoid.
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(1) The join irreducibles (elements covering exactly one element)
in the poset (Fb,_ are the paths in [ starting at r .
Hence, the join irreducibles form an order ideal in Fb

(ii) The join irreducibles in (FS,Q) are the induced paths (i.e.,
without cords) in [ , starting at r .

(iii)} The meet irreducibiles (elemenﬁs covered by exactly one element)

in (Fb,g) correspond to the bridges in T

(iv) The meet irreducibles in (FS,Q) of corank at least two
correspond to cut vertices in [ , those of corank cme
correspond to non-cut vertices.

c(Korte and Lovész, 1983)
7 Show that the rank closure operator O of a greedoid G 1is

monotone only if & is a matroid.

‘— (Schmidt, 1985, 1985a)
9.8. ¥ (1)

Prove that directed and undirected branching greedoids satisfy
g(X) n oY) € o(XuY) , for X,Y €F .
(ii) Show that also o(XuY) € o(X) v o(Y) holds for directed branching

greedoids, but not in general for undirected branching greedoids.

{‘ (Schmidt, 1985, 1985a)
9.9. VYT

he closure operator for greedoids, which can be given by
o(a) = u{X g E: r(AuX) = r(a)} ,

has some shortcomings (cf. § 9.4.2). As an alternative, the kernel closure

operator A: 2E__+ 2E s, defined by
AAY = UIXEF: r(AuX) = r(a)}
has been proposed. Define the kernel of a subset A& E by

ker{A) = Uu{X€EF: Xc A}.

(i) Give a graph-theoretical description of af(A), A(A) and ker(A)
for a set A in a branching greedoid. Exemplify with a branching
greedoid that A € A(A) may fail.

(id) Show that the operators 0,Aker: ZE *‘ZE satisfy the relations:

A

AC = ker O

oA

- ker a.



9.10, (Korte and Lovész, 1983) Show that the monotone closure operator p of a full greedoid

(i1i)

(iv)

(v)

(vi)

(vii)

90.

Deduce that

Az =X, (i.e., ) 1is idempotent)
Agh = A,
cho = 0o .

There is a canonical bijection between o-closed sets and
h-closed sets, and

r(A(4a)) = r(c(a)) = r{a) , for all AL E .
In an interval greedbid

B(A(A)) = z(A), for all ACE.

The kernel closure operator A 1is monotone if and only if
(E,F) 1is an interval greedoid.
For 0-closed sets A,BE€ C&L , A £B implies A(A) € A(B) .

The converse holds for interval greedoids, but fails in general.

(E,F) satisfies u(A) = A, for all AC E.

9. ll.cLet

(Korte and Lovasz, 1989b)

on the same ground set E , with closure operators Oy and Op

(E,M) and (E,A) be, respectively, a matroid and an antimatroid

. Define

a language (E,L) by

(1)

(i1)

(1i1)

L= {KIXZ"‘XR.E E*: x; & OA(UM({xl""’xi*l})) for 1<ick}.
Show that (E,l) is an interval greedoid. The corresponding
set system, denoted by (E,MAA) , is called the meet of
(E,M) and (E,A) .
Verify: M n A < MaAc M.
Show that (E,MnA) is not a greedoid in general, but that
if it is a greedoid, then
(E, M nA) = (E,Mn A*) = (E.M A AY) ,

for the antimatroid A* ={yF': F' S MnAl.
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(iv) If (E,M) is any matroid, and (E,A) 1is a poset greedoid,

then (E,MAA) is a Faigle geometry.
(v) Every directed branching greedoid arises as a meet.
(vi) Every polymatroid greedoid arises as a meet.

I(Korte and Lovdsz, 1983)
9.12¥For a greedeid (E,F) , let A

1,...,An € E . A feasible system of

representatives for {Al,...,An} in (E,F) is a set X € F for

which there is a bijection ¢: X =+ {Al,...,An} with x € @ (x) for
all xg X,

Suppose that (E,F) is an interval greedoid and Al""’An are
rank feasible. Show that {Al""’An} has a feasible system of
representatives if and only if |

r(A, U ... U A, }y 2k,

1 k

i
< 3
for all 1 £ 11 < ves ik n .

