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Abstract

In this thesis a deep reinforcement learning agent is trained in an environment
made with the Unity game engine. The new ML-Agents API allows the simula-
tion to communicate with a Python backend, which enables research with familiar
tools. The simulation features a huge variety of different adjustable parameters
and can be run in parallel. The agent successfully learned to follow the track and
is robust to various environmental changes. Furthermore, the future deployment
of Neural Networks on the AutoMiny car is prepared. The AutoMiny cars are
developed by the FU Berlin (Institute of Computer Science). The model car fea-
tures the Nvidia Jetson Nano, which allows the hardware accelerated inference
via Deep Neural Networks.
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1. Introduction

1 Introduction

Autonomous Driving is one of the major challenges of the 21st century. Various tech
companies, politics, and international research institutes work at full blast on solu-
tions towards this challenge. The main target is to make personal transport more
comfortable, more efficient and safer.

The Freie Universität Berlin does a lot of research on this challenge as well. The in-
stitute of computer science developed a high-tech model car for autonomous driving
over the years. This project provides a basis for new approaches and opportunities
for the research on autonomous driving.

1.1 Motivation

While public transport is widely digitalized and partly even fully automated, the so-
lutions for personal transport are very sparse due to the more complicated setting.
A lot of car producers integrate numerous sensors and intelligent driving assistant
software, but all of them still require a human driver behind the wheel. The need for
human supervision limits the use of these systems.

The goal of Autonomous Driving is to fully replace the human driver with intelli-
gent software. This kind of software uses various methods from AI that have recently
become more popular due to improvements in processing power, memory, infrastruc-
ture and research.

Especially Reinforcement Learning methods make it possible to train an agent with-
out concrete predefined behavior or patterns. The idea is to train their behavior with
a special reward system, which indirectly controls the behavior of the agent.

To enable students to gain hands-on experience in this field of research, the institute
developed small model cars and an artificial training environment. While many dif-
ferent algorithms can be easily implemented, some experiments require setups that
are hardly manageable.

That’s the reason why digital simulation environments are an appealing solution.
These digital environments are always available, cheap and almost entirely customiz-
able. Many scenarios can be more easily be implemented in a simulation, which
allows the user to focus on conceptual issues. The use of a modern game engine for
creating the simulation, allows building plausible real-time environments.
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1. Introduction

1.2 Goal of this work

The main goal of this work is to develop a digital simulation environment and to make
it available for further research on the driving agents. This simulation should come
up with new graphical opportunities and be created with a common game engine. A
special focus should be set on the adjustability of the environment to emphasize the
advantages over the lab environment.

Additionally, a reinforcement learning agent should be trained in that implemented
environment.

1.3 Methodology and Workflow

The development of the simulation is done with the Unity game engine. Unity offers
a specific API, which makes it possible to connect the simulation environment with a
Python Backend. Therefore, an implementation of a Reinforcement Learning Agent
in Python is also part of this work.

Development of the simulation has gone hand in hand with the machine learning
Python end of the project. The main idea is to establish a complete machine learning
workflow as soon as possible. This helps identifying bottlenecks and problems early
on.

1.4 Structure

This work is divided into nine main chapters that describe the overall approach to
solving the problem. The following list describes the content and the intent of each
chapter.

Introduction
This chapter gives an introduction into the topic of this project. Here we define the
main problem as well as the motivation to work on this topic. Furthermore, there is a
short overview on the main structure of this work.

Fundamentals
This chapter is used to clarify the theoretical fundamentals used for solving the prob-
lem. It starts by explaining the major concepts of Machine Learning, dives deeper into
the topic of Reinforcement Learning and ends with a description of the Unity game
engine.
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1.4 Structure

State of the Art
In this chapter we describe the state-of-the-art techniques and solutions of Rein-
forcement Learning and the concrete car model based on related work and previous
projects.

Method and Solution
This chapter describes the approach on solving the main problem. It gives an overall
overview of the created system, further information on the simulation as well as a
description of the deployment process.

Implementation
This chapter gives a description of the development environment concerning the used
software, modules and hardware. Additionally, here we describe and define the main
parameters of the simulation and deployment.

Results and Interpretation
In this chapter we describe the observations made during various simulation episodes
and try to justify them. Additionally, we visualize the outputs of the convolutional
layer and try to interpret the systems view of the input data.

Conclusion
This chapter contains an overall conclusion of the investigated approaches and their
results. It summarizes the entire work on this project.

Outlook
In this chapter we refer to promising optimizations and possible simulation exten-
sions.

Appendix
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2 Fundamentals

In recent years big companies such as Google, NVIDIA and Facebook focus a lot of
their research on AI. There is a variety of applications in daily life for machine learning
solutions. Google for example uses convolutional Neural Networks to automatically
label street addresses of Google Street View recordings [8]. Usually these systems
learn via a given set of input examples and corresponding output labels. Computa-
tionally intensive methods are used to train Neural Networks to associate these inputs
with their associated label. This kind of machine learning with known input and out-
put pairs is called supervised learning. Advancements in this area caused the current
interest in AI-research. The great interest lead to further improvements and sophis-
ticated methods. All of this provides a generic algorithm for solving many different
problems. This allows us to tackle problems that were previously very hard to solve,
if at all possible. In practice designing and fine tuning these Neural Networks is still a
challenging task and subject to ongoing research. There is no known universal way to
solve arbitrary problems. There are many different incarnations of Neural Networks,
which specialize in solving different tasks. Once the right architecture is found, it’s
still hard to train it, as this involves tweaking a lot of hyper-parameters, albeit practi-
cal experience and solid understanding of the underlying concepts.

Opposed to supervised learning, there is also unsupervised learning (and semi super-
vised learning), which is actually encountered in practice since most data is unlabeled.
As already hinted at, unsupervised learning does not have access to input and out-
put pairs like in the supervised setting, instead it is reliant on only some form of input.

Unsupervised learning is also heavily featured in this thesis in the form of deep re-
inforcement learning. Because the goal is to train the agent to follow the lane in this
thesis via reinforcement learning, one can imagine that there is no absolute correct
steering point at any given moment. When driving a car or riding a bike, the steering
is quite forgiving, meaning that slight differences in steering wheel position would
also be acceptable. Only longer periods of off-steering will require major corrective
adjustments. Reinforcement Learning is discussed in more detail in the section Rein-
forcement Learning or in [21] [23].

2.1 Machine Learning and Deep Learning

Artificial Intelligence is a subfield of computer science that originally could be char-
acterized as the goal of automating tasks usually performed by humans [4]. When
the media is headlining huge advances in AI, it is usually referring to advances made
in machine learning or especially in deep learning.
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2. Fundamentals

Machine learning aims at recognizing patterns in data on its own. This is a different
approach to symbolic AI and expert systems, where rules have to be entered manu-
ally. Before Machine Learning rose to its current glory, symbolic AI dominated the
field.

Deep learning is a subfield of machine learning and especially of Neural Networks.
It evolves over different techniques for training Deep Neural Networks. We refer to
networks as deep, if the network has more than one hidden layer (layers between the
input and the output layer). Accordingly, networks with one hidden layer are referred
to as shallow networks. By stacking multiple layers, we hope to achieve different rep-
resentations of the data (possibly hierarchical representations), thus making a certain
task, such as classification, easier. For more details refer to these sources [7] [4]

2.2 Reinforcement Learning

Reinforcement Learning follows a common scheme. It deals with an agent acting
within an environment at its very core. The agent bases its actions on the observations
it makes in the environment. The mapping of observation and actions is performed
by the policy. After taking an action, the environment usually changes its state and
provides a reward. In nature this reward is more so something the agent (the animal
brain) perceives, rather than something given by the environment [21]. The reward
can be positive or negative (punishment) and serves as a feedback signal for the agent
to evaluate its actions. The reward doesn’t have to be a direct consequence of the
last action, but is usually given for reaching a goal. Achieving that goal is in most
cases the result of a sequence of actions. This indirect feedback causes the attribution
problem, which describes the difficulty of judging a given action in a given state as
good because of this indirection.

