We make an erratum to the proof of Proposition 2.3. Recall the Proposition:

Proposition 1. Let X be a smooth connected projective variety defined over a perfect field of characteristic p > 0. Then for any stratified bundle $(E_n)_{n\geq 0}$, there is a $n_0 \in \mathbb{N}$ such that the stratified bundle $E(n_0) = (E_{n-n_0})_{n-n_0\geq 0,n\in\mathbb{N}}$ is a successive extension of stratified bundles $(U_n)_{n\in\mathbb{N}}$ with the property that all U_n for $n \in \mathbb{N}$ are μ -stable of slope 0. In particular, all U_n for $n \in \mathbb{N}$ are χ -stable bundles of Hilbert polynomial $p_{\mathcal{O}_X}$.

Proof. For each $n \ge 0$, we define the socle S_n of E_n (i.e. the maximal polystable subscheaf). The socle is never 0. We write the isotypical decomposition

$$S_n = \bigoplus_{i \in I_n} \left(V_n(i) \otimes T_n(i) \right)$$

where $V_n(i)$ is stable, not isomorphic to $V_n(j)$ for $i \neq j$, $T_n(i)$ is isomorphic to a direct sum of \mathcal{O}_X , I_n is the index set. Let t_n be the maximum rank of the $T_n(i)$ as *i* varies.

As $F^*V_n(i)$ lies in E_{n-1} , its socle lies in S_{n-1} . So it has the shape $\bigoplus_{\text{some } j \in I_{n-1}} V_{n-1}(j) \otimes T_{n,n-1}(j)$, where $T_{n,n-1}(j)$ is isomorphic to a direct sum of \mathcal{O}_X . So the socle of $F^*(V_n(i) \otimes T_n(i))$ has the shape $\bigoplus_{\text{some } j \in I_{n-1}} V_{n-1}(j) \otimes T_{n,n-1}(j) \otimes T_n(i)$. Thus one has

$$1\ldots \leq t_n \leq t_{n-1} \leq \ldots \leq t_0.$$

So there is a N such that the sequence $t_n, n \ge N$ is constant, equal to $t \ge 1$ say. We write T for the direct sum of t copies of \mathcal{O}_X .

We replace $(E_n)_{n\geq 0}$ by $(E_{n-N})_{n-N\geq 0}$. We write

$$S_n = \bigoplus_{i \in I(n)} (V_n(i) \otimes T) \oplus \bigoplus_j V_n(j) \otimes T_n(j)$$

where $I(n) \subset I_n$ is the subset of indices for which the rank of $T_n(i)$ is equal to t, so rank $T_n(j) < t$. Again the socle of $F^*(V_n(i) \otimes T)$ has the shape $\bigoplus_{\text{some } j \in I_{n-1}} V_{n-1}(j) \otimes T_{n,n-1}(j) \otimes T$. As t is maximal, the rank of $T_{n,n-1}(j)$ is 1. Also $V_{n-1}(j)$ can then not be one of the $V_{n-1}(j')$ in the decomposition $\bigoplus_{\text{some } j' \in I_{n-1}} V_{n-1}(j') \otimes T$ of $F^*(V_n(i') \otimes T)$ for $i \neq i'$. So the subset of I_{n-1} of indices j appearing in the decomposition of $F^*(V_n(i) \otimes T)$ lies in I(n-1) and moreover

$$1\ldots \le |I(n)| \le |I(n-1)| \le \ldots \le |I(0)|$$

where | | denotes the cardinality. So there is a N such that the sequence $|I(n)|, n \ge N$ is constant, equal to I say. So for $n \ge N$, the socle of

 $F^*(V_n(i) \otimes T)$ has to be one of the $V_{n-1}(j) \otimes T$. We replace $(E_n)_{n \ge 0}$ by $(E_{n-N})_{n-N \ge 0}$ and write

$$W_n = \bigoplus_{s=1}^I V_n(i_s) \otimes T \subset S_n$$

of rank w_n . So one has

$$1 \le w_0 \le \dots w_n \le w_{n+1} \le \dots \le r.$$

Thus there is a N such that the sequence $w_n, n \ge N$ is constant. This means that for $n \ge N$, $F^*W_{n+1} = W_n$. We replace $(E_n)_{n\ge 0}$ by $(E_{n-N})_{n-N\ge 0}$. For each isotypical component $V_n(i)$ of W_n , there is a isotypical component $V_{n+1}(j(n,i))$ of W_{n+1} such that $F^*V_{n+1}(j(n,i)) = V_n(i)$. Thus

$$W(i) := (V_0(i), V_1(j(0,i), V_2(j(1,j(0,i)), \dots)))$$

is a stratified subsheaf of $(E_n)_{n\geq 0}$, thus a stratified subbundle of $(E_n)_{n\geq 0}$. We define

$$U = (W_n)_{n>0} = (\bigoplus_{i=1}^{I} W(i)) \otimes T.$$

This is a sum of stratified subbundles, such that all the underlying sheaves are stable bundles.

To finish the proof, we argue by induction on the rank on E/W.

Hélène Esnault