1A

9.13. Let K €RR"™ be a convex body, and E cR"-K a finite set. Let
Fgc ZE consist of those subsets A which are disjoint from the
convex huli of Ku(E-A) .

(1) Prove that (E,F) is an antimatroid.
(ii) Prove that the class of such antimatroids is hereditary

(i.e., closed under taking minors).

:(Bjt‘;rner‘, Korte and Lovdsz, 1985)
9.14¥8ay that a greedoid (E,F) is weakly k-connected if r(E-A) = r(E)

for all° AC E with [Al <k .

(1) Show that an undirected branching greedoid (or, graphic matroid)
is weakly k-connected if and only if the underlying graph is
k-edge-connected.

(ii) Show that the number of bases in a weakly k-connected greedoid
of rank r is at least (k+§_lJ .

{(Korte and Lovdsz, 198%b)
9.15¥1Let (E,F) be a greedoid and A a closure feasible subset of E .

Show that (E,F') 1is a full greedoid, but not in general an antimatroid,
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for

F' = FU{BC E:o(B)2 A}.
As a special case, conclude that every greedoid is a truncation of

a full greedoid..

9,16. Let (E,F) be a greedoid of rank r . Show that (E,F) 1is the
r-truncation of an antimatroid if and only if for all X,¥ € F,
IXuYl €r dimplies XuY €F . In this case, construct the smallest

and the largest antimatreid on E whose r-truncation is (E,F)

9.17 (Bjorner, Korte and Lovész, 1985.) Let (E,F) be an interval greedoid. Show that:
(ii) (E,F) is a matroid if and only if {2z} € F for all z € UF.
(if) If A € F, then the free sets over A are the independent sets of a matroid.

Q(Korte and Lovdsz, 1986a)
9.18.' Show that an accessible set system with the transposition property

(tp) of §9.3.7 is a greedoid.

(Korte and Lovdsz, 1983; Goecke, 1986)
9.19.¥Prove that a greedoid (E,F) has the interval property if and only if

F/X. = F/X., for all subsets A & E and all bases Xl and X2 of A .

1 2

9.20. One might have hoped for the following weak form of greedoid duality:

E |5 the set of bases of a greedoid then {E-B: B € B} is

1f Bg2
the set of bases of some other greedoid, not necessarily unique. Show

that this is false.

9.21. Let T: ZE-+ 2E be a closure operator on a finite set E . Show that
T satisfies the anti-exchange condition if and only if every closed

gset other than T(@) has at least one extreme point.

E-x

;—(Korte and Lovasz, 1984b)
Let E be a finite set, and for each x € E let H(x) € 2 be

9.22.
gome set system. Define a left hereditary language

H _ %, ;
L™= {xlxz...xk = ES. for all 1<igk and all A€ H(xi) ’

A g {xi+1,...,xk}} .
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(i) Show that (E,LH) is an antimatroid.
{ii) Show that every antimatroid arises im this way.
(iii) Suppose that (E,LK) is an alternative precedence language
determined by some system K . For each K(x) describe H(x)

B _
so that L = LK .

9.23. For a full antimatroid (E,F) , let A consist of those subsets of E
which are free and convex. Show that
(1) A is a simplicial complex,
(ii) Z(-l)ifi = 0 , where fi is the number of sets in A of
cardinality i ,
(iii) A is contractible (in the topological sense).
(iv) Let h be the maximum cardinality of a set in A . Show
that h is the Egllz number of (E,F) , meaning that h
is the least integer such that for any family of convex sets
if each subfamily of size h has nonempty intersection then

the whole family has nonempty intersection.

[Remarks: (iiy: J. Lawrence (unpublished), see Edelman and Jamison (1985).
(iii): The proof of Theorem 7.4 in Bj8rner, Korte and Lovidsz (1985)
can be adapted to prove contractibility of A

(iv): A. Hoffman and R. Jamison, see Edelman and Jamison (1985).]

