Corporate Semantic Web
The proseminar/seminar will focus on semantic technologies, (Corporate) Semantic Web, artificial intelligence (AI) and declarative knowledge representation in the enterprise context.
(19318517)
Typ | Seminar |
---|---|
Dozent/in | Adrian Paschke |
Beginn | 22.04.2020 |
Ende | 18.07.2020 |
Zeit | 10:15 - 11:45 |
Zeitraum: | 22.4.2020 bis 18.7.2020 |
Termin | Thema | Referent |
22.4. | Einführung | Adrian Paschke |
6.5. | Künstliche Intelligenz und Cognitive Computing | Dastan Kasmamytov |
6.5. | Semantic Web und semantische Technologien / Standards | Kaan Dönmez |
13.5. | Engineering Ontologies | Tjard Hoffmann |
13.5. | Knowledge graphs, DBPedia (incl. Linked Open Data), Yago, Wikidata | Emil Merle |
20.5. | Topic detection | Boyan Hristov |
27.5. | Entity Linking and Knowledge Extraction | Raphael Taxis |
3.6. | Ontology Learning | Fritz Pilz |
10.6. | Stream Reasoing | Elana Frank |
17.6. | Question answering with deep learning | Benny Henning |
1.7. | Quantum Machine Learning | Jan Batelka |
1.7. | Abschluss | Adrian Paschke |
emplates für Präsentation und Seminararbeit
Template Seminararbeit (im KVV )
Template Präsentation (im KVV )
Ablauf und Leistungserbringung
Das Seminar findet online statt. Zugangsdaten im KVV.
siehe http://www.ag-nbi.de/lehre/seminare.html
Bitte beachten Sie auch die Hinweise zu Plagiaten.
Themen
- Künstliche Intelligenz und Cognitive Computing (Dastan Kasmamytov)
- Logik Programmierung und Regeln
- Beschreibungslogiken / Description Logics
- Semantic Web und semantische Technologien / Standards (Kaan Dönmez)
- Engineering Ontologies (Tjard Hoffmann)
- Named Entity Recognition (NER): Grundlagen, State of the Art, Tools (Amr Dargham)
- Knowledge Graphs, DBPedia (incl. Linked Open Data), Yago, Wikidata (Emil Merle)
- Topic detection (Boyan Hristov)
- (Semantic) Business Process Modelling
- Semantische Recommender Systeme
- Entity Linking and Knowledge Extraction („The Open Knowledge Extraction Challenge) (Raphael Taxis)
- Semantic Search (Tim Kluge)
- Corporate Semantic Web Applications (Semantic CMS/KMS/DMS/Wiki)
- Stream Reasoing (Elana Frank)
- Inductive Logic Programming
- Rule Extraction and Rule Learning,
- Ontology Learning (Fritz Pilz)
- Deep learning and structured knowledge / logic rules
- Deep learning for time-series modeling
- Relation extraction and classification using deep learning (Petrit Vidishiqi)
- Knowledge base population using deep learning
- Question answering with deep learning (Benny Henning)
- Neural-symbolic learning and reasoning (Friedrich Keinhorst)
- Explainable AI (Mamon Dehabra)
- Quantum Machine Learning (Jan Batelka)
- + further topics (suggest one)