Finding an appropriate Reward function that results in the agent learning the desired
behavior is very difficult [21]. There are some more key concepts which are required
for better understanding of this field.

Reward and discounted Reward
RL algorithms often use the discounted rewards instead of the raw rewards. The
idea behind this is to control how greedy the agent should behave in regards to the
rewards. (Should immediate rewards be favored over long term rewards?). The pa-
rameter that controls this behavior is usually denoted y ∈ [0, 1) (often y ∈ [0.9, 0.999]).
Future rewards are weighted by this gamma essentially based on the formula Gt =

∑∞
k=0 yk · Rt+k+1, where Gt denotes the discounted reward at timestep t and Ri de-

notes the reward received at timestep i [21, p. 55]. Notice that later rewards are
weighted with a higher superscript by y, which means that these later received re-
wards have less of an influence (they get discounted) as y < 1. If y is smaller (closer
to zero such as 0.9 e.g.) rewards in the future get reduced and current rewards are
favored over long term rewards.
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2.2 Reinforcement Learning

(State-)Action Value (Q) function
The Action-Value function (Q(a|s)) assigns every action an estimated value that de-
scribes how good the action a is, given being in state s. (Deep) Q-learning basically
aims at creating an accurate estimate of this function and then just chooses the best
action at each point in time.
Instead of learning the Q function for every action at every state, it turns out to be
better to have the Q function broken down in to Q(a|s) = V(s) + Adv(a, s) since you
don’t need to learn the value function state for every action[23, p.72].

State Value function
The Value function V(s) (depending on the state) was proposed, which estimates the
average (cumulative) reward from this state onward. It basically measures how good
the given state is. Generally, we prefer to be in good states. If choosing an action that
leads to being in a good state, this action should be favored over actions that lead to
ending up in worse states.

Advantage function
The Advantage function describes how much better or worse an action is as opposed
to others (the action with average action). By rearranging the definition of the Q func-
tion, the advantage function can be defined as Adv = Q−V (see above). Notice that
in PPO we defined the advantage as Adv = R− V, with R being the discounted re-
ward. So instead of the Q value for that action in that state, we rolled out the episode
and what the discounted reward will be for taking that action. Therefore, this is an
estimate of the Q function to some extent.

On vs Off-policy
RL algorithms can be categorized into On-policy and Off-policy algorithms. On-policy
algorithms use the same policy to evaluate their action as they do to choose an action.
On the contrary, Off policy algorithms use a different policy to collect data (expe-
riences) than the policy they try to optimize. Typically, Off-policy algorithms use a
replay memory to choose their action. The memory gathered in this was produced by
a different policy (maybe just an older version but still, this is considered a different
policy).[23] [21]

Model based vs non model based
Model based methods have a model of the environment, which they can use for plan-
ning by querying the model to see the results of taking certain actions and to observe
how the environment behaves [21, p.7]. According methods without such a model are
called non model based methods.
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2. Fundamentals

2.3 Artificial Neural Networks

The variety of different network architectures allows applying Neural Networks to
many different applications. The artificial neurons are often grouped into layers.
Many of the structures found in deep learning are briefly presented in this section.
For more details please refer to this source[22].

2.3.1 Layer and Architectures

There are various types of layers found with specific properties and functions. A
certain combination of different layers defines the architecture of a Neural Network
Model. In the following listing you will find the most important layer types with a
short description. Notice that, as deep learning is an active area of research, new
architectures and improvements are frequently proposed.

Convolutional Layer
Convolutional layers make use of the locality principle and thereby reduce the param-
eter count. Applied to images (2D Convolutional layers), it is assumed that close by
pixels are highly correlated. Similarly, a pixel in the top left corner is barely related
to a pixel in the opposite corner of the picture. In low level layers, the convolu-
tional kernels typically learn to detect low level features such as edges or color blobs.
The intermediate activations are feature maps that are basically images themselves.
Therefore, convolutional layers can be stacked intuitively. The different activations
within a layer can be viewed as different channels. Successive layers operate on the
activations of the previous layer. This hierarchical feature structure can detect more
complicated features, such as corners. Visualization of deep convolutional networks
hints at detection of complex concepts, such as eyes and many more. As the convo-
lution operation moves the kernel matrix (filter) over the input image, a translation
invariance is achieved, which often represents a useful feature in computer vision
tasks. An image of a cat is still an image of cat, even if the cat is located at a different
position within the image. Different convolution types (1D,2D,3D) are usually used
for different input types [4].

Pooling Layer
Pooling layers reduce the input via the according operation. A MaxPooling layer for
example usually regards a 2x2 pixel sized window and relays the maximum of it.
This window is then moved with stride of 2 (typically avoiding overlapping). This
reduces the width and height by half. Notice that this is done on each feature map.
The operation also introduces small translation invariance [7](2d maxpooling). The
operation, window size and stride size are hyperparameters.
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2.3 Artificial Neural Networks

Dense Layer
The Dense layer represents the most basic structure in Neural Networks. They re-
ceive vectors as inputs. In convolutional architectures they are associated with being
the reasoning part, whereas the convolutional part is responsible for detecting useful
features. As every input is connected to every neuron in this layer the number of
trainable parameters increases quickly with more inputs.

Flatten and Reshape Layer
The Flatten layer is typically used as a bridge between the 2D data of a convolution
operation and the first dense layer. Without the Flatten layer the two layers would be
incompatible. The Flatten layer achieves this by reshaping the 2D activation maps to
a linear vector. The Reshape layer servers the same purpose of adjusting mismatching
shapes of activation volumes.

Dropout Layer
Dropout layers randomly set a fraction of neuron outputs to zero during training.
Whether this happens to a neuron is chosen randomly with a probability p (the drop-
out rate). The layer does not have an effect during inference. This is a common
regularization technique. The network should rely on a small subset of neurons. If
neurons are randomly missing (their output is set to 0 regardless of the input), the
network can no longer rely on these specific neurons. This way overly big weights
should be avoided.

Residual Connections
Can be understood as shortcuts within a neural network. They build an alternative
data flow in order to re-inject low level features into higher level layers. This is help-
ful, as consecutive layers not only rely on the previous layer, but have access to lower
level features. Also, this fights the vanishing gradients problem, as the gradient can
reach the lower level layers additionally through the residual connection [4].

Addition and Concatenation Layer
Addition layers are often found in residual and inception type architectures, where
they serve the purpose of recombining the different processing streams. Concatena-
tion layers serve a similar purpose. They come in handy when combing visual data
and vector information. The Flatten layer of a convolutional part of a network or
some of the following dense layers could be concatenated with some vector informa-
tion. One could imagine that the network is fed additional information in this manner.
The additional information (speed, imu or calibration data such as camera angle etc.)
could help the network learn and deal with different settings (varying camera angles
etc.).
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2. Fundamentals

2.3.2 Activation Function

Several different activation functions were proposed over the years. In the beginning
the sigmoid activation function was commonly used, as it has the property of squeez-
ing the output into the range (0, 1). This activation got out of favor, as it suffers from
the vanishing gradients problem. As the derivative of the function is almost zero for
huge input values, huge errors only lead to small gradients, with diminishing effects
in deeper layers. Following proposals aimed at addressing this issue. ReLU is often a
good default. Now follows a non-exhaustive list with some hints of useful features of
common activation functions.

• Sigmoid squeezes the output into the range of (0,1) which can be interpreted as
a percentage or probability. Although it is used in intermediate layers, it might
be appropriate in the output layer for a single neuron.

