The Finiteness Threshold Width of Lattice Polytopes. Mónica Blanco, Christian Haase, Jan Hofmann, Francisco Santos. Accepted by AMS (2020). https://arxiv.org/abs/1607.00798
Maximum Number of Modes of Gaussian Mixtures. C. Amendola, A. Engström and C. Haase. Information and Inference: A Journal of the IMA, iaz013 (2019), https://doi.org/10.1093/imaiai/iaz013
M. Beck, C. Haase, A. Higashitani, J. Hofscheier, K. Jochemko, L. Katthän, M. Michałek (2019): Smooth centrally symmetric polytopes in dimension 3 are IDP.Annals of Combinatorics, No 26, pp 1-8. https://doi.org/10.1007/s00026-019-00418-x
Discrete Mixed Volume and Hodge-Deligne Numbers. Sandra Di Rocco, Christian Haase, Benjamin Nill. Advances in Applied Mathematics, Vol. 104, Pages 1-13. (2019) https://doi.org/10.1016/j.aam.2018.11.002
J. Erbe, C. Haase, F. Santos (2019): Ehrhart-equivalent 3-polytopes are equidecomposable. Proc. Amer. Math. Soc. 147 (2019), 5373-5383. https://doi.org/10.1090/proc/14626
Mixed Ehrhart polynomials. C. Haase, M. Juhnke-Kubitzke, R. Sanyal, T. Theobald. The Electronic Journal of Combinatorics Volume 24, Issue 1 (2017) Paper #P1.10
Convex-normal (pairs of) polytopes, Christian Haase, Jan Hofmann. Canadian Mathematical Bulletin. Vol. 60, Issue 3, pp. 510-521 (2017). http://dx.doi.org/10.4153/CMB-2016-057-0
Finitely many smooth d-polytopes with n lattice points, Tristram Bogart, Christian Haase, Milena Hering, Benjamin Lorenz, Benjamin Nill, Andreas Paffenholz, Günter Rote, Francisco Santos, Hal Schenck Israel Journal of Mathematics Vol. 207, Issue 1, pages 301-329, (2015).
Polyhedral adjunction theory, Sandra Di Rocco, Christian Haase, Benjamin Nill and Andreas Paffenholz Algebra & Number Theory Vol. 7, No. 10, pages 2417–2446, (2014)
Polytopes associated to dihedral groups, Barbara Baumeister, Christian Haase, Benjamin Nill, Andreas Paffenholz. Ars Mathematica Contemporanea7, No 1, pages 30–38, (2014).
Integer Decomposition Property of Dilated Polytopes, David A. Cox,Christian Haase, Takayuki Hibi, Akihiro Higashitani. Electronic Journal of Combinatorics Vol. 21, Issue 4, Paper #P4.28, (2014).
Existence of unimodular triangulations - positive results. Christian Haase, Andreas Paffenholz, Lindsay C. Piechnik, Francisco Santos. (2017) https://arxiv.org/abs/1405.1687. To appear: Memoirs of the American Mathematical Society
Research Report 2005-2008 [pdf] Christian Haase and the Research Group Lattice Polytopes 16 pages, December 2008.
Integral affine structures on spheres and torus fibrations of Calabi-Yau toric hypersurfaces II [arXiv] Christian Haase and Ilia Zharkov DUKE-CGTP-03-01, 21 pages.
Integral affine structures on spheres and torus fibrations of Calabi-Yau toric hypersurfaces I [arXiv] Christian Haase and Ilia Zharkov DUKE-CGTP-02-05, 26 pages.