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Abstract— Model Predictive Control lacks the ability to es-
cape local minima in nonconvex problems. Furthermore, in fast-
changing, uncertain environments, the conventional warmstart,
using the optimal trajectory from the last timestep, often falls
short of providing an adequately close initial guess for the
current optimal trajectory. This can potentially result in conver-
gence failures and safety issues. Therefore, this paper proposes a
framework for learning-aided warmstarts of Model Predictive
Control algorithms. Our method leverages a neural network
based multimodal predictor to generate multiple trajectory pro-
posals for the autonomous vehicle, which are further refined by
a sampling-based technique. This combined approach enables
us to identify multiple distinct local minima and provide an
improved initial guess. We validate our approach with Monte
Carlo simulations of traffic scenarios.

I. INTRODUCTION

Model Predictive Control (MPC) has established itself as
a popular technique in Motion Planning and Control for au-
tonomous driving. This is attributed to its inherent capability
to simultaneously account for collision constraints, dynamic
feasibility, actuator constraints, and comfort criteria, enabling
the generation of optimal trajectories [1]–[3]. A notable
variant that we also use is Model Predictive Contouring
Control (MPCC) [4]–[6]. It generates consistent lateral and
longitudinal control signals and does not require a separate
desired velocity specification. However, due to constrained
computational resources, MPC relies on local optimization,
employing simple models and limited planning horizons,
potentially resulting in suboptimal or locally optimal (short-
term) solutions. Conversely, learning-based approaches can
excel where MPC falls short e.g., in efficiency and adapt-
ability in complex tasks, without needing physical models
[7], [8]. However, they face challenges in interpretability
and reliability, especially in unexplored corner cases. This
can potentially lead to hazardous behavior, hindering their
suitability for critical applications. Hence, due to their com-
plementary attributes, several methods propose approaches
to combine MPC with learning-based approaches.

Learning-based MPC can be broadly categorized into two
groups. The first group employs a learning-based system
to substitute or enhance components of MPC. Simplest are
approaches that learn the weights of the cost function [9],
[10], as these significantly impact MPC performance and
can be challenging to tune manually. A similar technique

1 is with the Free Universitity of Berlin, Germany
{firstname.lastname@fu-berlin.de}
2 is with Continental AG
{firstname.lastname@continental.com}
This work received support by the German Federal Ministry for
Economic Affairs and Climate Action within the project KI Wissen.

Prediction + Planning at

Prediction + Planning at 

Fig. 1: Example where our warmstart improves convergence
quality compared to warmstarting with the solution of the
last timestep tk−1 due to change of the optimization problem
(changing traffic participant behavior prediction)

is cost shaping [11], [12] which adjusts the cost function
at each time step, mitigating MPC’s limitation in finding
only short-term optimal solutions. Other methods learn the
state-space model or parts of it [13]–[15] to handle unknown
or complex dynamics. The second group learns high-level
policies where the trajectory is further refined with low-
level MPC. Methods such as [16], [17] provide high-level
plans as a reference to the MPC. Similarly, the predictive
safety filter [18], [19] evaluates constraint satisfaction of the
trajectory of the learned system, potentially generating an
output that minimizes the discrepancy from it while adhering
to constraints.

Our approach of a learning-based warmstart also falls
into this group, together with [20]–[23]. Here, the learned
system offers an initial guess to the MPC optimizer, which
is then further optimized by the MPC. This concept is
particularly compelling given the inherent limitations of
Local Optimizers/MPC, that become apparent in the context
of autonomous driving in complex scenarios. The first well-
known deficiency of the local optimizer is that if the initial
guess is far from the optimum, many steps are needed until
it converges, or the optimization may not converge at all.
The strategy of MPC to provide an initial guess is to use the
optimal trajectory, which was calculated in the last timestep,
assuming little change between the previous and current
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timestep. This strategy fails in uncertain and rapidly changing
environments where the optimization problem can vary a lot
between each timestep (s. Fig. 1). For instance, due to un-
known intentions of human drivers, predictions of how traffic
participants act may vary significantly between timesteps.
These abrupt changes can lead the optimizer to struggle to
recover or find a proper solution in time, potentially resulting
in fatal behavior where e.g., collisions cannot be avoided. In
the event of optimizer failure, a common approach is to use
the same control input as in the last timestep. However, when
the environment is changing rapidly, the scene can change
even more in the time step after and now using the solution
from two timesteps ago only exacerbates the problem.

