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ON A RATIONALITY QUESTION IN THE GROTHENDIECK

RING OF VARIETIES

HÉLÈNE ESNAULT AND ECKART VIEHWEG

Abstract. We discuss elementary rationality questions in the Grothendieck
ring of varieties for the quotient of a finite dimensional vector space over a
characteristic 0 field by a finite group.

1. Introduction

Let k be a field. One defines the Grothendieck group of varieties K0(Vark) over

k [8, Definition 2.1] to be the free abelian group generated by k-schemes modulo
the subgroup spanned the scissor relations

[X] = [X \ Z] + [Z]

where Z ⊂ X is a closed subscheme. The product

[X ×k Y ] = [X] · [Y ]

for two k-schemes makes it a commutative ring, with unit 1 = [Speck]. As the
underlying topological space of the complement X \ Xred is empty, [X] = [Xred].
This justifies the terminology “varieties” rather than “schemes”.

In characteristic 0, first examples of 0-divisors in this ring were shown to exist
by Poonen [9]. He constructed two abelian varieties A,B over Q such that

0 = ([A] − [B]) · ([A] + [B]) ∈ K0(VarQ)

but with
[A ⊗Q k] 6= [B ⊗Q k] ∈ K0(Vark)

for all field extensions Q ↪→ k. The main tool to distinguish those two classes relies
ultimately on a deep insight in the structure of birational morphisms, gathered in
the Weak Factorization Theorem [1]. It implies both the presentation of K0(Vark)
as the free group generated by smooth projective varieties modulo the blow up

relation [2] and the isomorphism K0(Vark)/〈L〉
∼=−→ Z[SB] [5]. Here L is the class

of the affine line A1 over k, 〈L〉 is the ideal spanned by it, Z[SB] is the free abelian
group on stably birational classes of projective smooth k-varieties, endowed with
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the ring structure stemming from the product of varieties over k. So there are no
relations in Z[SB] and this allows to recognize certain classes. Of course this does
not help in understanding L, and the question whether or not L is a 0-divisor
remains open.

Later Kollár [4] used Z[SB] to distinguish in characteristic 0 the K0(Vark)-classes
of non-trivial Severi-Brauer varieties from trivial ones. Rökaeus [10] and Nicaise
[8], using in addition specialization of K0(Vark) from k to finite fields, studied
0-divisors which are classes of 0-dimensional varieties, in particular those of the
form SpecK for a non-trivial field extension of a number field k. This indicates
that one can not expect “descent”. For two k-varieties X and Y the equality

[X ×k SpecK] = [Y ×k SpecK] ∈ K0(VarK)

implies

[X] · [SpecK] = [Y ] · [SpecK] ∈ K0(Vark).

However, the relation [X] · [SpecK] = [Y ] · [SpecK] ∈ K0(Vark) does not imply
the equality [X] = [Y ] ∈ K0(Vark).

For applications of the Grothendieck ring, it is of importance to understand the
class of quotients [X/G] where X is a variety and G is a finite group acting on
it. In [6, Lemma 5.1], Looijenga shows that if k is an algebraically closed field
of characteristic 0, and if G is a finite abelian group acting linearly on a finite
dimensional k-vector space V , then

[V/G] = LdimkV ∈ K0(Vark).(1.1)

In fact the formula (1.1), as well as its proof, remain valid if k is any field of
characteristic 0 containing the |G|-th roots of 1. However the condition that G be
abelian is essential, as shown by Ekedahl. Indeed, [3, Proposition 3.1, ii)] together
with [3, Corollary 5.2] show that for G ⊂ GL(V ), V ∼= Cn as in Saltman’s

example [11], the class of limm→∞[V m/G]/Lnm in the completion ̂K0(VarC) of
K0(VarC)[L−1] by the dimension filtration, is not equal to 1. This implies in
particular that for m large enough, Lnm 6= [V m/G] ∈ K0(VarC).

