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Abstract. We give a version in characteristic p > 0 of Mumford’s theorem charac-
terizing a smooth complex germ of surface ðX ; xÞ by the triviality of the topological funda-
mental group of U ¼ Xnfxg.

1. Introduction

Let ðX ; xÞ be a 2-dimensional normal complex analytic germ. Let U ¼ Xnfxg. Mum-
ford ([14]) showed the celebrated theorem

Theorem 1.1 (Mumford). ðX ; xÞ is smooth if and only if the topological fundamental

group of U is trivial.

This is a remarkable theorem which connects a topological notion to a scheme-
theoritic one. His theorem has been a bit refined by Flenner [7] who showed that in fact,
the conclusion remains true if one replaces the topological by the étale fundamental group
of U , that is by its profinite completion. Then one can replace the analytic germ by a com-
plete or henselian germ over an algebraically closed field k of characteristic 0.

If k is an algebraically closed field k of characteristic p > 0, Mumford himself
observed that the theorem is no longer true. As an example, while in characteristic 0,
the singularity z2 þ xy is the quotient of ÂA2, the completion of A2 at the origin, by the
group Z=2 acting via diagð�1;�1Þ, in characteristic 2, it is the quotient of ÂA2 by
m2 ¼ Spec k½t�=ðt2 � 1Þ acting via diagðt; tÞ. Thus petðUÞ ¼ petðÂA2nf0gÞ ¼ 0, yet z2 þ xy is
not smooth.

Artin asked in [3] whether, if petðUÞ is finite, there is always a finite morphism
ÂA2 ! X . He shows this if ðX ; xÞ is a rational double point loc.cit.

The purpose of this note is to give an answer to a similar question where one replaces
the étale fundamental group by the Nori one. Strictly speaking, Nori in [15], Chapter II,
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defined his fundamental group-scheme for irreducible reduced schemes endowed with a ra-
tional point. But as U has no rational point, one has to modify a tiny bit Nori’s construc-
tion to make it work. This is done in subsection 2.2. While the étale fundamental group of
X is trivial, Nori’s one isn’t. So the right notion of Nori’s fundamental group is a relative
one denoted by plocðU ;X ; xÞ (see Lemma 2.5). Roughly speaking, it measures the torsors
on U under a finite flat k-group-scheme G which do not come by restriction from a torsor
on X . We show (Theorem 4.2) that if pN

locðU ;X ; xÞ is finite, then ðX ; xÞ is a rational singu-
larity, and if pN

locðU ;X ; xÞ ¼ 0, then there is a finite morphism f : ÂA2 ! X .

This note relies on discussions the authors had during the Christmas break 2009/10 in
Ivry. They have been written down by Hélène in the night when Eckart died, as a despaired
sign of love.

2. Local Nori fundamental groupscheme

2.1. Nori’s construction. Let U be a scheme defined over a field k, endowed with
a rational point u A UðkÞ. In [15], Chapter II, Nori constructed the fundamental group-
scheme pNðU ; uÞ. Let CðU ; uÞ be the following category. The objects are triples
ðh : V ! U ;G; vÞ where G is a finite k-group-scheme, h is a G-principal bundle and
v A VðkÞ with hðvÞ ¼ u. Recall ([15], Chapter I, 2.2) that a G-principal bundle h : V ! U

is a cover in the fppf topology, together with a group action G �k V !
�
V such that

V �k G ��!ð1;�Þ V �U V is an isomorphism. Then

Hom
�
ðh1 : V1 ! U ;G1; v1Þ; ðh2 : V2 ! U ;G2; v2Þ

�
consists of the U-morphisms f : V1 ! V2 which are compatible with the principal bundle
structure.

The objects of the ind-category C indðU ; uÞ associated to CðU ; uÞ are triples
ðh : V ! U ;G; vÞ where G ¼ lim �

a

Ga is a prosystem of finite k-group-schemes Ga,

h ¼ lim �
a

ha; ha : Va ! U , is a pro-G-principal bundle and v ¼ lim �
a

va A Y ðkÞ is a pro-point

with hðvÞ ¼ u. The morphisms are the ind-morphisms V1 ! V2 over U which are compati-
ble with the principal bundle structure and such that f ðv1Þ ¼ v2.