9.24. (i) Sho-w .tha,t the greedoid polynomial of the branching greedoid of a rooted connected
graph is independent of the root.
(ii) Show that the analo

_ gous statement for the branching greedoid of a st .
digraph is false. o ng gr Lof a strongly connected
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{Bjdrner, 1985)

9.25.¥5how that the poset representations of a greedoid form a lattice, when
they are ordered by: (P ,\) £ (P,,A,) iff there is a rank preserving
poset map f: Pl - P2 satisfying Al(x y) < Az(f(x) < f(y)) for
X,y € Pl and x <*y . Show that every such map is necessarily surjective.
Identify the universal'representation {poset of flats) in terms of this

lattice.

{;(Korte and Lovdsz, 1983) :
9.26." According to Theorems 9.8.4 and 9.8.7, the poset of closed sets (Cf,2)

of an interval greedoid is a semimodular lattice. Show that its meet
operation is given by

AAB =g(ANB) , A,BECL .

9.27. Construct an infinite sequence of branching greedoids Gi s 1=1,2,...,

such that Gi is not a minor of Gj for all 1 # j

9. 28. Define a graph over the set B of bases of a greedoid G by letting
(Bl’BZ) be an edge when IBl-le =1, Bl’BZ € B . (This graph contains
the basis graph as a subgraph.) Prove the bounds

r - 1ANBl £ d(A,B) € t - T(ANB) ,
for the graph distance d(A,B) between two bases A and B , where

r = rank G ., In particular, the diameter of the graph is at most r .
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9.29. Define the basic word graph of a greedoid (E,L) as follows. The

vertices are the basic words, and two basic words are adjacent if the
corresponding maximal chains in the poset (F,S) differ in exactly one
elément {equivalently, if one arises from the other by exchanging two
consecutive letters or by exchanging the last letter).

S(Korte and Lovdsz, 1985d)
(1) Show that the basic word graph is conmnected if (E,L) is

2-connected.
(i1) If (E,L) 1is an antimatroid of rank r , show that the basic
word graph is connected and has diameter at most (E] . This

bound is best possible.

l;iggrte and Lovdsz, 1984bl}

9.30.wShow that convex pruning greedoids have the following property, not

shared by general antimatroids: If (Aux, x) and C(Auy, y) are
rooted circuits, then there exists a unique subset A' € A such that

(A'uxuy, y) is a rooted circuit.

9, 31.For an antimatroid (E,F) , let ¢ be the minimum and C the maximum

size of a circuit. :
(i) (Bjdrner, Korte and Lovdsz, 1985))
Show that (E,F) is k-connected if and only if ¢ 2 k+l .
(ii) {Bjdrner_and Lovdsz, 1987) 5
(Show that C-I 1is the CarathEodory number of (E,F) , i.e.,

the least integef such that if x lies in the convex hull
of ACS E , then there is some subset A' S A of size at most

C-1 such that x lies in the convex hull of A'
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(Korte and Lovdsz, 1984c)
9.32.¥Let (E,F) be a greedoid. Given a linear objective function, the

worst-out greedy algorithm starts with the complete ground set E

and at each step eliminates the worst possible element so that the
remaining set is still spanning (contains a basis). Show that every
linear objective function can be dptimized over (E,F) by the worst-out
greedy algorithm if and omly if the hereditary closure (E,H(F)) is

a matroid.

9.33. (i) For an interval greedoid, show that every R-compatible linear objective
function is compatible in the sense of Definition 9.5.1.
(ii) Give an example of a non-interval greedoid and a linear function

which is R-compatible but not compatible.

9.34 (Serganova, Bagotskaya, Levit and Losev, 1988) Let F C 2% be an accessible set
system. Show that the following are equivalent:

(i) (E,F) is a Gaussian greedoid. _

- (ii) For any linear objective function the greedy algorithm constructs a sequence of sets
A; € F,i=1,...,r, such that A; is optimal in the class F; = {X € F:|X| =i}
forall i =1,...,r =max{|X]: X € F}.