In this note, we discuss possible simple generalizations of Looijenga’s formula in
various ways. Our first result is the following.

Lemma 1.1. Let G be a finite abelian group with quotient G → Γ. Let k be a

field of characteristic 0 and let K ⊃ k be an abelian Galois extension with Galois

group Γ. Assume, that the Galois action of Γ on K lifts to a k-linear action of

G on a finite dimensional K-vector space V . If, for N = exp(G), all N -th roots

of 1 lie in k, then (1.1) holds, i.e.

[V/G] = LdimKV ∈ K0(Vark).

The condition that k contains the N -th roots of 1 is really necessary. In
particular, if one allows the group G to act non-trivially on the ground field, the
equation (1.1) is not compatible with descent to smaller ground fields.
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Example 1.2. Assume k = Q, K = Q(
√
−1), V = K ⊗Q Q2, and let G be the

subgroup of the group of Q-linear automorphisms of V spanned by

σ =

(

1 0
0 −1

)

⊗
(

0 1
−1 0

)

where the chosen basis of K as a 2-dimensional vector space over Q is (1,
√
−1).

The group G is cyclic of order 4 and

L2 6= [V/G] ∈ K0(VarQ).

If G ⊂ GLk(V ) is a finite group acting linearly on a finite dimensional vec-
tor space V over a characteristic 0 field k, then G acts semi-simply. So as a
G-representation, V =

⊕

i Vi ⊗ Ti, where Vi is an irreducible representation with
HomG(Vi, Vj) = δij · k, and Ti is the trivial representation of dimension mi equal
to the multiplicity of Vi in V . If G is commutative of exponent N and if the
N -th roots of 1 lie in k, then di = dimkVi = 1. Since Vi/G is normal and one
dimensional, it is smooth. So the starting point of Looijenga’s proof of (1.1) is
the simple observation that there is a k-isomorphism Vi/G ∼= Vi of k-varieties.
The proof of (1.1) then proceeds by stratifying V .

For di ≥ 2, the quotient Vi/G might be singular, thus it can not be isomorphic
to Vi, not even over a field extension. Nevertheless, one can show that the for-
mula (1.1) remains true for irreducible two dimensional representations, or after
stratifying, whenever all the di are 1 or 2 and G is a prime power order cyclic
group.

Proposition 1.3. Let k be a field of characteristic 0 and let V be a finite di-

mensional k-vector space. Let G → GLk(V ) be a linear representation of a finite

abelian group.

1) If dimk V ≤ 2, then (1.1) holds true.

2) If G is cyclic of prime power order, and if each irreducible subrepresen-

tation Vi has dim(Vi) ≤ 2, then (1.1) holds true.

The main reason for the restriction to dim(Vi) ≤ 2 is that in this case P(Vi) ∼=
P1

k and hence P(Vi)/G ∼= P1
k as well. If V is an irreducible representation of

dimension d ≥ 3 a similar statement fails, and we were unable to prove the
equation (1.1).

2. Proof of Lemma 1.1

By assumption G ⊂ GLk(V ) lifts the action of the quotient Γ on K, hence
writing

1 −→ H −→ G
%−−→ Γ −→ 1,
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one has σ(λ · v) = γ(λ) · σ(v), for all σ ∈ G, γ = %(σ), for all λ ∈ K and for all
v ∈ V . In particular H is a subgroup of GLK(V ). This defines the fiber square

V/H

�

��

// SpecK

��

V/G // Speck.

(2.1)

By the rationality assumption, µN (k) ∼=k Z/N , for N = exp(G), and hence the

characters of G are k-rational. So writing Ĥ for the character group of H and
Vχ(H) for the eigenspace with respect to the character χ of H, one has a fortiori
the K-eigenspace decomposition

V =
⊕

χ∈Ĥ

Vχ(H).

Since G is commutative the subspace Vχ(H) of V is G-invariant.