Then ðU ; uÞ has a fundamental group-scheme pNðU ; uÞ, which is then a k-profinite
group-scheme, if by definition ([15], Chapter II, Definition 1) there is a

�
h : W ! U ; pNðU ; uÞ;w

�
A C indðU ; uÞ

with the property that for any ðh : V ! U ;G; vÞ A C indðU ; uÞ, there is a unique map�
h : W ! U ; pNðU ; uÞ;w

�
! ðh : V ! U ;G; vÞ in C indðU ; uÞ.

Nori shows ([15], Chapter II, Lemma 1) that if G1, G2, G0 are three finite k-group-
schemes, hi : Vi ! U are Gi-principal bundles, and fi : Vi ! V0, i ¼ 1; 2, are principal
bundle U-morphisms, then V1 �V0

V2 ! Z is a principal bundle under G1 �G0
G2, where

ZHU is a closed subscheme (no reference to the base point here). Then he shows that
ðU ; uÞ has a fundamental group-scheme if and only if Z ¼ U for all ðhi : Vi ! U ;Gi; yiÞ,
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fi A CðU ; uÞ and he concludes ([15], Chapter II, Proposition 2) that if U is reduced and ir-
reducible, then ðU ; uÞ has a fundamental group-scheme.

2.2. Local Nori fundamental group-scheme. Let k be a field, let A be a complete
normal local k-algebra with maximal ideal m and residue field k. We define X ¼ SpecA
and U ¼ Xnfxg, where x A X ðkÞ is the rational point associated to m. So in particular,
UðkÞ ¼ j, and we have to slightly modify Nori’s construction to define the group-scheme
of U .

Let G be a finite k-group-scheme, and let h : V ! U be a G-principal bundle. Recall
from [10], Corollaire 6.3.2, Proposition 6.3.4, that the integral closure ~hh : Y ! X of h is
the unique extension ~hh : Y ! X of h such that Y ¼ SpecB, B is the integral closure of A
in j�h�OV , where j : U ! X is the open embedding. Then ~hh is finite. In particular, if
hi : Vi ! U are principal bundles under the finite k-group-schemes Gi, and f : V1 ! V2 is
a U-morphism which respects the principal bundle structures, then it extends uniquely to a
X -morphism ~ff : Y1 ! Y2, which is then finite. We can now mimic Nori’s construction.

Definition 2.1. The objects of the category ClocðU ; xÞ are triples ðh : V ! U ;G; yÞ
where G is a finite k-group-scheme, y A YðkÞ with ~hhðyÞ ¼ x, where ~hh : Y ! X is the inte-
gral closure of h. The morphisms Hom

�
ðh1 : V1 ! U ;G1; y1Þ ! ðh2 : V2 ! U ;G2; y2Þ

�
consist of U -morphisms f : V1 ! V2 which respect the principal bundle structure and
such that ~ff ðy1Þ ¼ y2.

The objects of the ind-category C ind
loc ðU ; xÞ associated to ClocðU ; xÞ are triples

ðh : V ! U ;G; yÞ where G ¼ lim �
a

Ga is a pro-system of finite k-group-schemes,

h ¼ lim �
a

ha, ha : Va ! U , is a pro-G-principal bundle, and y ¼ lim �
a

ya A lim �
a

YaðkÞ is a pro-

point in the integral closure of Va mapping to x.

One says that ðU ; xÞ has a local fundamental group-scheme pN
locðU ; xÞ, which is

then a k-profinite group-scheme, if there is a
�
h : W ! U ; pN

locðU ; xÞ; z
�
A C ind

loc ðU ; xÞ
with the property that for any ðh : V ! U ;G; vÞ A C ind

loc ðU ; xÞ, there is a unique map�
h : W ! U ; pN

locðU ; xÞ; z
�
! ðh : V ! U ;G; yÞ in C ind

loc ðU ; xÞ.

Proposition 2.2. If X is reduced and irreducible, then ðU ; xÞ has a local fundamental

group-scheme pN
locðU ; xÞ.

Proof. As explained above, the condition on X implies that if

fi : ðhi : Vi ! U ;Gi; yiÞ ! ðh0 : V0 ! U ;G0; y0Þ

is a morphism in ClocðU ; xÞ, then ðV1 �V0
V2 ! U ;G1 �G0

G2; y1 �y0 y2Þ A ClocðU ; xÞ, so
as in [15], Chapter II, p. 87, the prosystem lim �

a

ðha : Va ! U ;Ga; yaÞ over all objects

ðha : Va ! U ;Ga; yaÞ of ClocðU ; xÞ is well defined. So pN
locðU ; xÞ ¼ lim �

a

Ga. r

There is a restriction functor r : CðX ; xÞ ! ClocðU ; xÞ which sends ðh : Y ! X ;G; yÞ
to its restriction ðhU : Y �X U ! U ;G; yÞ, as the integral closure of X in Y �X U is Y .
This defines the k-group-scheme homomorphism

r� : p
N
locðU ; xÞ ! pNðX ; xÞ:
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Proposition 2.3. The homomorphism r is faithfully flat.