(iii) For X, Y € F, |X|=1|Y|+1, thereisan z € X —Y such that YUz € F and
X~zeF

(iv) For X,Y € F,|X| > |Y|, there is a subset A C X -V, ]A| = |X] —~|Y|, such that
YuAeF and X~ A€ F. '

Furthermore, show that the condition |X| = |Y| 4+ 1 in (iii) cannot be relaxed to
X1 > Y] |

[Remark: The equivalence of (i), (ii) and (iii) is proved in the cited source. The same
authors have subsequently proved (private communication) the equivalence of (iii) and
(iv), two versions of what they call the “fork axiom”. The equivalence of (i) and (ii) was
also observed by Brylawski (1986).]

9.35. Does there exist a non-Gaussian greedoid (E,F) for which H(F;), the hereditary clo-
‘sure of the feasible i-sets, is a matroid, for i =0,1,...,r = rank (F)?

: :(ij‘rner, 1985; extending Korte and Lovdsz, 1984a) |
9,368 (i) Show that the greedy algorithm will optimize any compatible objective

function w: L - R over a polygreedoid (E,L)_.
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(ii) Show that the greedy algorithm will optimize any generalized

bottleneck function (defined in the proof of Theorem 9.5.2)
over a greedoid, whether simple or not.

| g(Bj'drner, 1985; extending Korte and Lovdsz, 1984a)
9.37Y¥For multisets A,B: E >IN define inclusion A '€ B by A{e) £ B(e)

for all e €E , and cardinality Al = % .A(e) . Identify elements

e EE with their characteristic functiozgsgxe: E- {0,1} . For a finite

nonempty multiset system F Q]NE » E finite, consider the following

axioms:

(P1} For all A € F there exists B £ A such that I{B] = Al -1
and BEF .,

{P2) If A,BEF and (Al > IB| , then there exists an element

e € E such that A(e) > B{(e) and Bte € F .

Prove the following:

—~

(1) If (E,L) 1is a polygreedoid, then the support L satisfies

axioms (P1l) and (P2).

(ii) If (E,F) is a multiset system satisfying (P1) and (P2) then

the language
/—-.____/

L(F) = {xlx T E*: (x;...x,) € F for 1<icsk}

2

is a polygreedoid.

. N —
(iii) These operations are mutually inverse: L{L) = L and L(F) = F .

9.38. A finite language L £ E* , not necessarily simple, is called an

A-language if it is hereditary (axiom (L1)) and satisfies the

following axiom:

(L2")y 1f oa,ox,0B € 1L and the letter x does not occur in # , then
axB,afx € L and oxBy €L iff aRxy € L , for all y E€E* .

Prove the following (cf. §9.9.3):

(1) Every A-language is a strong greedeoid.

(ii) Every graph chip firing language is an A-language.

(iii) A simple A-language is the same thing as an antimatroid.



Final version of November 23, 1989

INTRODUCTION TO GREEDOIDS: REFERENCES

Bagotskaya, N. V., Levit, V. E. and Losev, 1. S, (1988): On « generalization
of matroids that preserves the applicability of the method of dynamic programming,
in: “Sistemy peredachi i obrabotki informatsii, Chast 27, Institut problem peredachi
informatsii, Academy of Sciences, Moscow, 33-36. (in Russian).

(1989): Fibroids, Automatic and Telemechanics (translation of Russian journal
“Avtomatika i Telemechanika”), to appear. ‘
Birkhoff, G. (1967): Lattice Theory, AMS Colloquium publ. 25, 3. edition.

Bjorner, A. (1984): Orderings of Cozeter groups, Proc. AMS-NSF Conference
on Combinatorics and Algebra, Boulder 1983 (ed. C. Greene), Contemporary
Mathematics 34, AMS, Providence R.L, 175-195.

(1985): On matroids, groups and ezchange languages, in: L. LOVASZ and A.
RECSKI (eds.), Matroid Theory and its Applications, (Conference Proceedings,
Szeged, 1982), Colloquia Mathematica Societatis Janés Bolyai 40, North Holland,
Amsterdam/Budapest, 25-60.