Now on the geometric side, one proceeds as in Looijenga’s Bourbaki lecture [6,
Lemma 5.1]. Write

V =
∏

χ∈Ĥ

Vχ(H)

for the product as K-schemes. For {0} = SpecK one sets V ×
χ = Vχ(H) \{0} and

defines the stratification

V =
⊔

I⊂Ĥ

VI , with VI =
∏

χ∈I

V ×
χ .(2.2)

The product in (2.2) is defined over K. The Gm-fibration V ×
χ → P(Vχ(H)) is

the structure map of the geometric line bundle OP(Vχ(H))(−1), restricted to the
complement of the zero-section. It is defined over K and G-equivariant. The
subgroup H acts trivially on P(Vχ(H)) and by multiplication with χ on the
geometric fibres of V ×

χ → P(Vχ(H)).

So for I ⊂ Ĥ given, the K-morphism

VI →
∏

χ∈I

P(Vχ(H))

is a G-equivariant fibration, locally trivial for the Zariski topology. The fibres

are isomorphic to G
#I
m

∼=
∏

χ∈I Gm,χ, with Gm,χ
∼= Gm, hence

(2.3) [VI ] = [G#I
m ] ·

∏

χ∈I

[P
rχ

K ] in K0(VarK).

The action of H is trivial on
∏

χ∈I P(Vχ(H)) and on the factor Gm,χ of G
#I
m the

group H acts by multiplication with χ. One obtains an induced K-morphism

VI/H →
∏

χ∈I

P(Vχ(H))
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which is still a Zariski locally trivial fibration with fibre

(2.4) G#I
m

∼=
(

∏

χ∈I

Gm,χ

)

/H.

The G-action respects the decomposition VI =
∏

χ∈I Vχ(H) and on P(Vχ(H)), it

factors through Γ, that is one has a splitting of Aut(P(Vχ(H))/k) → Aut(K/k) =
Γ. This implies

(

∏

χ∈I

P(Vχ(H))
)

/G =
(

∏

χ∈I

P(Vχ(H))
)

/Γ

as well as

(P(Vχ(H))/Γ) ⊗k K = P(Vχ(H)).

From this one deduces
(

∏

χ∈I

P(Vχ(H))
)

/Γ =
(

∏

K,χ∈I

(

(P(Vχ(H))/Γ) ⊗k K
))

/Γ =

((

∏

k,χ∈I

(P(Vχ(H))/Γ)
)

⊗k K
)

/Γ =
∏

k,χ∈I

(P(Vχ(H))/Γ).

Here we underline by the lower indices K ,k where we took the fiber products.
Remark that P(Vχ(H))/Γ is a k-form of P

rχ

k for rχ = dimKVχ(H) − 1.

The fiber square (2.1) is the composite of two fibre squares

VI/H

�

��

//
∏

χ∈I P(Vχ(H))

�

��

// SpecK

��

VI/G //
∏

χ∈I

(

P(Vχ(H))/Γ
)

// Speck.

(2.5)

Claim 2.1. The k-form P(Vχ(H))/Γ of P
rχ

k is split, the k-morphism

VI/G →
∏

χ∈I

P(Vχ(H))/Γ

is a G
#I
m -fibration, locally trivial for the Zariski topology, and hence

[VI/G] = [G#I
m ] ·

∏

χ∈I

[P
rχ

k ] in K0(Vark).

Proof. By assumption k contains the N -th roots of 1 for N = exp(G) and hence

the characters χ ∈ Ĥ are defined over k.

Then Vχ(H), regarded as a k-vector space, has a G-eigenvector v. The line 〈v〉K
defines a point c ∈ P(Vχ(H))(K). Since the action of G on K(c) = K factors
through the Galois action of Γ on K(c), the image of c lies in (P(Vχ(H))/G)(k).