• Softmax function is a commonly used activation function for classification task.
The softmax function normalizes the output of multiple layers to sum up to
one. Setting the number of output neurons (in a classification scenario) allows
interpretation of the output as a probability distribution if trained with one-hot-
encoded output labels, suggesting that the labels are disjoint.

• Tanh is similar to sigmoid but its outputs lie in the range (−1, 1). This feature is
also useful in control tasks, where outputs like motor controls can go in different
directions.

• ReLU is more robust to the vanishing gradients problem and has therefore be-
come one of the default choices. Its output is the identity of if the input is less
than 0 and else 0. Some variants try to improve on it, such as leaky ReLU, which
also allows for small negative gradients.

• Linear is often chosen for regression tasks, as it is not directly limited to a range.

2.3.3 Loss Function

The Loss function defines the objective that the Neural Networks tries to optimize.
This can also be seen as a cost function (for making errors), that the network tries to
minimize. There are common Loss functions for certain tasks, but certain problems
require a carefully crafted Loss function in order to train a network successfully.

2.3.4 Training

Training a Neural Network is often a challenging task, as a lot of parameter tweaking
is required. Nevertheless, this process has recently dramatically improved for super-
vised learning due to new techniques, which are characteristic to deep learning. Deep
Reinforcement Learning introduces hyperparameters, which can be very hard to get
right (such as the reward function). One major benefit is that data does not have to
be labeled as in supervised learning.
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2.4 Data Augmentation

2.4 Data Augmentation

In most cases, Machine Leaning algorithms only have access to a fixed set of data to
train on. This training set should contain a wide variety of representative data to train
a network that generalizes well to new data from the same distribution as the training
data.

The problem with creating such representative data sets is to handle that challenge
with limited resources like time, costs or special conditions that could not easy be
realized. A commonly used solution to this problem is the concept of Data Aug-
mentation. This strategy takes the existing data and alters it randomly according to
different methods that preserve their original class. The resulting augmented data
will be included in the training process. The method aims at making the trained
model more robust and invariant to certain transformations.

Data augmentation can be well understood in the context of image classification.
There are various methods to change the existing image data. Transformations like
scaling, shifting, flipping or rotating should lead to a classifier that is invariant, even
when these transformations are applied to the images. Furthermore, one can add
specific filters like noise, blur or color filter to the original image, which intends sim-
ulating of special environmental conditions. A rotated image of a cat remains a cat.

All in all, Data Augmentation is a useful strategy to artificially extend the existing
data set. But the choice of concrete methods of Data Augmentation depends on the
specific use case. Notice that certain images change their class, if certain transforma-
tions are applied. When it comes to object recognition, it is common sense to use
position and perspective changing methods like flipping and rotation. But in the case
of numeric digit recognition, arbitrary rotation is critical, because the class of the im-
age could change (e.g. by applying a 180 degrees rotation to an image of the number
six, it may seem to be a nine).

2.5 Transfer Learning

Once the agent manages to drive in the simulation, the next step would be to deploy
the network in the model car. Although different measurements have been taken to
let the agent generalize as well as possible, it is not to be expected that the agent will
be directly able to drive in the lab. Especially the car dynamics will defer from the one
in this simplified simulation. Still, the assumption is that the network can be transfer
learned to the new circumstances much more quickly. This is beyond the scope of
this thesis. Notice that driving in the lab might be bootstrapped with the already
well performing vector field force approach. Imitation Learning algorithms (Behavior
Cloning), which should be just mentioned here, are potentially suited for this task.

It is a common scheme in transfer learning to disregard the dense part when adopt-
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2. Fundamentals

ing a network to a new but similar task, and to add a new dense part on top of the
flattened output of the convolutional part. The network is then trained for a while
on the new task, while the weights of the convolutional part are frozen. Ideally the
convolutional part already detects universally useful features.

2.6 Video Game Engine

Video game engines are very sophisticated pieces of software. They coordinate mul-
tiple subsystems such as rendering, physics, audio, animation, networking and much
more in order to support game designers to create games that entertain people all
over the world. Different genres rely on certain systems more heavily than others.
The spectrum of games ranges wildly. Some games try to stand out by their game-
play, while other focus on aspects such as graphics, realism, storytelling or physics.
The branch of games that aims at telling stories via especially plausible environments,
often pushes the limits of the technology of the time. A few games feature a very de-
tailed and realistic simulation of the real world, fulfilling the purpose of immersing
the players in these worlds. They present what is already possible and, since the
game industry is gaining economic power, even more sophisticated portrays of the
real world can be expected in the future. Creating these virtual worlds is usually a
huge team project, where skills in physics, rendering, software architecture, sound
and art (just to name a few) are essential [11]. Players can usually interact with these
simulations in real-time, meaning all calculations have to fit at least in the time frame
of 30 milliseconds (30 FPS -> 1sec / 30 = 33 milliseconds).

2.6.1 Unity Game Engine

In the past, game engines were often made from scratch for each game. But some
studios put a lot of effort into keeping their engine general for their genre. Unity and
Unreal engine are engines that basically can power any game. Unity allowed many
enthusiasts to enter the world of game development by providing a powerful and yet
simplistic engine to realize their ideas. Cross-platform support, ease of use and the
great learning material (video tutorials, good documentation) pushed its usage. As
tutorials and workshops are organized at the FU for game development, those indi-
viduals might be interested to work in future projects with this system.

2.6.2 Physics Subsystem

Unity features a commercial grade physics subsystem for games. This kind of physics
engine aims primarily at delivering plausible physics effects for real-time applica-
tions. [11] [16] [18] The built-in physics system features rigid body, ragdoll physics
and particle effect. For this project it was essential, that the physics engine could
simulate at least basic vehicle physics. Unity features a special type of collider that in-
cludes many parameters, eliminating the need to manually extend the physics engine.
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2.6 Video Game Engine

Figure 1: Screenshot of Unity build-in wheel collider parameters

This figure shows the wheel model used in this project which is built into Unity. Ma-
jor features, such as drift and suspension, are captured by this model, which suffices
for the intended purposes of this project. The steering of the wheel was modeled with
a simple Ackermann model.

The main elements of the physics engine, like springs and hinges, allow the imple-
mentation of some further effects. Unity also announced their plan to feature a new
physics engine in the future [15], which will further improve the physics simulation.
The different engines should be interchangeable.
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2. Fundamentals

2.6.3 Unity ML-Agents

The Unity team created a package for training (reinforcement learning) agents in an
environment, that is simulated using the powerful Unity game engine. Especially a
Python API is implemented, which allows Python scripts to communicate with the
simulation / game. Python support is great for compatibility with the already estab-
lished machine learning infrastructure. Great documentation teaches the basic usage
of this API with step by step instructions on setup and implementation of an exam-
ple environment. The package already includes some interesting environments with
pretrained models.[12]
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3 State of the Art

3.1 Deep Reinforcement Learning

Applying Deep Neural Networks to Reinforcement Learning issues spawned the field
of Deep Reinforcement Learning. This thesis features the PPO algorithm that was de-
veloped by Open AI in 2017 [25]. Open AI also provides environments (called gyms)
for testing and developing RL algorithms [1]. More details on the algorithm can be
found in the PPO section 4.3.

Keras is a widely used high level framework for training Neural Networks. It depends
on libraries that implement Deep learning primitives such as Tensorflow, CNTK and
Theano. Recent versions of Tensorflow even integrate Keras, so its accessible without
a separate installation.

The Keras-RL project [20] implements some popular RL algorithms such as

• Deep Q Learning (DQN)

• Double DQN

• Deep Deterministic Policy Gradient (DDPG)

• Continuous DQN (CDQN or NAF)

• Cross-Entropy Method (CEM)

• Dueling network DQN (Dueling DQN)

• Deep SARSA

That project does not implement the more recent algorithms: A2C, A3C and PPO, as
of the time of writing.