The second deficiency of only being able to find a local
optimum is especially problematic in dense traffic with
(moving) obstacles. These obstacles are generally the cause
for non-convex problems with multiple local minima. Some
of these minima lead to undesired behavior, such as overly
conservative driving or peculiar overtaking maneuvers. This
problem is often mitigated by decomposing the planning
problem into a global and a local planner [24], [25]. In this
setup, the global planner generates a rough trajectory with
significant simplifications for real-time feasibility, potentially
sacrificing optimality. Also, topology-based planners such
as [26]–[28] can address this weakness, from which we
adopt the concept of homotopy classes. But, these planner
also do not address the previously mentioned weakness
of conventional warmstarting in fast-changing environments
that our method tackles.

However, previous works for learning-based warmstarting
[20]–[23] are mainly designed for simple repeating tasks.
For example, they do not consider constraints, especially
moving obstacles, or are trained for a limited number of self-
generated scenarios (which additionally require retraining
when the weights of the MPC cost function change).

The main contributions of our work are summarized as:
• Designing a Motion Planner based on Model Predictive

Contouring Control with Artificial Potential Fields
• Developing a learning-aided warmstart strategy which

improves convergence quality in fast-changing unknown
scenarios and helps to prevent undesired local minima
leveraging the concept of homotopy classes

• Devising a time-efficient framework with a novel trajec-
tory refinement process which makes arbitrary multimodal
trajectory predictors learned on real-world datasets easily
deployable.

II. BASELINE MODEL PREDICTIVE CONTOURING
CONTROL

Consider an arbitrary traffic scene with O traffic partic-
ipants o ∈ {0, .., O − 1} in which an autonomous vehicle
(AV), denoted as o = 0, needs to plan and execute a
safe trajectory. A reference path and the map Mr with
road boundaries are given by sets of waypoints pl =
{(xlj , ylj)}Kj=0 with l ∈ {ref, lb, rb} possibly provided by
a high-level route planner. The reference path is param-
eterized by the arclength θ and augmented by the path

Fig. 2: Illustration of the lag error elk, contouring error
eck (where θr is the real arclength) and potential field on
obstacles and lane markers

orientation ψref and the distance to the left and right road
boundary dlb, drb, Pref : [0, θmax] → R2 × [0, 2π], θ 7→
(xref (θ), yref (θ), ψref (θ), dlb(θ), drb(θ)) where θmax is the
maximum arclength.

We model the motion of the AV by a differential equation
ż(t) = f(z(t),u(t)) using the kinematic bicycle model:

ż =

[
v cos(ψ), v sin(ψ), v

tan(ψ)

l
, a, j, δ̇

]⊤
(1)

where z = [x, y, ψ, v, a, δ]⊤ is the state vector, u = [j, δ̇]⊤

is the control input vector and the velocity, acceleration,
steering angle, jerk, steering angle rate, and wheelbase are
denoted as v, a, δ, j, δ̇, l, respectively.

For the MPC-formulation, the dynamic model is dis-
cretized to zk+1 = f(zk,uk) with the sampling time Ts. The
MPCC aims to maximize path progress while minimizing
path error, balancing between the two objectives. For that,
we approximate the arclength (i.e. progress on the path) θk,
the lag error êlk and the contouring error êck (s. Fig 2):

θk+1 = θk + vpkTs (2)[
êck
êlk

]
=

[
sin(ψref (θk)) − cos(ψref (θk))
− cos(ψref (θk)) − sin(ψref (θk))

]
∆pref

where ∆pref = [x − xref (θk) , y − yref (θk)]⊤ and vpk
is the virtual speed on the path. Eq. 2 is augmented to the
dynamic model, i.e. vpk is an additional control input and θk
a further state. This is utilized to define the running cost:

Jk =

[
êck
êlk

]⊤
Q

[
êck
êlk

]
− qvvpk + u⊤

k Ruk (3)

where Q, qv, R are the respective weights. We extend the
formulation of [4] to account for moving obstacles and lanes
using the Potential Field method [2].

