Springe direkt zu Inhalt

Dual-to-kernel learning with ideals

Franz Király, Martin Kreuzer, Louis Theran – 2014

- Focus Area 1: High-complexity Geometry - In this paper, we propose a theory which unifies kernel learning and symbolic algebraic methods. We show that both worlds are inherently dual to each other, and we use this duality to combine the structure-awareness of algebraic methods with the efficiency and generality of kernels. The main idea lies in relating polynomial rings to feature space, and ideals to manifolds, then exploiting this generative-discriminative duality on kernel matrices. We illustrate this by proposing two algorithms, IPCA and AVICA, for simultaneous manifold and feature learning, and test their accuracy on synthetic and real world data.

Title
Dual-to-kernel learning with ideals
Author
Franz Király, Martin Kreuzer, Louis Theran
Date
2014-02
Type
Text