Bjorner, A., Edelman, P. and Ziegler, G. M. (1987): Hyperplane arrangements with
a lattice of regions, Discrete and Computational Geometry, to appear.

Bjorner, A., Korte, B. and Lovasz L. (1985): Homotopy properties of greedoids,
Advances in Applied Mathematics 6, 447-494.

Bjorner, A. and Lovész L. (1987): Pseudomodular lattices and continuous matroids,
Acta Sci. Math. Szeged 51, 295-308.

Bjorner, A., Lovész L. and Shor, P. W. (1988): Chip-firing games on graphs,
European Journal of Combinatorics, submitted.

Bland, R. G. and Dietrich, B. L. (1987): A wunified interpretation of several
combinatorial dualities, preprint, Cornell University.

(1988): An abstract duality, Discrete Mathematics 70, 203-208.
Bollobas B. (1978): Extremal Graph Theory, Academic Press, New York/London.

Bouchet, A. (1987): Greedy algorithm and symmeiric matroids, Math. Programming
38, 147-159.

Boyd, E. A. (1987a): Optimization problems on greedoids, Ph. D. Thesis, MIT.

(1987Tb): An algorithmic characterization of antimatroids, preprint, Rice University.

1



Brylawski, T. H. (1986): Greedy families of linear objective functions, preprint.

Brylawski, T. H. and Dieter, E. (1988): Ezchange systems, Discrete Mathematics 69,
123-151.

Chang, G. J. (1986): MPP-greedoids, preprint 86436-OR, Institut fiir Operations
Research, Bonn.

Colbourn, C. J. (1987): The Combinatorics of Network Reliability, Oxford University

Press.

Crapo, H. (1984): GSelectors. A theory of formal languages, semimodular lattices,
branchings and shelling processes, Advances in Mathematics, 54, 233-277.

Crapo, H. and Rota, G.-C. (1970): Combinatorial Geometries, MIT Press, Cambridge.

Dietrich, B. L. (1986): A unifying interpretation of several combinatorial dualities,
Ph. D. Thesis, Cornell University.

(1987): A circuit set characterization of antimatroids, Journal of Combinatorial Theory,
Series B 43, 314-321.

Ding, L.-Y. and Yue, M.-Y. (1987): On a generalization of the Hall-Rado theorem to
greedoids, Asia-Pacific Journal of Operational Research 4, 28-38.

Dress, A. W, M, and Wenzel, W. (1989): Valuated matroids — a new look at the
greedy algorithm, Applied Math. Letters, to appear.

Duffus, D. and Rival, I. (1978): Crowns in dismantlable partially ordered sets, Com-
binatorics (Proc. Fifth Hungarian Collog., Keszthely, 1976), Colloquia Mathematica
Societatis Janos Bolyai 18, North-Holland, Amsterdam, Vol I, 271-292,

Dunstan, F. D. J., Ingleton, A. W. and Welsh, D. J. A. (1972): Supermatroids,
Combinatorics (Proc. Conf. Comb. Math., Oxford 1972), 72-122.

Edelman, P. (1980): Meet-distributive lattices and the anti-exchange closure, Algebra
Universalis 10, 290-299.

(1982): The lattice of convez sets of an oriented matroid, Journal of Combinatorial
Theory, Series B 33, 239-244,

- (1986): Abstract convezity and meet-distributive lattices, Contemporary Mathematics
57, 127-150.

Edelman, P. and Jamison, R. (1985): The theory of convex geometries, Geometriae
Dedicata, 19, 247-270.

Edelman, P. and Saks, M. (1986): Combinatorial representation and convez dimension
of convex geometries, Order 5, 23-32.

Edmonds, J. (1971): Matroids and the greedy algorithm, Mathematical Programming
1, 127-136.



Faigle, U. (1979): The greedy algorithm for partially ordered sets, Discrete Mathematics
28, 153-159.

(1980): Geometries on partially ordered sets, Journal of Combinatorial Theory, Series
B 28, 26-51.