3.2 AutoMiny

The corresponding model car of this project is called AutoMiny. This model was
developed at the Freie Universität Berlin and is used for educational and research
purposes on the topic of autonomous driving vehicles and robotics. The car (on a
scale of 1:10) comes with a variety of sensors. Additionally, this concrete configu-
ration supports calculations on a GPU provided by the NVIDIA Jetson Nano (see
figure 2).
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Figure 2: Jetson variant of the AutoMiny car model taken from [3]

The perception sensor system consists of an infrared stereo camera (Intel Real Sense
D435), a LIDAR 360 laserscanner (RPLIDAR A2M8 360 one beam) and an inertial
measurement unit (BOSCH BNO055 USB Stick).

The model can be controlled via an external interface (smartphone or Xbox con-
troller). Furthermore, it can be programmed via ROS melodic on Ubuntu to drive
autonomously.

ROS is a commonly used robotic operating system that provides a set of software
libraries and tools. Its main architectural element are nodes. Each node implements
some sort of functionality. This flexible system heavily relies on the Observer Design
Pattern [6], where topics can be subscribed by each node or made available to other
nodes.
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3.3 AutoMiny Car Model by Helliaca

This project[13] focused on integrating the ROS framework into Unity. The students
created a detailed model of the lab by manually creating the required assets, meaning
they had to use a 3d modeling software (blender) to sculpt structures. (They even
included the iconic chess pieces found in the lab.(see figure below)) While Unity al-
lows creating basic shapes such as cubes or spheres, these more complex structures
need to be modelled manually. Also, textures need to be mapped to the right posi-
tions via UV-coordinates. This workflow needs much time and especially expertise
with the software tools. Once created, the assets can be easily imported (via drag
and drop) into the Unity scene. The section 8.1 describes ideas how in the future this
laborious work might be simplified. Several of these assets were reused in this project.

(a) Modeled AutoMiny Car (b) Modeled Props
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4 Method and Solution

4.1 System Overview

The entire system consists of two main components as visualized in the following
picture:

Figure 4: Schematic Overview of the System

The first part is the upper (blue colored) PC component. On the left-hand side, we
see the Unity Simulation that communicates with the Python Training Module via the
Unity ML Agent API. During training, the Python Backend module and the Unity
simulation communicate over the Unity ML Agent API, as observations and actions
need to be transmitted. Training Neural Networks will take place inside the Python
Backend.

Once training is completed, deployment requires the model to be converted to a
frozen Tensorflow graph. This frozen graph can then be optimized with TensorRT
for inference.

The second part is the lower (orange colored) CAR component where the main mod-
ule (ROS-Node) includes the TensorRT inference module. This main Node receives
camera frames from the Camera Node (Intel Realsense connected to the intel NUC).
The camera frames are analyzed by the TensorRT inference engine that applies the
trained network. The main node publishes the according topic to the ROS network.
The ROS Node Car Controller performs commands accordingly.
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4.2 Architecture

The architecture was initially chosen to be simple to start with. This supports faster
iteration in the development of the algorithms. The complexity of the model was
planned to gradually increase if the agent would not be able learn the desired behav-
ior. This simpler architecture succeeded at the given task. Generally easier solutions
are to be preferred over more complex ones. See Occams razor [7, p. 111].
A simpler network was also favored for different reasons:

• Working with edge devices usually means working with limit resources. To
avoid issues during deployment this is the more reasonable approach. Surpris-
ingly, the hardware turned out to be performant. In that case there are resources
left, which allow for further tasks to be performed.

• The PPO algorithm has no replay buffer, but it still has to buffer the small roll-
out of the policy for multiple agents. Additionally, these observations were
extended by data augmentation. These batches have a noticeable impact on
system memory.

• The simpler architecture decreases the amount of required computing power.

Figure 5 depicts the network architecture (more specifically the output shapes of the
layers) of the actor that was successfully trained to stay on track.

Figure 5: Actor Model Architecture of the successfully trained Agent

The input are the last three images stacked along the color channel. The environment
decision interval was set to be 16. This means that observations are recorded at every
16th physics simulation. The simulation uses an adjustable update rate of 50 Hz (0.02
s between to simulation steps). The time between two consecutive images is then
also 0.02s*16 = 0.32s. This means also that the agent is queried at rate of 3.125Hz (1/
(0.02s*16)) for an action (about 3 times each second).
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The intuition behind providing it more than one frame is that agent can learn to
approximate speed, and acceleration, which will have an influence on the steering
behavior of the car. There are many alternative ways of providing multiple frames to
the model.

The following convolutional layers use the ReLU activation function and represent a
common structure with the interleaved MaxPooling blocks. The second convolutional
layer is special in the sense that is uses slightly bigger kernels and a stride of 2, which
additionally down samples the activation maps. The convolutional layer feature L2
kernel regularizers and the dense layers have dropout layers for regularization.

The output layer uses the tanh function to output an action between -1 and 1. As the
actor network represents a normal distribution, the output is interpreted as the mean
of a normal distribution with a fixed sigma = 0.2. The fixed sigma was accommo-
dated by excluding the entropy term in the loss. Another option would be to have an
additional output for that sigma. The speed was not controlled by the agent as it
makes achieving the desired behavior more complex and can be handled well by clas-
sic methods (control theory). Unfortunately, controlling the speed is out of the scope
of this thesis but it is a very interesting subject and can lead to surprising behavior as
section Observation indicates.

The critic has a similar architecture as is shown in figure 5. It has a slightly higher
parameter count as it lacking one convolutional layer and the output of the Flatten
layer therefore becomes larger. No dropout is used in the dense layers. The output
is a single neuron with linear activation which is common for regressions tasks (it
regresses the value function).

Figure 6: Critic Model Architecture of the successfully trained Agent

More details on the parameters can be found in the accompanying code repository.
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At one point many different architectures were implemented, to test if they worked
well with the developed framework. That included versions of these architecture
types:

• 2D convolution

• 3D convolution

• LSTM

• Residual connections (inception blocks are similar)

• Shared actor and critic model

Because the simulation was not that technically mature, it is insensible to make a
statement about their performance. The eventually more complex architectures were
tested, but did not achieve any noticeable advantage, which is why they were not
further pursued. Future work could very well investigate that.
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4.3 Proximity Policy Optimization

The general setup of reinforcement algorithms consists of an agent acting in an envi-
ronment that provides feedback via rewards. See section Reinforcement Learning in
Fundamentals.

Proximity policy optimization is an On-policy reinforcement learning algorithm based
on policy gradient optimization. This algorithm is used throughout this thesis. The
implementation is based on the implementations from [23][5]. This extended Keras
implementation specifically allows the collection of observations from multiple agents
in parallel. This fashion of parallelism is similar to the A2C kind of implemented par-
allelism and corresponds to the suggested implementation of the paper [25].

Furthermore, the PPO algorithm is an extension of the trust region optimization al-
gorithm (TRPO[24]). The main extension is happening in the loss function. Instead of
using a constraint to keep the update to the policy small, PPO clips the loss accord-
ingly. This shows improved results and simplifies the implementation [25].

Each iteration of the PPO algorithm begins by collecting T observations for each ac-
tor. The algorithm obtains an initial observation when the environment is reset. The
observation is fed to our actor policy network. The policy provides an action to run
the simulation for a single time increment. (Notice that the policy network typically
represents a normal distribution. The action is a sample drawn from the represented
probability distribution).

Running the simulation yields a reward, a new state, a done flag and usually an in-
formation structure that might include additional information. The old state, reward
and action taken are recorded to the current batch of the agent. The new state/obser-
vation is then used for choosing the next action for this policy rollout. This inner loop
of observing and taking actions is repeated, until our batch has size T or the episode
has ended (done flag is true).