Jp
k = qob

O∑
i=1

· exp

(
−
(
∆xok
lo

)2

−
(
∆yok
wo

)2
)

+ qlm

L∑
l=0

exp

(
−
(
dllm − êck (θk)

σ

)2
) (4)
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Fig. 3: The learning-aided warmstart framework for motion planning and control using a multimodal predictor

where ∆xik,∆y
i
k are the distances to the respective obstacle,

dllm is the signed distance from the reference path to the
respective L lane marker, σ a scaling factor and li, wi

a conservative estimation of the length and width of the
obstacle and qob, qlm are the respective weights. Additionally,
for the hard constraints we employ ellipses to approximate
the occupied area by the obstacles and utilize a union of three
circles to approximate the ego’s occupied space. With that,
we approximate the Minkowsky sum as described in [5]. The
trajectories of the obstacles are provided by the prediction
module which will be introduced in the next section. To
ensure that the AV stays within the road boundaries, we
impose linear constraints

−dlb (θk) ≤ êck (θk) ≤ drb (θk) . (5)

Box constraints are imposed on the control inputs jk ∈
[jmin, jmax] and δ̇k ∈ [δ̇min, δ̇max]. Additionally, we limit δ,
a, and the lateral acceleration to ensure that the trajectories
are feasible for the vehicle [29]. This leaves us with the
nonconvex optimization problem:

min
Z,U

N−1∑
k=0

(Jk(zk,uk) + Jp
k (zk)) + JN (zN ) (6)

s.t. zk+1 = f(zk,u
H
k )

z0 = z(0)

zk ∈ Z, uk ∈ U

where Z is set of state constraints imposed by road bound-
aries, obstacles, and lateral acceleration, U is the set of
box constraints on the control inputs and JN (zN ) is the
terminal cost. The trajectories planned by the MPC are
denoted by τ = [Z,U ]⊤ where Z = [z0, ...,zN ]⊤ and
U = [u0, ...,uN−1]

⊤ where N is the prediction steps.

III. LEARNING-AIDED WARMSTART

This section introduces our learning-aided approach,
which we append as a warmstart method to the baseline
MPCC introduced in sec. II (s. Fig. 3). The warmstart
aims to provide an initial guess τ 0 = [Z0,U0] sufficiently
close to a satisfactory local optimum of the current time
tk, ||τ 0 − τ ∗

k|| ≤ ϵ such that the MPCC optimizer locally
converges to this optimum. The conventional approach of

warmstarting using the optimal trajectory of the last timestep
τ ∗
k−1 = [Z∗

k−1,U
∗
k−1] is still employed in our framework

by comparing it to the learning-aided output in terms of min-
imum cost at timestep k i.e., considering the new information
e.g., about obstacle motion. This allows for enhancing the
convergence quality while still maintaining an upper bound
for the cost provided by τ ∗

k−1.

A. Motion Predictor for Trajectory Proposals

Motion prediction models reason about the map, the
historical trajectories of objects, and their interactions to
forecast objects’ future movement. However, determining the
intentions of other traffic participants considering the various
choices an agent can make (e.g. whether a car will overtake
or follow a leading vehicle) is challenging. To address this
challenge, many learning-based motion prediction models
opt to provide multimodal predictions. Motion Transformer
(MTR) [30] and Wayformer [31], are examples of such multi-
modal predictors trained on large-scale motion prediction
datasets, such as Waymo Open Motion (WO) [32]. In our
method, we employ MTR which outputs a Gaussian Mixture
Model (GMM) for the object’s future position N (µm,Σm

in)
at every timestep. Each component m ∈ M of this mixture
corresponds to one predicted mode.

We capitalize on the necessity of the predictor for obstacle
prediction1 and reutilize it for predicting the ego trajectory.
The aim of our approach is to leverage the multimodal output
of the predictor to identify multiple local optima and select
the best one. To elaborate on that, we introduce the concept
of homotopy classes in the context of motion planning [33].

Definition 1. Two trajectories connecting the same start and
end position belong to the same homotopy class if they can be
continuously deformed into each other without intersecting
an obstacle. The set of all trajectories that are homotopic to
each other is denoted as homotopy class.

According to Definition 1, homotopic trajectories share the
same start and end point. Due to the initial state constraint,
the trajectories always share the same start by definition.
However, we relax the end point requirement as suggested in

1In this study, we use the most probable obstacle prediction. Planning
with multimodal obstacle predictions remains future work.



[34]. With the assumption that obstacles are the cause for the
existence of multiple minima, it follows that all trajectories
τ i ∈ A are homotopic, where A = {τ ∈ X |J(τ ∗) ≤
J(τ i), τ i = τ ∗+ ϵ, ϵ ≥ 0} denotes the attractive vicinity of
the local optimizer τ ∗ [27].