In addition, in (2.4) the action of H on
∏

χ∈I Gm,χ is given by multiplication with

χ, hence it is defined over k. Then
[
∏

χ∈I Gm,χ

]

/H is obtained by base extension

from a k-variety, isomorphic to G
#I
m .
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Using that the left hand side of (2.5) is a fibre product and that

VI/H →
∏

χ∈I

P(Vχ(H))

is Zariski locally trivial with fibre
[
∏

χ∈I Gm,χ

]

/H this implies the second asser-
tion in Claim 2.1. �

By (2.2) and (2.3) [V/G] =
∑

I⊂Ĥ

(

[G#I
m ] ·

∏

χ∈I

[P
rχ

k ]
)

.

This decomposition just depends on the dimensions rχ+1 of the subspaces Vχ(H).
So if Wχ denotes any k-vectorspace of this dimension and W =

⊕

χ∈Ĥ
Wχ, one

finds in K0(Vark)

LdimK V = Ldimk W =
∑

I⊂Ĥ

∏

χ∈I

[W×
χ ] =

∑

I⊂Ĥ

(

[G#I
m ] ·

∏

χ∈I

[P
rχ

k ]
)

= [V/G].

This finishes the proof of Lemma 1.1. �

3. Verification of the properties in Example 1.2

In the standard basis e1, e2 of Q2 and the basis (1,
√
−1) of K/Q, we write

σ : (x1 +
√
−1y1)e1 + (x2 +

√
−1y2)e2 7→ (−x1 +

√
−1y1)e2 + (x2 −

√
−1y2)e1.

As σ is Q-linear, it leaves the origin of V invariant, thus acts on V × = V \ {0}.
One has σ2 = −Id and this defines the extension

0 −→ H := 〈σ2〉 −→ G −→ Γ := 〈γ〉 −→ 0

with Γ = 〈γ〉 ∼= Z/2 = Aut(Q(
√
−1)/Q), and γ(

√
−1) = −

√
−1.

Thus one has the fiber square

V/H

�

��

// SpecK

��

V/G // Spec Q

The Gm-bundle V × → P1
K is compatible with the G-action. The subgroup H

acts trivially on P1
K while σ acts via

σ̄ : (x1 +
√
−1y1 : x2 +

√
−1y2) 7→ (x2 −

√
−1y2 : −x1 +

√
−1y1).

This yields the fiber squares

V ×/H

�

��

// P1
K

�

��

π

��

// SpecK

��

V ×/G // P1
K/G // SpecQ

Claim 3.1. P1
K/G is a genus 0 curve over Q without a rational point.
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Proof. Indeed, a rational point is a fixpoint of P1
K under σ̄. But the equation for

a fixpoint is precisely

x2
1 + y2

1 + x2
2 + y2

2 = 0, with (x1, x2, y1, y2) 6= (0, 0, 0, 0).

So over Q there are no solutions. �

Corollary 3.2. L2 6= [V/G] ∈ K0(VarQ).

Proof. The origin x1 = x2 = y1 = y2 = 0 in V is a fixpoint under G. Thus

[V/G] = [V ×/G] + [Spec Q].

On the other hand, as we have seen in Claim 2.1, V ×/G → P1
K/G is a locally

trivial Gm bundle.

Here the trivialization of can be written down explicitly: V × is the total space
of the Gm-bundle to the invertible sheaf OP1

K
(−1), while V ×/H → P1

K is the

total space of the Gm-bundle to the invertible sheaf OP1

K
(−2) = π∗L, where

L ∈ Pic(P1
K/G). So V ×/G → P1

K/G is the Gm-bundle to the invertible sheaf L.

One concludes

[V/G] − [SpecQ] = [V ×/G] = [Gm] · [P1
K/G] ∈ K0(VarQ).

On the other hand, one also has

L2 − [Spec Q] = [A2
Q \ {0}] = [Gm] · [P1

Q] ∈ K0(VarQ).

If [V/G] was equal to L2 in K0(VarQ), then one would have the relation [V ×/G] =
[A2

Q \ {0}] in K0(VarQ), thus the relation

Φ([V ×/G]) = −Φ([P1
K/G]) = Φ([A2

Q \ {0}]) = −Φ([P1
Q]) in Z[SB],

where Φ : K0(VarQ) → Z[SB] maps the class [X] of a smooth projective Q-variety
X to its stably birational equivalence class.