Proof. Faithful flatness of r means that if ðh : Y ! X ;G; yÞ A CðX ; xÞ is such
that ðYU ! U ;G; yÞ ! ðU ; f1g; xÞ factors through ðl : V ! U ;H; yÞ A ClocðU ; xÞ, where
YU ¼ Y �X U , then necessarily ðl : V ! U ;H; yÞ ¼ rðlX : Z ! X ;H; yÞ for some
ðlX : Z ! X ;H; yÞ A CðX ; xÞ. Let K ¼ KerðG ! HÞ. Since K is a k-subgroup-scheme
of G, it acts on Y . We define Z to be Y=K . Then by construction, Z ! X is a
G=K ¼ H-torsor which factors h, it restricts to V ! U , and is the integral closure of
V ! U . Thus y A Z and ðlX : Z ! X ;H; yÞ A CðX ; xÞ. This finishes the proof. r

We denote by petðU ; xÞ the étale proquotient of pN
locðU ; xÞ. From now on, we assume

k ¼ k. Then petðU ; xÞ is identified with petðU ; hÞ where h! U is a geometric generic point
and petðU ; hÞ is Grothendieck’s étale fundamental group. The étale proquotient of pNðX ; xÞ
is identified with Grothendieck’s fundamental group based at x, and is trivial by Hensel’s
lemma, as A is complete. If l is a prime number (including p), we denote by pet;ab;lðU ; xÞ
the maximal pro-l-abelian quotient of petðU ; xÞ.

Definition 2.4. One defines pN
locðU ;X ; xÞ ¼ Ker

�
pN
locðU ; xÞ !r pNðX ; xÞ

�
.

From the discussion, we see

Lemma 2.5. The compositum pN
locðU ;X ; xÞ ! petðU ; xÞ is surjective. In particular, if

pN
locðU ;X ; xÞ is a finite k-group-scheme, petðU ; xÞ is a finite group.

3. Construction and elementary properties of the Picard scheme for surface singularities

Let k be a field, perfect if of characteristic p > 0, let A be a complete normal local
k-algebra with maximal ideal m, X ¼ SpecA and U ¼ Xnfxg, where x A XðkÞ is the ra-
tional point associated to m. In [9], Exposé XIII, Section 5, Grothendieck initiated the
construction of a pro-system of locally algebraic k-group-schemes Gn and a canonical
isomomorphism GðkÞ ¼ PicðUÞ with GðkÞ ¼ lim �

n

GnðkÞ. This construction is performed

in [13] (see overview in [11], p. 273) and relies on Mumford’s basic idea [14], Section 2, to
use a desingularization of X , if it exists, so in characteristic 0 or if dimk X e 2 if k has char-
acteristic p > 0. We now summarize the construction and the elementary properties under
the assumptions

(1) X is normal,

(2) dimk X ¼ 2.

Let s : ~XX ! X be a desingularization such that s�1ðxÞred ¼
S
i

Di is a strict normal

crossings divisor and all components Di are k-rational. There is a linear combination
D ¼

P
i

miDi with all mi f 1 such that O ~XX ð�DÞ is relatively ample. We define ~XXn to be

scheme
S
i

Di with structure sheaf O ~XX=O ~XX

�
�ðnþ 1ÞD

�
, so ~XX 0 ¼ D, and we also define Dred

with structure sheaf O ~XX=O ~XX

�
�
P
i

Di

�
. Then the functors Picð ~XXn=kÞ and PicðDred=kÞ,
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taken as a Zariski, an étale or a fppf functor, are representable by locally algebraic
k-group-schemes Picð ~XXn=kÞ and PicðDred=kÞ, so

Picð ~XXnÞ ¼ Picð ~XXn=kÞðkÞ; PicðDredÞ ¼ PicðDred=kÞðkÞ

(see [11], p. 273, [13], Theorem 1.2). On the other hand, for all nf 0, and all k-algebras R,
one has Picð ~XXn nk RÞ ¼ H 1ð ~XXn nk R;O