Thus, the aim of the learning-aided warmstart can be
further specified in providing an initial trajectory from the
right homotopy class. One of the main causes of multimodal-
ity in motion prediction is the interaction with other traffic
participants. Consequently, different modes often correspond
to different homotopy classes. Therefore, we make the fol-
lowing assumptions:

Assumption 1. Several of the predicted modes do not share
the same homotopy class and cover a subset of the existing
homotopy classes h ∈ H, i.e. |{[m]|m ∈M} ∩H| ≥ 2.

Assumption 2. The covariance of the components of the
GMMs i.e. for the respective mode is small enough such that
trajectories drawn from the same components correspond to
the same homotopy class (s. Fig. 4).

Subsequently, we introduce how to utilize and further
refine these provided modes to be able to select the best
one (in terms of cost) as a warmstart.

B. Bezier Curve Fitting

Typical trajectory predictors such as MTR predict only the
object position distributions at every prediction timestamp.
However, we require the complete state and control input
trajectories for our warmstart. Furthermore, our method
is required to sample realistic trajectories from the given
distribution to further refine the predictor trajectory.

We select 5th-degree Bezier Curves to fit the predicted
positions. They represent the optimal solutions in terms of
travel time, control effort, and jerk [35] and thus are close
to the optimal vehicle trajectories outputted by the MPC.
This smooths the often jerky predictions and allows us to
calculate derivatives analytically. Further, we can perform
this fit in such a way as to match current kinematic state. This
continuity constraint is not directly enforced by MTR. We
perform the fitting using Bayesian Linear Regression (BLR)
to output a distribution over the curve parameters from which
we can sample in the next step.

The 5th-degree Bezier Curve c(t) can be expressed as a
linear combination of 6 control points P j ∈ R2 and the
Bernstein polynomials ϕj(t) : R→ R:

c(t) =

5∑
j=0

ϕj(t)P j (7)

From the temporal derivatives of the Bezier curve, we can
then calculate the state and control input trajectories.

Hence, we first need to estimate the control points Pm
j

from the output of the predictor for each mode. The initial
guess should ideally satisfy the continuity constraint z0 =
z(0). For this, we exploit the property of the Bezier curve
that the initial conditions can be determined from the control

points. The initial condition for the (dth) derivative can be
calculated as:

c(d)(0) =
6!

(6− d)!
∆dP 0 (8)

where ∆k is the forward difference operator
recursively defined by ∆kP i = ∆k−1P i+1 −
∆k−1P i where ∆0P i = P i. From this, we determine
the first three control points:

c(0) =[x0, y0]
⊤, ċ(0) = [v0 cos(ψ0), v0 sin(ψ0)]

⊤,

c̈(0) =[a0 cos(ψ0)−
v20
l
tan(δ0) sin(ψ0),

a0 sin(ψ0)−
v20
l
tan(δ0) cos(ψ0)]

⊤ (9)

We utilize these relationships for the control points as a
strong Gaussian prior N (Pm,0,Σm,0) for the BLR. In other
words, the first three elements of Pm,0 correspond to eq. 9,
and Σm,0 are derived from the tracked uncertainty of the
states from the on-board sensors. As for the remaining three
elements in Pm,0, we employ an uninformed prior.

To formulate the BLR-problems we form Cm = ΦTPm

with the vector of the control points Pm ∈ R6·2, the vector
of Bezier curve points Cm ∈ R2N and the new basis function
Φ ∈ R6·2×2N as done in [36], [37]. The uncertainties of the
predictions [Xm,Y m]⊤, i.e. the covariance Σm

in outputted
by the GMM enter as Gaussian observation noise into the
regression.

[Xm,Y m]⊤ = Φ⊤Pm + e, e ∼ N(0,Σm
in) (10)

Consequently, the posterior and the covariance for the control
points are given:

Σm
PP =

(
ΦΣm

inΦ
⊤ +

(
Σm,0

)−1
)−1

(11)

Pm =Σm
PPΦ

⊤ (Σm
in)

−1

[
Xm

Y m

]
+Σm

PP

(
Σm,0

)−1
Pm,0

C. Control Point Sampling and Cost-Weighted Averaging

Simply calculating the states and control inputs from
each outputted modes of the predictor leads often to an
ineffective warmstart. Even if the best homotopy class is
chosen from these modes, it can still lead to a solution far
from the optimum, resulting in a prolonged convergence
time. Additionally, comparing modes to select the best
homotopy class based on the cost function is inaccurate,
as for two trajectories in two different homotopy classes
τh,1, τh,2 J(τh,1) > J(τh,2) does not necessarily imply
J(τ ∗

h,1) > J(τ ∗
h,2) since τh,1 and τh,2 can have different

distances from their local optimum τ ∗
h,1 and τ ∗

h,2. Our
solution to refine the trajectories is to utilize the distributions
N (Pm,Σm

pp) from eqn. 11, in order to sample S Bezier
curves (s. Fig. 4 ). For each sample Pm

s and the mean Pm,
we compute the cost function and obtain our output control
points through a cost-weighted average.