(1985): On ordered languages and the optimization of linear functions by greedy
algorithms, J. Assoc. Comp. Mach. 32, 861-870.

(1987): Eszchange properties of combinatorial closure spaces, Discrete Applied
Mathematics 15, 240-260.

Faigle, U., Goecke, O. and Schrader, R. (1986): Church-Rosser decomposition in
combinatorial siructures, preprint 86426-OR, Institut fiir Operations Research, Bonn;
Mathematics of Operations Research, to appear.

Gale, D. (1968): Optimal assignments in an ordered set: an application of matroid
theory, Journal of Combinatorial Theory 4, 176-180.

Gel’fand, I. M. and Serganova, V. V. (1987a): On the general definition of a matroid
and o greedoid, Soviet Mathematics Doklady 35, 6-10.

1987b): Combinatorial eomet'ries and torus sirata on homogeneous compact mani-
g g
fOld.S, Russian Math. S‘LII'VGYS 4:2, 133-168,

‘Goecke, O. (1986): Eliminationsprozesse in der kombinatorischen Optimierung - ein
Beitrag zur Greedoidtheorie, Dissertation, Universitat Bonn.

(1988): A greedy algorithm for hereditary set systems and a generalization of the Rado-
Edmonds characterization of matroids, Discrete Applied Mathematics 20, 39-49.

Goecke, O., Korte, B. and Lovész L. (1987): Ezamples and algorithmic properties of
greedoids, preprint 87456-OR, Institut fiir Operations Research, Bonn.

Goecke, 0. and Schrader, R. (1986): Minor characterization of undirected branching
greedoids - a short proof, preprint 86435-OR, Institut fiir Operations Research, Bonn.

Goetschel, R. H. Jr. (1986) Linear objective functions on certain classes of greedoids,
' Discrete Applied Mathematics 14, 11-16.

Gordon, G. and McMahon, E. (1989): A greedoid polynomial which distinguishes
rooted arborescences, Proc. Amer. Math. Soc. 107, 287-298.

Gordon, G. and Traldi, L. (1989): Polynomials for directed graphs, preprint.

Graham, R. L. and Hell, P. (1985): On the history of the minimum spanning tree
problem, Ann. History of Computing 7, 43-57.

- Hu, T. C. and Lenard, M. L. (1976): Optimality of a heuristic algorithm for o class
of knapsack problems, Operatlons Research 24, 193 196.

3



Iwamura, K. (1988a): Contraction greedoids and a Rado-Hall type theorem, preprint
88502-OR, Institut fiir Operations Research, Bonn.

(1988b): Primal-dual algorithms for the lezicographically optimal base of ¢ submodular
polyhedron and its relation to a poset greedoid, preprint 88507-OR, Institut fiir
Operations Research, Bonn.

Iwamura, K. and Goecke, O. (1985): An application of greedoid to matroid theory,
preprint, Josai University, Sakado, Saitama, Japan.

Jamison, R. E. (1982): A perspective on abstract convezity: Classifying alignments
by varieties, in: D. C. KAY and M. BREEM (eds.), Convexity and Related
Combinatorial Geometry, Dekker, New York, 113-150.

Korte, B. and Lovasz L. (1981): Mathematical structures underlying greedy algorithms,
in: Fundamentals of Computation Theory (Szeged, 1981), Lecture Notes in Computer
Science 117 (1981), 205-209.

(1983): Structural properties of greedoids, Combinatorica 3, 359-374.

(1984a): Greedoids, a structural framework for the greedy algorithm, in: W. R.
PULLEYBLANK (ed.), Progress in Combinatorial Optimization (Proceedings of the
Silver Jubilee Conference on Combinatorics, Waterloo, 1982), Academic Press,
London/New York/San Francisco, 221-243.

(1984b): Shelling structures, convezity and o happy end, in: B. BOLLOBAS (ed.),

 Graph Theory and Combinatorics, (Proceedings of the Cambridge Combinatorial

Conference in Honour of Paul Erdds, 1983), Academic Press, New York/London,
219-232.