�Þ. As the relative dimension of s is 1, this implies
that the transition homomorphisms Picð ~XXnþ1Þ ! Picð ~XXnÞ ! Picð ~XX 0Þ ! PicðDredÞ are all
surjective, and that Ker

�
Picð ~XXnþ1Þ ! Picð ~XXnÞ

�
¼ H 1

�
~XX 0;O ~XX 0

�
�ðnþ 1ÞD

��
. Since �D is

a relatively ample divisor on ~XX , there is an n0 f 0 such that the transition homomor-
phisms Picð ~XXnÞ ! Picð ~XXn0Þ are all isomorphisms for nf n0. Since the 1-component
Pic0ðDredÞ of PicðDredÞ is a semi-abelian variety, so in particular smooth, and the fibers
Picð ~XXnÞ ! PicðDredÞ are smooth, a‰ne [16], p. 9, Corollaire, Picð ~XXn0Þ is smooth. One
defines

Picð ~XX Þ ¼ Picð ~XXn0Þ:ð3:1Þ

It is thus a locally algebraic smooth k-group-scheme. It is an extension of
L
i

Z½Di� by its

1-component. Its 1-component Pic0ð ~XX ÞHPicð ~XX Þ is an extension of a semiabelian variety
by a smooth, connected commutative unipotent algebraic group over k.

Let hDiHPicð ~XXÞ be the subgroup-scheme spanned by those divisors with support in
D. Since the intersection matrix ðDi �DjÞ is negative definite, hDi is a discrete subgroup-
scheme of Picð ~XX Þ which intersects Pic0ð ~XXÞ only in the origin. Thus

PicðUÞ ¼ Picð ~XX Þ=hDið3:2Þ

is a smooth group-scheme of finite type. By definition, the k-points of U are in bijection
with isomorphism classes of line bundles on U .

The Zariski tangent space at 1 is

H 1ð ~XX ;O ~XX Þ ¼ H 1ð ~XXn;O ~XXn
Þ ¼ Ker

�
Picð ~XXn½e�Þ ! Picð ~XXnÞ

�
ð3:3Þ

for nf n0, where ~XXn½e� :¼ ~XXn �k k½e�=ðe2Þ. Since Picð ~XX Þ is smooth,

dim
k

H 1ð ~XX ;O ~XX Þ ¼ dimPic0ð ~XXÞ ¼ Pic0ðUÞ:ð3:4Þ

The last equality comes from the fact that hDiHPicð ~XX Þ is a discrete étale subgroup.

Recall that the surface singularity ðX ; xÞ is said to be rational if H 1ð ~XX ;O ~XX Þ ¼ 0. The
definition does not depend on the choice of the resolution s : ~XX ! X of singularities of
ðX ; xÞ.

One has

Lemma 3.1. The following conditions are equivalent:

(1) The surface singularity ðX ; xÞ is rational.

5Esnault and Viehweg, Surface singularities
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(2) Pic0ð ~XXÞ ¼ 0.

(3) PicðUÞ is finite.

Proof. The equivalence of (1) and (2) is given by (3.4). As hDiHPicð ~XX Þ is dis-
crete, the definition (3.2) shows that (3) implies (2). Vice-versa, assume (2) holds. Then
Picð ~XX Þ is a discrete group-scheme. Let L A Picð ~XXÞ. Since the intersection matrix ðDi �DjÞ
is negative definite (but not necessarily unimodular), there is an m A Nnf0g such that
Lnm A hDiHPicð ~XXÞ. Thus any L A Picð ~XX Þ has finite order in PicðUÞ. Since PicðUÞ is of
finite type, this shows (3). r

4. The theorems

Throughout this section, we assume k to be a field, perfect if of characteristic p > 0,
A to be a complete normal local k-algebra with maximal ideal m, of Krull dimension 2
over k. We set X ¼ SpecA, U ¼ Xnfxg, where x A XðkÞ is the rational point associated
to m. We say ðX ; xÞ is a surface singularity over k. We denote by s : ~XX ! X a desin-
gularization such that s�1ðxÞred ¼

S
i

Di is a strict normal crossings divisor. We define

Hi
�
Z;Zlð1Þ

�
:¼ lim �

n

H iðZ; mlnÞ for a k-scheme Z.

Theorem 4.1. Let ðX ; xÞ be a surface singularity over an algebraically closed field k.

The following conditions are equivalent:

(1) H 1
�
~XX ;Zlð1Þ

�
¼ 0.