The collected rewards are then discounted [25][23]. Doing this incentivizes the agent
to prefer actions with immediate rewards over taking actions that yield rewards in
the future (although they may be bigger), if y is closer to zero (y is usually in range
(0.9,0.999)). In other words, y values closer to 1 make the agent more far-sighted.

Once the batch is complete, the critic network predicts the value (estimation of the
expected reward) of each state observation. The advantage (of taking one action over
the other) is calculated as discounted reward – value. The advantage is also gathered
in the batch.

Once all actors have collected their batch, the batches are merged together. State, ad-
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vantage, predicted action and action are used to train the actor network. The critic is
then trained on the state and discounted reward afterwards.

It is possible to join the actor and the critic to share, for example the convolution fea-
ture extractor. In this case they train on a joined loss.

The loss that PPO is optimizing consists essentially of three losses:

• The first loss is the loss V, which is basically the loss of the critic. This is the well-
known mean squared error. The critic tries to predict the reward (discounted),
so being in the given state what could we hope for. This is a classical regression
task.

• The main loss of the actor is a clipped version of the TRPO algorithm as dis-
cussed previously. Basically, the clipped version of policy ratios times advan-
tage should be maximized. Note that advantage values > 0 mean that this action
should be more likely, so in turn the ratio needs to get increased. On the other
hand, if the advantage value is smaller than zero, the action is considered not
significant (not good), so the likelihood should be decreased. Clipping this ratio
assures that the policy does not change to drastically. In other words, the up-
dated policy should stay in a (trusted) region around the old policy (since the
name TRPO).

• The last loss is an entropy loss that is designed to motivate exploration of the
action space.
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4.4 Simulation

Simulating an environment offers many benefits and possibilities:

Reduced Hardware Issues
Working with real hardware often comes with many pitfalls (real-world problems)
such as missing drivers, incompatible software versions, broken parts and so on. As
of the beginning of this project the car did not exist in its final version. Some parts
were also not available, which postponed assembly. Due to this, developing started
with an older version of the model car that featured the Nvidia Jetson TX1. This was
removed and replaced by the Jetson Nano. As the Jetson Nano boots from a micro-SD
–card, which includes the OS and all data, so the card can be plugged into another
Jetson Nano and still function. Either way, a simulation doesn’t suffer from those
kinds of hardware issues (only the hardware that runs the system, but that is far less
likely to fail than the bleeding edge technology).

Fast Iteration of Ideas
Faster implementation of ideas (e.g. day and night cycle) allows to cover a huge va-
riety of different conditions. In a simulation you can change conditions by editing
the corresponding parameter. In this case, where the simulation is made with Unity,
the simulation is no longer a black box and can be changed to any desired behavior.
For example, creating different lighting conditions in the lab might work by flipping
the light switch, but basically only creates different scenes, whereas in Unity one can
control the sun changing its position. In this way many different kinds of lighting
can be generated. One could also position different light sources. With Unity plan-
ning on integrating real time raytracing, much more realistic lighting can be achieved.
This affects global illumination, reflections and shadows. Interestingly enough this is
also an AI application, because although Nvidia RTX series of graphics card features
dedicated hardware for ray tracing, it uses deep learning to denoise a much lower
quality image of the scene [17]. But not only lighting can be easily manipulated in the
simulation. Controlling other cars in the simulation can be as simple as just setting
its transformation (position and rotation) according to a fixed path. It also offers a
playground for non-deep-learning-based algorithms. It might also help decide which
sensor / information is best to use.

Data Augmentation
Variation is added if the model is parameterized (size of car, track design). Environ-
ment parameters can be varied during training such as the angle/ camera position
and much more. This yields a very sophisticated data augmentation scheme that
should make the solutions more robust to the varied parameters.
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Simplified Coordination
Coordinating experiments is easier as the lab is not blocked. Setting up an experiment
in the lab can be very time consuming and quite difficult to coordinate, especially if
it involves more than one car. Often things need to be put in place, networks need to
be reconfigured.

Simulating Malfunctions
The simulation can often offer data that is hard or impossible to get in the real world.
For example, segmentation of an image into different categories could be done by
using a manual shader (which will be much easier with shader graph tool). Also, it is
very difficult to recreate a scenario where hardware fails, like a flat tire, malfunction-
ing brakes, or a defect sensor in the real world.

Simulating Remote Places
Different places can be modelled, to check whether algorithms are robust to that en-
vironment. For example, photogrammetry is a method for high detail reconstruction
from multiple views of objects and scenes. Simulating remote places might be expen-
sive or not possible.

Reduced Costs
Costs can be reduced as multiple experiments can run in parallel and be easily re-
peated.

Unsupervised Learning Support
Simulations are safe for experimentation. They are naturally suited for unsupervised
learning, where the agent is expected to fail and make mistake to explore their envi-
ronment.

Simple Hardware
Off-policy algorithms need large amounts of memory (especially with images). Sav-
ing huge amounts of data from real life experiments can be difficult due to limited
memory, extra overhead etc.

Building such an exhaustive piece of software can be considered a very ambitious
undertaking, especially considering the limited time frame. As there was no prior or
little experience working with a game engine, many tools and workflows had to be
learned.

The benefits of the long-term value of this work is considered to outweigh the men-
tioned issues.
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4.5 Porting to AutoMiny

Adapting the results to model car means that corresponding ROS nodes have to be
implemented, which receive the camera feed, run inference and publish the corre-
sponding topics. For faster inference it is recommended to let TensorRT optimize the
network for inference. This process usually involves reducing the floating-point pre-
cision from 32 Bit precision to 16 Bit precision and discarding computations that are
not necessary for inference. The reduction of floating-point resolution usually results
in tolerable accuracy decrease which is traded for huge runtime performance gains.

Additionally, the network inference is hardware accelerated, as the car featuring the
Nvidia Jetson Nano is used. Alternatively to the TensorRT approach of freezing the
graph, one could also use the Tensorflow library on the Jetson Nano which also in-
cludes an integration of Keras (tensorflow.keras).

Implementation of the according nodes, Jetson SD card image and a description of
how to convert the model (including a colab notebook with appropriate versions of
libraries) will also be made available in the accompanying code repository.[26]
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5 Implementation

5.1 General Information

This section is especially interesting for practitioners who want to build upon this
project, understand certain design decisions or want to reuse solutions to some of the
many challenging parts of this project.

5.2 Development of the Simulation

Naturally a very basic prototype was developed first with fixed streets and props
placed in the scene. By utilizing free assets from the Unity asset store a scene can be
quickly put together. Once this is done, the ML-Agents API has to be integrated and
checked, if the data arrives at the Python end as expected. The Python end should be
able to import all planed libraries and make sure they function properly. Lastly, the
Python API should be able to send commands back to the Unity environment, which
in turn should react correspondingly.

Once this pipeline is established, development of algorithms and features can be-
gin. (Aside from this main goal the deployment of the car was pursued in parallel.
Especially the Jetson Nano had to be prepared, which required installing different
libraries. This typically is quite a tedious task on such cutting-edge technologies. Al-
though it now integrates nicely with the AutoMiny car, it was prepared for the worst
case where it had to do everything on its own (fetching the camera feed from the
realsense directly, communicating to the motor driver and running inference).

Development took place on three machines with Nvidia GPUs. A second rig was
also used to try different settings (hyperparameters) in parallel. Working with three
(the third was a laptop) PCs inevitably led to a managed process for synchronizing
the progress across all machines. Code would be managed by version control (git)
and resources such as the environment could just be copied to the other system. The
initial system features an older version of ML-Agents, but fortunately updating is as
easy as changing the according two folders of the sdk.