P̄
m

=

S∑
s=0

wsP̃
m

s with ws =
e−λJ(P̃

m
s )∑S

i=0 e−λJ(P̃
m
i )

(12)



J

Fig. 4: Intuition of the trajectory sampling around the fitted
trajectory τ p of the predictor which is assumed to fall in the
attractive vicinity of local minimum

where λ is a tunable parameter. The chosen weighting factor
wn has the advantageous property that assigns significantly
less influence to samples with markedly higher cost func-
tion compared to the sample with the minimum cost, i.e.,
J(P̃

m

i ) >> J(P̃
m

j ), wi → 0 (softmin normalization [38]).
This implies that, in essence, we are only giving substantial
consideration to a limited subset of samples within a similar
cost range.

Furthermore, recall Assumption 2, i.e.; consequently, we
assume the samples are in the attractive vicinity of a local
minimum. Provided the samples are well distributed around
the region of convexity of this local optimum, taking the
weighted average of the trajectories gives us a value inside
the area spanned by the sample points. Hence, the output
results generally in a trajectory closer to the minimum.

We execute this process for each mode. Subsequently,
the costs for each mode are compared, and the best one
is employed as the warmstart. While this still does not
guarantee the selection of the homotopy class of the global
optimum, it allows us to choose a satisfactory local minimum
at least. In autonomous driving, various maneuvers are often
similarly satisfactory, and only undesired local minima must
be prevented.

The detailed steps of the trajectory refinement are outlined
in Algorithm 1. It is important to note that this approach
supports parallel computation due to the parallel nature of
sampling and the independence of each trajectory from one
another, i.e., it can take advantage of the parallel processing
capabilities of modern GPUs, making it highly efficient.

IV. PERFORMANCE EVALUATION

We compare our MPCC with learning-aided warmstart to
the baseline MPCC with conventional warmstart in three
experiments. The first two experiments serve as illustrative
examples to highlight the two strengths of our approach. The
last experiment entails a Monte Carlo simulation of random
highway merging scenarios to provide statistical results (s.

Algorithm 1: Learning-aided Warmstart
Input : Measured state values

zk = [xk, yk, ψk, vk, ak, δk, θk]
⊤,

optimal traj.last timestep Z∗
k−1, U∗

k−1,
map information Mr, reference path Pref ,
pose history ηk

o ∀ Agents o with o = 0
denoting the ego vehicle

Output: Initial Guess for MPCC Z0, U0

Initialize # refinement samples S, # used modes M
// Predict trajectories ξmo = [x,y,σx,σy]
ξ ← MT R(ηk,Mr)
foreach m = {1, ...,M} do

// Fit predicted ego trajs. into Bezier Curve
Pm,Σm

pp ← BayesReg(ξm0 , zk) from (11)
// Sample from N (Pm,Σm

pp)

P̃
m

1 , . . . , P̃
m

S ∼ N (Pm,Σm
pp)

foreach s = {1, ..., S} do
// Calculate States, Control Inputs and Cost
Zm

s ,U
m
s , J

m
s ← J (P̃

m

s ,Pref , ξ
0
1:O)

// Calculate Cost-weighted Average of samples
P̄

m ← from (12)
// Calculate States, Control Inputs and Cost
Zm,Um, Jm ← J (P̄m

,Pref , ξ
0
1:O)

// Select mode with minimal cost
m∗ ← argminm Jm

if Jm∗ ≤ Cost of Z∗
k−1,U

∗
k−1 at timestep k then

return (Z0 ← Zm∗
,U0 ← Um∗

)
else

return (Z0 ← Z∗
k−1,U

0 ← U∗
k−1)

Tab. I).
Experiment I involves a scenario with two lanes, where

the left lane accommodates oncoming traffic but allows for
overtaking. This scenario is well-suited to showcase the capa-
bility of our framework in escaping undesired local minima,
as the presence of other traffic participants introduces non-
convexity to the optimization problem. In [28], [34], it is
demonstrated that a planner in this scenario may converge
towards several distinct local minima/homotopy classes. In
our case, our learning-aided warmstart leads to a different
behavior compared to the MPCC without warmstart (s. Fig.
5); i.e., the two planners converge towards two distinct local
optima. The costs for our planner are significantly lower than
those for the baseline planner (s. Fig. 5). This figure also
provides a comparison of the control input trajectories and
the minimum time-to-collision (TTC) for both planners in
this scene, displaying the shortcomings of the local minima
the baseline converged to.