(2) H 1
�
~UU ;Zlð1Þ

�
¼ 0.

(3) There is a prime number l, di¤erent from p if charðkÞ ¼ p > 0, such that

pet;ab;lðU ; xÞ is finite.

(4) For all prime numbers l, pet;ab;lðU ; xÞ is finite and if charðkÞ ¼ p > 0, then

pet;ab;lðU ; xÞ ¼ 0.

(5) Pic0ð ~XXÞ ¼ Pic0ðUÞ is a smooth, connected commutative unipotent algebraic group-

scheme over k.

(6) D is a tree of P1s.

(7) Pic0ðDredÞ ¼ 0.

Proof. We firt make general remarks. For any surface singularity, one has the locali-
zation sequence

H 1
�
~XX ;Zlð1Þ

�
! H 1

�
U ;Zlð1Þ

�
! H 2

Dred

�
~XX ;Zlð1Þ

�
! H 2

�
~XX ;Zlð1Þ

�
ð4:1Þ

! H 2
�
U ;Zlð1Þ

�
! H 3

Dred

�
~XX ;Zlð1Þ

�
! H 3

�
~XX ;Zlð1Þ

�
:
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By purity ([8], Theorem 2.1.1), the restriction map H 1
�
~XX ;Zlð1Þ

�
! H 1

�
U ;Zlð1Þ

�
is injec-

tive, and H 2
Dred

�
~XX ;Zlð1Þ

�
¼

L
i

Zl � ½Di�. By base change, Hi
�
~XX ;Zlð1Þ

�
¼ Hi

�
Dred;Zlð1Þ

�
.

Thus this group is 0 for if 3, equal to
L
i

Zl � ½Di� for i ¼ 2, and equal to PicðDredÞ½l� for

i ¼ 1. In fact, since H 2
�
Dred;Zlð1Þ

�
is torsion free, one has PicðDredÞ½l� ¼ Pic0ðDredÞ½l�,

where 0 means of degree 0 on each component Di. Furthermore, by definition, the mapL
i

Zl � ½Di� !
L
i

Zl � ½Di� is defined by ½Di� 7!
L
j

degODj
ðDiÞ. Since the intersection matrix

is definite, the map is injective, with finite torsion cokernel T. (This cokernel is 0 if and
only if the intersection matrix is unimodular.) Again by purity,

H 3
Dred

�
~XX ;Zlð1Þ

�
H

L
i

H 1ðD0
i ;ZlÞ where D0

i ¼ Din
S
j3i

Di XDj:

In particular, H 3
Dred

�
~XX ;Zlð1Þ

�
is torsion free. So we extract from (4.1) for any surface sin-

gularity the relations

H 1
�
~XX ;Zlð1Þ

�
! H 1

�
U ;Zlð1Þ

�
¼ PicðDredÞ½l� ¼ Pic0ðDredÞ½l�ð4:2Þ

and an exact sequence

0!T! H 2
�
U ;Zlð1Þ

�
! H 3

Dred

�
~XX ;Zlð1Þ

�
! 0ð4:3Þ

with finite T and torsion free H 3
Dred

�
~XX ;Zlð1Þ

�
. As Pic0ðDredÞ is a semiabelian variety, we

see that (4.2) implies that (1), (2) and (7) are equivalent conditions.

From the exact sequence

1! O�Dred
!

L
i

O�Di
!

L
i<j

k�DiXDj
! 1ð4:4Þ

one has that (6) and (7) are equivalent. Furthermore, from the structure of Picð ~XX Þ ex-
plained in section 3, one has that (5) is equivalent to (7).

We show that (2) is equivalent to (3). The condition (2) implies that H 1ðU ; mlnÞHT
for all nf 0, thus there are finitely many mln torsors on U . This shows (2) implies (3). On
the other hand, if Pic0ðDredÞ is not trivial, then PicðDredÞ½l� contains Zl. Thus H

1
�
U ;Zlð1Þ

�
contains Zl as well by (4.2). Thus (3) implies (2).