5.2.1 Integration of Unity ML-Agents

The Unity ML-Agents package integrates naturally into the Unity workflow. Mainly
one has to import the package (as easy as clicking a button) and set up following parts:

• Academy

• Area (optional)

• Agent

• Brain (Learning, heuristic or player)
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The brain represents the decision-making policy. Currently there are three types:
learning, heuristic and player. The API allows controlling an agent manually, which
comes in handy during debugging. For simpler environments/behavior (or for com-
parison) a heuristic brain can be implemented, that bases its decisions on a simple
algorithm (e.g. using some heuristic). The last option is the learning brain that ab-
stracts a machine learning algorithm. Simple architectures can be directly trained
within Unity, which also offers an inference engine for faster predictions. More im-
portantly, the learning brain is also the port to the Python API. Being able to use the
known tools (Python and all its libraries) is an important feature, as already acquired
knowledge can be reused and applied to this new technology. This clear interface
allows development mostly independent of the simulation implementation, which is
essential for reusability. The interface of the Unity simulation is conveniently de-
signed close to the already widespread open AI gym interface [1]. If necessary, a
wrapper can easily be implemented for compatibility.

The academy coordinates all agents in a scene by relaying their observations to the
according brain. Given an observation (visual, vector or text), the brain infers an
action to take and sends it back to the academy, which relays the action back to the
agent.

An agent optionally acts within an area. The area is responsible for resetting the
environment. This could be something like repositioning targets, changing tracks,
etc. A clean implementation simplifies the deployment of multiple agents within the
same environment. Training agents in the same environment allows saving resources
such as assets and the runtime environment only having to be loaded once.

The agent acts in the environment based on its brain. As described earlier the brain
therefore requires an observation and returns an action. The agent then acts on that
action by interacting with the environment (or changing its internal state). This usu-
ally means applying forces to motors, changing some attribute etc.

5.2.2 Environment Parameters

An important goal of training a model is to make it generalize well. Meaning it
should also make right predictions on data which it has never trained on but which is
similar. The training data should be representative of the domain. Machine learning
practitioners often face the problem of overfitting the machine learning models to the
training data, which can be understood as memorizing the training data or some part
of it. Apart from achieving good results on the training set, the model might totally
fail to make a sensible decision if presented with new examples. See section Data
Augmentation in Fundamentals (This goal is similar to making the model robust to
certain types of noise and distortions.) By including more variation (parameters) to
the environment, we pursuit the goal of making the network robust to all these factors.
The network should therefore generalize better. While this helps fighting overfitting,
it makes training the network also more involved. One approach is to use Curriculum
learning to gradually increase the difficulty (see Curriculum learning). As of the time
of writing the parameters of table 1 are implemented.
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Table 1: Environment parameters as of time of writing

Environment parameter Description
Start Parameters
Spawn specifies the position along the circuit (in range -1,1)

where agent should begin the episode
Spawn Rotation Offset specifies the rotation in regard to the direction of the

path the agent is facing when it spawns
Spawn Side Offset specifies in units how far the agent should be trans-

lated to the side relative to the center of the path
Target Lane
Track Offset

specifies the lane the agent is supposed to drive on
and in which direction

Track Segment Parameters
Lane Width specifies the width of one lane
Border Width specifies the width of the lane border
Lane Texture Noise specifies how much noise should be applied to the

lane texture
Stripe Length specifies how long the stripes in the middle of the

track are
Lane Color scalar that is used to set the color of the lane. the

scalar interpolates the color according to fixed gradi-
ent

Ground Color same as Lane Color but for the surrounding ground
Border Height specifies how high the border should be (vertical off-

set of the lane border)
Procedural Generation
Skyline Perlin Scale controls the structure of the background buildings
Mountain Perlin Scale controls the structure of the mountain range
Perlin X, Y control the structure of the skyline and buildings
Reposition Sun flag that if set, positions the sun in the upper ran-

domly
Car Parameters
Car Mass weight of the car (indirectly influences the steering

behavior)
Car Base, Rear Length
Car Turn Radius

parameters that the steering behavior

Camera Pitch, Yaw specify the rotation of the car camera
Zone Parameters
Border Zone Shift specifies the shift of Border Zone towards the lane
Border Zone Timer lets the agent fail the episode if it stays in the Border

Zone for the specified amount of time steps
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5.2.3 Procedural Generation

Unity features an asset store, where many assets are freely available, while others are
for purchase. Once you import an asset, it is usually ready for usage and you can
just drag and drop it into your scene. This way you can model a scene quite easily.
Although it requires some artistic skill to orchestrate a scene that is plausible and ap-
pealing. However, this will usually suffice for a prototype. Depending on the scene,
more or less fine tuning will be required. One way of circumventing this problem is
using low poly assets (low number of polygons) and simple lighting. Nonetheless,
building a visually stunning scene requires a lot of effort. Physically based rendering
gives a more intuitive approach, see section Raytracing and GAN for Asset Genera-
tion.

In order to provide the network with a variety of data, the scene should be augmented
with a variety of different backgrounds and other visuals in order to improve the gen-
eralization of the network. Modeling this desired variety by hand is not feasible. This
issue is tackled with procedural generation. Instead of placing every object in the
world by hand, they are placed via code. Not only can objects be placed via code, but
also any attribute can be set through code. Especially mesh data (the vectors, trian-
gles and UV texture coordinates) can be generated and manipulated via code. This
technique is heavily used in this project for generating the streets, mountains and city
background.

One reoccurring scheme in game development is to use some noise pattern to vary
the environment and therefore make it more interesting. Perlin Noise is widely used
for this purpose, as it has a continuous structure and it works in octaves. This fea-
ture of this fractional noise can be observed in figure [7]. There one can see that the
pattern on the left can be found on the right image in the bottom left corner. These
patterns are generated using Perlin noise at different scales and the corresponding
coordinates. The structure inherently reminds of natural terrain, such as we will see
in a moment.

Figure 7: Procedurally generated Perlin noise patterns at different scale parameters

32



5.2 Development of the Simulation

For the city skyline for example some buildings are predefined as Unity prefabs,
which allows easy initiation. A n x m matrix according to a noise pattern is sampled.
For every number in this grid a corresponding prefab is initiated (the number can be
converted to an index accessing the list of possible buildings). As these are symmet-
rical, they are not rotated, but this could be achieved by generating a similar grid that
contains the rotation information or any other information (for example color). This
technique can be used in very creative ways. A forest for example could be realized
by replacing the prefabs with trees. For a difficult lab setting on the other hand, mul-
tiple props (the chess pieces, boxes, etc..) could be scattered within a desired area.
Extending the idea of generating additional layers of detail in this way could generate
detailed buildings, built out of cleverly combinable blocks.

A variation of this is used for generating mountain-like structures. In this case the
height is sampled from the Perlin noise and the normalized height is used to interpo-
late the color.

Figure 8 shows how the mountain like structure is created by placing the height
according to samples of Perlin Noise. The color of the vertices depends on their nor-
malized height.

Figure 8: Procedurally generated mountain range from Perlin noise
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Figure 9: Hill-like structures generated from Perlin noise

In figure 9 we see how a different scale parameter to the Perlin Noise results in a
more hill-like structure (although the color range should be adjusted). In this figure
the grid placement in the x- and z- axes of the vertices is more clearly visible.