Experiment II involves a scenario where an obstacle
crosses the path of the ego vehicle. Initially, the ego vehicle is
unaware of this occurrence for the first few moments, causing
a sudden shift in the optimization problem for the planner.
Such a situation can arise in various scenarios, for instance,
when the obstacle is initially occluded or when predictions
change (due to unknown intentions of traffic participants or



TABLE I: Results of experiment III. Comparison of Baseline and the learning-aided Framework using Monte Carlo analysis
Merging Execution Convergence Quality

Success Aborted Collision Success Max. Time
exceeded

Converge to
Infeasibility Average Cost Average Solving time (std)

Baseline MPCC 73 % 11% 16% 69.3% 13.6% 17.1% 4995 106 ms (40 ms)
Our Framework 88 % 4% 8% 82.7% 7.0% 10.3% 3737 94 ms (33 ms)

Baseline behaviour (depticting                 )

Our framework behaviour (depticting                 )

Fig. 5: Illustration of experiment I. Comparison of the local
minimum that the baseline converged to with our framework

.  .  .  . . . . . . . ...

AV recognizes new event at :

AV is not aware of any obstacle intersecting at :

Fig. 6: Illustration of experiment II. Comparison of the
baseline to our framework when an event occurs that changes
the optimization problem between two timesteps

a new decision of an object). In this case, the planner must
be capable of finding a solution for the new optimization
problem in real-time, even though it differs distinctly from
the last timestep. Hence, we impose a maximum solving time
constraint. However, we set this limit relatively high with
tmax = 0.5s since there is potential to accelerate the MPC
runtime through alternative implementations and hardware
enhancements, etc. Despite this high maximum solving time,
the baseline planner is unable to converge in time when the
change occurs (from the new event at te = 1.6 in Fig.

6). The red curve depicts the velocity trajectory outputted
by the solver. This trajectory fails to satisfy both collision
constraints and the initial condition. In such cases, it is
customary to utilize the solution from the last time step,
which, in this example, leads to further acceleration of
the ego. This behavior ultimately results in an unavoidable
collision. In contrast, Fig. 6 depicts that our approach can
directly provide an appropriate warmstart after the event.

For experiment III, we consider a highway merging sce-
nario (s. Fig. 1) and utilize the Intelligent Driver Model
[39] to simulate the behavior of the traffic participants. We
generate 100 test runs by randomly sampling the parameters
of the IDM model (such as desired velocity, minimum
headway, etc.), as well as the initial positions and velocities
for the ego vehicle and the other vehicles. As a result, we
compare the rate of successful mergings, the percentage of
the ego getting stuck in the entrance lane, and collisions.
Additionally, we assess the convergence quality in terms of
the percentage of successful convergence, failed convergence
due to reaching the time limit, and failed convergence due to
converging to a point of infeasibility. Further benchmarking
parameters are the average cost and solving time2. The sig-
nificant performance improvement to the baseline becomes
evident when considering highway merging. Firstly, each gap
between traffic participants potentially corresponds to a local
minimum where one can clearly be better than the other
e.g., due to gap size. Secondly, shifts in motion predictions
of the traffic participants during merging often substantially
impact the ego vehicle’s plan e.g., if a prediction changes
the acceleration slightly, the optimal plan for the ego may
shift from merging in front to merging behind.

V. CONCLUSIONS
A Learning-aided Warmstart Framework is proposed to

address the problem of Model Predictive Control with local
minima and convergence issues if using the conventional
warmstart strategy in fast-changing, uncertain environments.
This framework leverages a multimodal predictor that pre-
dicts trajectories for traffic participants and the ego vehicle,
respectively. The different ego trajectory modes are used to
identify multiple homotopy classes, each associated with an
attractive vicinity of a different local optimum. To achieve
this, we introduced a novel sampling-based trajectory re-
finement approach using Bayesian Linear Regression for
Bezier Curve Fitting to efficiently optimize the trajectories
before selecting the best one as an initial guess. Our Monte
Carlo analysis demonstrates that our framework significantly
improves the convergence quality in highway merging sce-
narios.

2Solving time data is for comparative purposes only and should not be
taken as absolute
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