This however contradicts Claim 3.1, as the existence of a rational point is com-
patible with the stably birational equivalence on smooth projective varieties over
any infinite field k.

For sake of completeness let us recall the proof of this well known fact. If
τ : V 99K W is a birational map between two smooth projective varieties, and τ
is well defined near v ∈ V (k), then τ(v) is well defined and lies in W (k). Else one
blows up v. This yields an exceptional divisor PdimkV −1. Since τ is well defined
outside of codimension ≥ 2, and since k is infinite, there are rational points on
the exceptional divisor on which τ is defined and one repeats the argument. �

4. Proof of Proposition 1.3

We first show 1). If V has k-dimension ≤ 2, we write the G-equivariant strati-
fication V = {0}tV ×. Furthermore, the projection V × → P(V ) is G-equivariant
as well. Looijenga’s argument shows here

[V ×/G] = [Gm] · [P(V )/G] ∈ K0(Vark).
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On the other hand, either

P(V ) = Speck = P(V )/G or P(V )/G ∼=k P1
k
∼=k P(V ).

Adding up, one finds [V/G] = L2 ∈ K0(Vark).

We now show 2). Instead of the decomposition V =
⊕r

i=1 Vi ⊗ Ti of V as a
direct sum of irreducible G representations considered in the introduction, we
will drop the condition that HomG(Vi, Vj) = δij · k and choose a decomposition
V =

⊕m
i=1 Vi as a direct sum of irreducible representations. As usual we consider

V as a variety and write

(4.1) V =

m
∏

i=1

Vi.

The monodromy group, that is the image of G in GLk(V ), is still a p-order cyclic
group. So we may assume

(4.2) G ⊂ GLk(V )

in the discussion.

Claim 4.1. There is a direct factor Vi of (4.1) such that G ⊂ GLk(Vi).

Proof. Since a p-power order cyclic group G contains a unique p-order cyclic
subgroup C(G), if {1} 6= Ki := Ker

(

G → GLk(Vi)
)

then C(G) = C(Ki) ⊂ Ki.
We conclude by (4.2). �

We now change the notation: we set U = Vi and W =
⊕

j 6=i Vj with Vi

constructed in Claim 4.1. So V = U ⊕ W equivariantly. We assume that the
dimension of U is 2. If this is 1, the argument simplifies enormously and we don’t
detail. We define the G-equivariant stratifications

U = {0} t D× t U (2)(4.3)

V = ({0} ×k W ) t (D× ×k W ) t (U (2) ×k W ).

The strata are defined as follows. Write 〈σ〉 = G. Let F (T ) ∈ k[T ] be the minimal
polynomial of σ as a linear map on U . Since U is irreducible, F (T ) is also the
characteristic polynomial of σ on U . This defines the quadratic extension

(4.4) K = k[T ]/(F (T )).

The linear map σ ⊗ K ∈ GL(U ⊗ K) has two conjugate eigenlines and

D = {0} t D× ⊂ U

is the k-irreducible curve defined by the union of the two lines. Further

U (2) = U \ D.

By definition, G acts fixpoint free on U (2).

Claim 4.2. [(U (2) ×k W )/G] = [(U (2)/G) ×k W ] = [U (2)/G] · [W ] ∈ K0(Vark).
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Proof. One has the G-equivariant projection q : (U (2) ×k W )/G → U (2)/G. Since

G ⊂ GLk(U), for all points x ∈ U (2) with residue field κ(x) ⊃ k, one has
q−1(x) ∼=κ(x) W ⊗k κ(x). By construction, one has a fiber square

(4.5) U (2) ×k W

�

��

// (U (2) ×k W )/G

q

��

U (2) // U (2)/G.