The streets are a hybrid of being placed manually and being created procedurally.
Each street segment is essentially controlled by the parameters type and radius/length.
The type depicts whether it is a left curve, a straight street or a right curve. For the
curved roads see the above figure 10, the radius parameter r specifies the radius of an
imagined circle. The middle lane of the curved road would then be the circumference.
The angle alpha (alpha = 90◦ in the figure 10) states how much of the circle segment
the road covers.
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Figure 10: Procedurally generated curved road

For the straight road this parameter states how long the road segment is. The street
editor Object allows then to automatically connect the individual segments together
according to the desired order. Each segment takes care of calculating necessary ge-
ometry (center of the lane, the triangles to the curb and the curb itself). Originally the
rewards were mainly given by detecting in which area (zone) the agent was located.
Then it could be penalized for driving on the opposite lane or crossing the sideways.
This was implemented by adding collision geometry that integrates into the physics
system. When collisions appear, certain events are triggered where handling func-
tions can be set up to deal with the situation accordingly. A hurdle was that this
requires convex geometry. Convex shapes are also more efficiently tested for colli-
sions. Therefore, the street calculations are broken down into an adjustable number
of steps, which allows control of the fidelity of the geometry.
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Figure 11: Procedurally generated collision geometry for zone-based punishments

Figure 11 highlights the left and right danger zones, which indicate that the agent is
no longer on track (it is driving on the sidewalk or crossing the lane). For a clearer
view the middle lane zone and the oncoming traffic zone are not shown in that figure,
but they work in a similar way. In the editor these zones are indicated by different
colors (the danger zones are red in Figure 10). The agent is unable to see them, as this
an information that is not available outside the simulation. The unity camera allows
excluding certain layers from being rendered by this camera. The objects just need to
be assigned to the correct layers.

As part of the procedural generation, the middle of the lanes is calculated, which is
useful for driving non-agent-controlled cars, placing objects or measuring the distance
between the car and the ideal path it should drive (in the sense of being centered on
the right lane).
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5.2.4 Rewards

Many environments have some kind of natural intrinsic reward. Video games often
provide a score that can be used as a reward signal. Often these rewards are given
only for success or failure, so most of the time the agent does not get any feedback
(by rewards) on his actions. The rewards are therefore given sparsely, which means
that a clear relationship between actions and rewards is difficult to deduce. Typically,
additional reward signals are constructed to circumvent this. This method is called
reward shaping and requires careful tuning, as agents often find ways to maximize
this reward without learning the desired behavior.

Further approaches are just mentioned a here:

• Hindsight Experience Replay [2]

• Auxiliary Tasks [10]

• Attention [19]

As for experimentation, different rewards have been implemented:

• Zones in this project are collision geometry that triggers a reward or punish-
ment if the agent enters it. For example, corridor- like volumes are dynamically
calculated when the road changes (see section Procedural generation). Many
parameters allow the adjustment of these volumes. One can change whether it
should overlap with the street; how accurately the road should be approximated
and of course the reward/punishment given. A similar zone is calculated for
the opposing lane and the small region in-between lanes, which allows detect-
ing whether the agent is cutting corners or driving too close to the middle of
the road.

• As the lane is calculated it allows measuring different distances. Implemented
are the distance to the target lane and the angle between the street course and
the car.

Due to the flexible nature of the system, further rewards can be implemented and
experimented with in the future.

As the environment was implemented in an iterative fashion alongside the agent
training, it is not sensible to compare the achieved rewards between training runs.
Furthermore, the rewards were treated as hyperparameters that influence the objec-
tive of the agent and this option was preferred to altering the loss function of the PPO
algorithm (to emphasize the generality of the approach, although the implemented in-
terfaces allow to alter the loss if required). To have some guidance on how the agent
performs, one can monitor the episodes length. Longer episodes indicate that the
agent managed to stay in the simulation longer, without getting of track or colliding
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with something. There is also an adjustable maximal length at which the agent will
get reset automatically. This prevents agents from being stuck in a situation forever
and can be used to make assumptions for resource management.

Yet the maximal episode length cannot be used as reliable measure, as the environ-
ment gets gradually more difficult due to curriculum training. The agent will usually
need time to generalize to new conditions (lighting, etc.).

The targeted behavior is intuitively clear. The simulation allows to observe the agent,
so one can monitor from time to time its progress. This also might spot issues with
implementation such as bugs, poorly chosen parameters or exploitable specifics of the
implementation. You might observe surprising behavior. See section Observations.

Rewards Description
OffCenterPunishment This value is multiplied with the distance from the

car to the center of the target lane. This punishment
is received by the agent at every timestep.

OffAnglePunishment This value is multiplied with the normalized angle
(0,1) between the path tangent direction and the for-
ward direction of the car. If the car is facing the op-
posite direction this punishment is scaled with 1.

FailingPunishment This value corresponds to the punishment for com-
pletely leaving the course.

CrashPunishment This value corresponds to the punishment for collid-
ing with something in the scene such as other cars.

TargetReachedReward This reward is given when passing a checkpoint.
When passing a checkpoint, the checkpoint will be
placed further along the track.

CloserToTargetReward This reward is given each frame the car moves in
the correct direction. This can be mainly used as a
reward for not failing.

DangerzonePunishment This punishment applies at each time step if the
agent crosses the lane border on either side.

OncumingTrafficPunishment Same as DangerzonePunishment but for being on the
wrong lane.

LaneTouchingPunishment Same as DangerzonePunishment but for crossing the
middle lane.

FurtherFromTargetPunishment Opposite to CloserToTargetReward. Potentially used
to avoid driving in the wrong direction (also back-
wards).

SteerDeltaFactorPunishment This tracks the last steering command and punsihes
rapidly changing steering commands.
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6 Results and Interpretation

6.1 Visualizing the Convolutional Layer

This section visualizes the actor network, which successfully learned to follow the
track by showing the individual activation maps as in [4]. This kind of visualization
of the layers allows to examine the network in an intuitive way. This method can
hint at certain characteristics of the network. A more sophisticated evaluation of the
network is beyond the scope of this work. The corresponding code for creating more
such visualizations will be available in the accompanying code repository.

The images in figure 12 represent the input to the actor network. These consecu-
tive frames were sampled at frequency of 3.125 Hz (1 / (0.02s*16)). In the back-
ground we see the procedurally generated buildings. The facades are textures from
the pixel2pixel dataset [9]. This temporary solution should indicate that those tex-
tures or more complex geometry could be generated as in section Asset generation.
To model the robotics lab at the FU more closely one could replace these with differ-
ent assets or just place the assets at fixed positons as in the ACM simulation.

Figure 12: Consecutive input frames for the actor model

Figure 13 shows the activation maps of the first layer given the input shown before.

These early layers are responsible for detecting low level features such as edges in the
input image. One can clearly see how certain filters highlight obvious edges due to
the different colors for the lane and the lane borders.
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Figure 13: Activation Maps of the first Layer (Convolution) in the actor model

(All following activation maps have been rescaled for a better view. Additionally, the
viridis colormap is applied to these activation maps, which are essentially grayscale
images) The next layer is a MaxPooling layer, which highlights certain features, but
also blurs the image to some extend as the resolution is reduced.

Figure 14: Activation Maps of the first Layer (Pooling) in the actor model

The next convolution layer contains more dark feature maps, but put attention to the
remaining ones.

In the third row we have two feature maps which are somewhat opposite to one an-
other, yet not just negations. While the filter at row 3 and column 2 highlights the
border lane, the one right next to it (in row 3 and column 3) highlights the track. They
are not just the opposite, since the objects to the left and to the right are visible in
both activation maps. It is not surprising that the right lane border is still visible in
many activation maps, as this is expected to be an important feature for not leaving
the track. Notice that not all lines are still visible, as the stripped markings in the
middle are missing as well as the left lane border.
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Figure 15: Activation Maps of the second Layer (Convolution) in the actor model

The following MaxPooling layer reduce the size further. By now the activation map
size is 12x16 pixels. Notice that the fact that some filters are almost empty does not
necessarily mean that they are poorly trained. It is more likely that the features that
they detect are just not present in this sample or are very subtle. Also the absence of
a certain feature can be an useful feature.