Since obviously (4) implies (3), it remains to see that (3) implies (4). We assume (3).
For any commutative finite k-group-scheme G, with Cartier dual G 0 ¼ HomðG;GmÞ, one
has the exact sequence

0! H 1ðX ;G 0Þ ! H 1ðU ;G 0Þ ! Hom
�
G;PicðUÞ

�
! 0:ð4:5Þ

(See [5], III, Théorème 4.1, and [5], III, Corollaire 4.9, for the 0 on the right, which we
will use only on the proof of Theorem 4.2, as k ¼ k.) We apply it for G ¼ Z=pn for some
n A Nnf0; 1g. Since PicðUÞ is an extension of a discrete (étale) group by Pic0ðUÞ which is a
smooth, connected, commutative unipotent algebraic group-scheme over k by (5), one has

Hom
�
mpn ;PicðUÞ

�
¼ 0. On the other hand, A ������!x 7! ðxpn�xÞ

A is surjective, as A is complete.
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Thus H 1ðU ;Z=pnÞ ¼ H 1ðX ;Z=pnÞ ¼ 0. This shows that (3) implies (4) and finishes the
proof of the theorem. r

Theorem 4.2. Let ðX ; xÞ be a surface singularity over an algebraically closed field k.

(1) If pN
locðU ;X ; xÞ is a finite group-scheme, ðX ; xÞ is a rational singularity, in particu-

lar the dualizing sheaf oU has finite order.

(2) If in addition, the order of oU is prime to p, then there is

�
h : V ! U ; pNðU ; xÞ; y

�
A ClocðU ; xÞ

such that the surface singularity ðY ; yÞ of the integral closure ~hh : Y ! X is a rational double

point.

(3) If pN
locðU ;X ; xÞ ¼ 0, then ðX ; xÞ is a rational double point.

Proof. We show (1). If pN
locðU ;X ; xÞ is a finite group-scheme, then, by Lemma 2.5,

the condition (3) of Theorem 4.1 is fulfilled, thus Pic0ð ~XXÞ ¼ Pic0ðUÞ is a smooth, connected
commutative unipotent algebraic group-scheme over k. We apply (4.5) to G ¼ Z=pn. If
Pic0ðUÞ is not trivial, then Hom

�
Z=pn;PicðUÞ

�
3 0 for all nf 0. Thus U admits nontrivial

mpn-torsors for all nf 1, which do not come from X . This contradicts the finiteness of
pN
locðU ;X ; xÞ. Thus Pic0ðUÞ ¼ Pic0ð ~XXÞ ¼ 0. We apply Lemma 3.1 to finish concluding

that ðX ; xÞ is a rational singularity. Again by Lemma 3.1, all line bundles on U , in parti-
cular the dualizing sheaf oU of U , is torsion. This proves (1).

We show (2). So there is an M A Nnf0g such that oM
U GOU . Choosing such a triv-

ialization yields an OU -algebra structure on A ¼
LM�1
0

o i
U and thus a flat nontrivial mM-

torsor h : V ¼ SpecOU
A! U . Since ðM; pÞ ¼ 1, h is étale, thus ðY ; yÞ is normal. In fact

one has Y ¼ SpecOX
B where B is the OX -algebra j�A, j : U HX . By duality theory,

h�oY ¼HomOX
ðh�OY ;oX ÞGOX

h�OY . Let y A Y be the closed point of Y . Thus ðY ; yÞ is
a Gorenstein normal surface singularity. On the other hand, since h is a mM -torsor, one
has pNðV ; yÞH pNðU ; xÞ, thus pN

locðV ;Y ; yÞH pN
locðU ;X ; xÞ, and therefore is a finite

k-group-scheme. Thus by (1) it is a rational singularity. Thus ðY ; yÞ is a Gorenstein ratio-
nal singularity, thus is a rational double point ([6]).

Now (3) follows directly from (2) as oU has then order 1. r

We now refer to [3], Section 3, for the notation, and we go to Artin’s list [3], Section
4/5, to conclude using Theorem 4.2 (3):

Corollary 4.3. If pN
locðU ;X ; xÞ ¼ 0, then X admits a finite morphism f : ÂA2 ! X.

The morphism f is the identity (i.e. ðX ; xÞ is smooth) except possibly in the cases:

(1) charðkÞ ¼ 2, E1
8 , E

3
8 ,

(2) charðkÞ ¼ 3, E1
8 .
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Remark 4.4. Aside of Artin’s classification used in Corollary 4.3, the only place
where Nori’s fundamental group is used in a non-commutative way is the proof of Theo-
rem 4.2 (2).

Acknowledgement. The first author thanks the referee for very friendly and useful
comments and corrections. At the Oberwolfach conference coorganized by Eckart end of
September 2009, Hélène lectured on stratified bundles and their relation to the étale funda-
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