(1984c): Greedoids and linear bbjective functions, SIAM Journal on Algebraic and
Discrete Methods 5, 229-238.

(1985a): Posets, matroids and greedoids, in: L. LOVASZ and A. RECSKI (eds.),
Matroid Theory and its Applications, (Conference Proceedings, Szeged, 1982),
Colloquia Mathematica Societatis Jands Bolyai 40, North Holland, Amsterdam/Buda-
pest, 239-265, :

(1985b): Polymatroid greedoids, Journal of Combinatorial Theory, Series B 38, 41-72.

(1985c): A4 note on selectors and greedoids, European Journal of Combinatorics 6
59-67.

(1985d): Basis graphs of greedoids and tiwo-connectivity, Mathematical Programming
Study 24, 158-165.

(1985e): Relations between subclasses of greedoids, Zeitschrift fiir Operations Research,
Ser. A 29, 249-267.

(1986a): Non-interval greedoids and the transposition property, Discrete Mathematics
59, 297-314. -

¥



(1986b): Homomorphisms and Ramsey properties of antimatroids, Discrete Applied
Mathematics 15, 283-290.

(1986¢): On submodularity in greedoids and o counterezample, Sezione di Matematica
Applicata, Dipartimento di Matematica, Universitd di Pisa 127, 1-13.

(1989a): The intersection of matroids and antimatroids, Discrete Mathematics 73,
143-157.

(1989b): Polyhedral results for antimatroids, in: Combinatorial Mathematics: Proceed-
ings of the third international conference, 1985, Annals of the New York Academy of
Sciences 555, 283-295.

Korte, B., Lovész L. and Schrader, R. (1989): Greedoids, Algorithms and
Combinatorics 4, Springer, to appear.

Kung, J. P. S. (1983): A chacierization of orthogonal dualily in matroid theory,
Geometriae Dedicata 15, 69-72.

Magazine, M., Nemhauser, G. L., and Trotter, L. E. (1975): When the greedy
solution solves a class of knapsack problems, Operations Research 23, 207-217.

Maurer, S. B. (1973): Matroid basis graphs I, II, Journal of Combinatorial Theory,
Series B, 14, 216-240, and 15, 121-145.

Schmidt, W. (1985): Strukiurelle Aspekte in der kombinatorischen Optimierung:
Greedoide auf Graphen, Dissertation, Bonn 1985.

(1985a): Greedoids and searches in directed graphs, preprint 85388-OR, Institut fiir
Operations Research, Bonn.

(1985b): A min-maz theorem for greedoids, preprint 85396-OR, Institut fiir Operations
Resea;'ch, Bonn.

(1988): A characterization of undirected branching greedoids, Journal of Combinatorial
Theory, Series B, 45, 160-184.

Schrader, R. (1986): Structural theory of discrete greedy procedures, Habilitationsschrift,
Universitat Bonn.

Serganova, V. V., Bagotskaya, N. V., Levit, V. E. and Losev, I. S. (1988):
Greedoids and the greedy algorithm, in: “Sistemy peredachi i obrabotki informatsii,

Chast 27, Institut problem peredachi informatsii, Academy of Sciences, Moscow, 49-
52. (in Russian).

Tarjan, R. E. (1983): Data structures and network algorithms, CBMS-NSF Regibnal
Conference Series in Applied Mathematics 44, SIAM, Philadelphia.

Welsh, D. (1976): Matroid Theory, Academic Press, London.
White, N. (1986): Theory of Matroids, Cambridge University Press.

5



(1987): Combinatorial Geometries, Cambridge University Press.

Zelevinsky, A. V. and Serganova, V. V. (1989): Combinatorial optimization on
Weyl groups, greedy algorithms and generalized matroids, preprint, Nauchnyi soviet
po kompleksnoi probleme “Kibernetika”, Academy of Sciences, Moscow. (in Russian)

Ziegler, G. M. (1988): Branchings in rooted graphs and the diameter of greedoids,
Combinatorica 8, 214-237.