Figure 16: Activation Maps of the second Layer (Pooling) in the actor model

The final convolution layer mainly developed filters that highlight parts of track. Im-
portant features that are intuitively useful for staying on track can be seen in these
activation maps. As the agent was rewarded for driving on the right lane, a plausi-
ble explanation could be that it navigates itself according to the rightmost thing that
reassembles the lane border.
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Figure 17: Activation Maps of the third Layer (Convolution) in the actor model

6.2 Observations

Certain observed behaviors are very interesting and often surprising.

• This scenario occurred in an early the stage of the project, where the agent was
allowed to control speed and steering. The agent learned to stay on a straight
road, but would loop between driving forward and backward. This behavior
was caused due to a certain choice of rewards and their implementation. The
agent was given a fixed amount of rewards (say r=1), if it managed to pass a
checkpoint (a precomputed point along the road). A punishment of half that
amount (say p=0.5) would be subtracted, if the agent got further away. If the
agent passed a checkpoint, the next checkpoint would be a little bit further along
the road. If the agent moved away, the checkpoint would be reset to the closest
checkpoint. In this scenario the agent can exploit the environment in the follow-
ing way. It drives forward until it reaches a curve, then reverses for some time
and moves forward again. This is repeated until the episode ends. Thus, by
driving for example 10 checkpoints forward (e.g. 10m) the agent will collect 10
times the reward r=1. By driving the 10 checkpoints backwards, it will get pun-
ishment p=0.5 ten times as well. In total it achieved 10xr -10 x0.5 =+5 rewards.
The more often it repeats this cycle, the more rewards it will gain. Learning this
behavior is certainly easier than correctly driving the curve (failing will end the
episode and earn a large negative reward). The agent has thus found a local
minimum, the resulting behavior is undesirable. From then on, the car was only
in control of steering and the implementation of the checkpoint (closer to target
reward) was adjusted, so it would not be reset. If this checkpoint implementa-
tion or a similar mechanic for rewards is intended, one should be aware and will
most likely want to set the punishment as the same or more than the reward.
Originally, the intention was to help learning by giving the agent more feedback
(achieving sub-goals was rewarded in order to avoid sparse reward).

• For a while, the chosen track had too many sharp curves. After the behavior
previously described, the acceleration was set to constant. This had the con-
sequence of the car being too fast to be physically able to manage the curves.
Therefore, the ability to monitor the speed and regulate it with a pd Controller
was implemented. The track was redesigned to accommodate the targeted
speeds. The network was queried at a 50 Hz rate and learned to reduce its
speed about 10km/h by setting the wheels to a different position almost every
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frame. This rapid turning resulted in a strong brake action. On average it was in
the correct direction, which enabled the car to drift for a while and sometimes
catch the curve.

• If the environment is too difficult, the agent might try to end it as fast possible,
which can manifest in the agent driving maximally to the left or right. So, if the
agent always receives a negative reward, it makes sense to end the episode as
soon as possible.

• With a poor choice of parameters, the agent might get stuck in a local minimum.
This usually manifests in the prediction of always the same value. In some cases,
when the sigma for example is also predicted be the network, it might get quite
low. This will result in dividing by a very low number (possibly becoming zero)
in the loss, which will then result in NAN. Some implementations will not fail
which can be very irritating.
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7 Conclusion

The implemented system provides a smooth segue into computer science. The devel-
oped simulation enriches the existing laboratory environment with new alternating
digital environments. This makes Reinforcement Learning based training of driving
agents much more efficient due to increasing availability, decreasing costs and par-
allelism. The digital environment could easily be adjusted and randomly initialized
to combine different trainings into one digital training session. On the whole, the
simulation is a good resource for different kinds of AI training sessions and an ideal
extension to the existing laboratory environment.

The developed self-driving agent supports this assertion. The agent was trained in
the developed simulation environment and is now able to drive autonomously on a
digital test course. The developed architecture can be used for further research and
further approaches as well.

To sum it up, the result of this project enriches the existing research with new envi-
ronments, training methods and approaches for a self-driving agent.
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8 Outlook

This section is intended to inspire future work on the subject and to underline how
this thesis could be of help. This is of course by no means an exhaustive list and some
issues are still not fully solved. If not stated otherwise the author is not aware of any
such ongoing research on this rapidly evolving field.

8.1 Asset Generation with GANs

Creation of different assets such as textures, material and 3d models is a very labori-
ous task that requires a lot of working hours of experienced designers. Automation
of this tedious process would reduce costs and allow more focus on the content. The
paper [27] made a first step into this direction and describes a system for easily cre-
ating materials, given a set of examples and a means to explore a latent space that
highlights potential interesting regions. The book [14] gives examples on how to use
3d convolutional GANS to create simple structures such as furniture.

And this not only applies to video games or simulations as in this case. Generated
faces like this would make every character in such environments unique, but could
also solve data privacy issues in a whole area of applications.

Taken this idea to the extreme, an adversarial setting could choose the curriculum to
train the agents.

8.2 Multi Agent Simulation

Reinforcement learning offers a manifold of applications in the created simulation.
This environment can easily be extended to simulate more complex infrastructures,
such as cities.

The Unity ML-Agent API allows the handling of multiple agents within the same
scene. Besides that, a lower resource footprint allows resources to be shared. This
means that agents can interact with one another either in a competitive or cooperative
way. The competitive scenario could be a racing track for example, where the agent
drives against other instances of its policy (or slightly different ones such as in AC3
or genetic algorithms). Another non car related example would be the simulation of
soccer games. Potentially new and quite different strategies could be explored.

The cooperative side is also very interesting to experiment with. Multiple car agents
within one simulation can learn to minimize a common cost function (time, traffic
jam, fuel usage) cooperatively. If these cars were not restricted to the usual traffic
laws, they might discover better ones. By loosening the constrains (the agent fails if
it leaves the track) in this simulation the agent might also learn interesting behavior.
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Traffic in general could be optimized. It would be of general interest to find better
street planning or regulation with traffic lights. The semaphores in modeled cities
could be subject to optimization.

8.3 Photorealism

With the introduction of hardware accelerated raytracing on consumer graphics cards
[17], many interesting applications can be expected. Support for this technology is in
the beginning phase as of time of writing, but it is already integrated to some extend
in Unity with its high definition rendering pipeline. Photorealistic renderings of the
scene should reduce the gap between simulation and simplify deployment. Distort-
ing factors such as reflections, god rays and lens flare would be already present in
the training data. Depending on the integration implementation, different operations
and therefore sensors could be realized more efficiently.

Understandable Networks
One issue with Neural Networks is that they generally operate as black boxes. It is
hard to pin down what caused the network to give its answer (Why does the network
choose this action over others?), which is an especially urging question for driving
autonomously. Convolutional layers offer the techniques for visualizing the internal
workings of the network, which allows to interpret them a little bit better. The follow-
ing ones are the major one [4]:

• Visualizing activation maps

• Overlaying a computed heatmap over the input image according to the predic-
tion

• "deep dream" (maximizing features in an image that activate a certain part of
the network)

The heatmap approach is especially interesting, as it highlights the location in the
input image that most contributed to the given prediction. If this prediction is unrea-
sonable, one might be more careful. The heatmap could be compared to a segmen-
tation to double check whether important classes such as pedestrians and other cars
contributed to planned actions. This could be also tried for attention-based networks
in a similar fashion.
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A Appendix

A.1 Repository

You can find the entire project on Gitlab with additional documentation and resources.
[26]

A.2 Used Packages and Modules

The system is based on the following Packages and Modules:

• Unity editor

• Mlagents

• Tensorflow

• TensorRT

• https://github.com/LuEE-C/PPO-Keras

• Keras

• TensorRT

• dependecies
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