Since U (2) → U (2)/G is étale, q defines a local system in H1
ét(U

(2)/G,GW ) where

GW is the image of G in GLk(W ). Then (U (2) ×k W )/G is the total space of the

torsor in H1
ét(U

(2)/G,GLk(W )) induced by GW ↪→ GLk(W ). By flat descent [7,
Lemma 4.10],

H1
ét(U

(2)/G,GLk(W )) = H1
Zar(U

(2)/G,GLk(W )).

Thus (U (2) ×k W )/G
q−→ U (2)/G, as the total space of a vector bundle, is Zariski

locally trivial. We conclude

[(U (2) ×k W )/G] = [U (2)/G] · [W ] ∈ K0(Vark).(4.6)

�

So using (4.3) and Claim 4.2, we see

(4.7) [V ] − [V/G] =
(

[W ] − [W/G]
)

+
(

[D× ×k W ] − [(D× ×k W )/G]
)

+ ([U (2)] − [U (2)/G]) · [W ].

The curve D× is k-irreducible, but splits over K. Therefore K ⊂ H0(D×,O) is
the algebraic closure of k and thus G acts on K.

Claim 4.3. The action of G on SpecK is trivial.

Proof. After the choice of a cyclic vector, σ is the matrix

(

0 1
b a

)

with a, b ∈ k.

The curve D× is k-affine. Its affine ring is

H0(D×,O) = k[X,Y,
1

X
]/〈f(X,Y )〉

where the homogeneous polynomial f(X,Y ) = Y 2 − aXY − bX2 defines the
irreducible polynomial F (T ) = T 2−aT −b yielding the k-quadratic extension K.
The inclusion of K ⊂ H0(D×,O) is k-linear and defined by T 7→ Y

X
. Furthermore,

σ(X) = Y, σ(Y ) = bX + aY , thus

σ(T ) =
σ(Y )

σ(X)
=

bX + aY

Y
=

b

T
+ a = T.

�
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We can now analyze the second difference in (4.7). One has the G-equivariant
fiber product

D× ×k W

�

��

// SpecK ×k W

��

D× // SpecK.

Since D× = SpecK ×k Gm, the morphism D× ×k W → SpecK ×k W is a G-
equivariant Zariski locally trivial Gm-fibration. We first deduce

[D× ×k W ] = [Gm] · [SpecK] · [W ].

From the induced fiber square

(D× ×k W )/G

�

��

// (SpecK ×k W )/G

��

(D×)/G // (SpecK)/G = SpecK

and (D×)/G = (SpecK ×k Gm)/G = SpecK ×k (Gm/G) = SpecK ×k Gm,
we deduce that (D× ×k W )/G → (SpecK ×k W )/G is a Zariski locally trivial
Gm-fibration, and thus

[(D× ×k W )/G] = [Gm] · [SpecK] · [W/G].

We conclude

(4.8) [D× ×k W ] − [(D× ×k W )/G] = [Gm] · [SpecK] ·
(

[W ] − [W/G]
)

.

We now analyze the third difference in (4.7). One has a G-equivariant projection
U× = U \ {0} → P(U). Here is D× the inverse image of a K-valued point
SpecK → P(U). On the complement, it yields the G-equivariant fibration U (2) →
P(U) \ SpecK, which is a Gm-bundle. So

[U (2)] = [Gm] · ([P(U)] − [SpecK]).

Since P(U)/G is k-isomorphic to P1
k, the group G acts trivially on SpecK, and

U (2)/G → (P(U) \ SpecK)/G is a Gm-bundle, one has

(4.9) [U (2)/G] = [Gm] · ([P(U)/G] − [SpecK]) =

[Gm] · ([P(U)] − [SpecK]) = [U (2)] ∈ K0(Vark).

Summing up, (4.7) reads

(4.10) [V ] − [V/G] =
(

1 + [Gm] · [SpecK]
)

· ([W ] − [W/G]).

Now W has one less irreducible factor than V . We argue by induction on the
number of irreducible factors, applying 1) to start the induction. This finishes
the proof. �
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