# CONGRUENCE FOR RATIONAL POINTS OVER FINITE FIELDS AND CONIVEAU OVER LOCAL FIELDS

#### HÉLÈNE ESNAULT AND CHENYANG XU

ABSTRACT. If the  $\ell$ -adic cohomology of a projective smooth variety, defined over a local field K with finite residue field k, is supported in codimension  $\geq 1$ , then every model over the ring of integers of K has a k-rational point. For K a p-adic field, this is [10, Theorem 1.1]. If the model  $\mathcal{X}$  is regular, one has a congruence  $|\mathcal{X}(k)| \equiv 1$  modulo |k| for the number of k-rational points ([9, Theorem 1.1]). The congruence is violated if one drops the regularity assumption.

### 1. INTRODUCTION

Let X be a projective variety defined over a local field K with finite residue field  $k = \mathbb{F}_q$ . Let R be the ring of integers of K. A model of X/K is a flat projective morphism  $\mathcal{X} \to \operatorname{Spec}(R)$ , with  $\mathcal{X}$  an integral scheme, such that tensored with K over R, it coincides with  $X \to \operatorname{Spec}(K)$ . As in [9] and [10], we consider  $\ell$ -adic cohomology  $H^i(\bar{X})$  with  $\mathbb{Q}_{\ell}$ -coefficients. Recall briefly that one defines the first coniveau level

 $N^{1}H^{i}(\bar{X}) = \{ \alpha \in H^{i}(\bar{X}), \exists \text{ divisor } D \subset X \text{ s.t. } 0 = \alpha|_{X \setminus D} \in H^{i}(\overline{X \setminus D}) \}.$ 

As  $H^i(\bar{X})$  is a finite dimensional  $\mathbb{Q}_{\ell}$ -vector space, one has by localization

$$\exists D \subset X \text{ s.t. } N^1 H^i(\bar{X}) = \operatorname{Im} \left( H^i_{\bar{D}}(\bar{X}) \to H^i(\bar{X}) \right),$$

where  $D \subset X$  is a divisor. One says that  $H^i(\bar{X})$  is supported in codimension  $\geq 1$  if  $N^1H^i(\bar{X}) = H^i(\bar{X})$ . The purpose of this note is twofold. We show the following theorem.

**Theorem 1.1.** Let X be a smooth, projective, absolutely irreducible variety defined over a local field K with finite residue field k. Assume that  $\ell$ -adic cohomology  $H^i(\bar{X})$  is supported in codimension  $\geq 1$  for all  $i \geq 1$ . Let  $\mathcal{X}$  be a model of X over the ring of integers R of K. Then there is a projective surjective morphism  $\sigma: \mathcal{Y} \to \mathcal{X}$  of R-schemes such that

$$|\mathcal{Y}(k)| \equiv 1 \mod |k|.$$

In particular, any model  $\mathcal{X}/R$  of X/K has a k-rational point.

This generalizes [10, Theorem 1.1] where the theorem is proven under the assumption that K has characteristic 0. On the other hand, assuming that  $\mathcal{X}$  is regular, we showed in [9, Theorem 1.1] that the number of k-rational points  $|\mathcal{X}(k)|$ 

Date: June 9, 2007 and, in revised form, September 7, 2007.

<sup>2000</sup> Mathematics Subject Classification. Primary 14G15,14G05.

 $Key\ words\ and\ phrases.$  rational point, congruence, coniveau.

Partially supported by the DFG Leibniz Preis and the American Institute for Mathematics.

is congruent to 1 modulo |k|. It was in fact the way to show that k-rational points exist on  $\mathcal{X}$ , as surely |k|, being a p-power, where p is the characteristic of k, is > 1. We show that if we drop the regularity assumption, there are models which, according to Theorem 1.1, have a rational point, but do not satisfy the congruence.

**Theorem 1.2.** Let  $X_0 = \mathbb{P}^2$  over  $K_0 := \mathbb{Q}_p$  or  $\mathbb{F}_p((t))$ . Then there is a finite field extension  $K \supset K_0$ , which can be chosen to be unramified, and there is a normal model  $\mathcal{X}/R$  of  $X := X_0 \otimes_{K_0} K$ , such that  $|\mathcal{X}(k)|$  is not congruent to 1 modulo |k|.

The  $\ell$ -adic proof of Theorem 1.1 follows closely the one in unequal characteristic in [10, Theorem 1.1], and, in addition to Deligne's integrality theorem [7, Corollaire 5.5.3] and [9, Appendix] and purity [11], relies strongly on de Jong's alteration theorem as expressed in [6]. However, we have to replace the trace argument we used there by a more careful analysis of the Leray spectral sequence stemming from de Jong's construction. The construction of the examples in Theorem 1.2 uses Artin's contraction theorem as expressed in [1] and is somewhat inspired by Kollár's construction exposed in [4, Section 3.3].

Acknowledgements: We thank Johan de Jong for his interest, and Dan Abramovich for a careful reading which helped us clarifying the exposition.

### 2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.

Let K be a local field with finite residue field k. Let  $R \subset K$  be its valuation ring. Let  $\mathcal{X} \to \operatorname{Spec} R$  be a model of a projective variety  $X \to \operatorname{Spec} K$ . We do not assume here that X is absolutely irreducible, nor do we assume that X/K is smooth. Then by [6, Corollary 5.15], there is a diagram

and a finite group G acting on  $\mathcal{Z}$  over  $\mathcal{Y}$  with the properties

- (i)  $\mathcal{Z} \to \operatorname{Spec} R$  and  $\mathcal{Y} \to \operatorname{Spec} R$  are flat,
- (ii)  $\sigma$  is projective, surjective,  $K(\mathcal{X}) \subset K(\mathcal{Y})$  is a purely inseparable field extension,
- (iii)  $\mathcal{Y}$  is the quotient of  $\mathcal{Z}$  by G,
- (iv)  $\mathcal{Z}$  is regular.

We want to show that this  $\mathcal{Y}$  is a model satisfying the congruence  $|\mathcal{Y}(k)| \equiv 1$  modulo |k| of Theorem 1.1. Let us set

$$Y = \mathcal{Y} \otimes K, \ Z = \mathcal{Z} \otimes K.$$

The only difference from [10, (2.1)] is that  $K(\mathcal{X}) \subset K(\mathcal{Y})$  may be a purely inseparable extension rather than an isomorphism. Thus, the argument there breaks down as one does not have traces as in [10, (2.3), (2.4)]. We do not have [10, (2.5)] a priori, and we can not conclude [10, Claim 2.1].

Let us overtake the notations of *loc. cit.*: we endow all schemes considered (which are *R*-schemes) with the upper subscript <sup>*u*</sup> to indicate the base change  $\otimes_R R^u$  or  $\otimes_K K^u$ , where  $K^u \supset K$  is the maximal unramified extension, and  $R^u \supset R$  is

the normalization of R in  $K^u$ . Likewise, we write  $\overline{?}$  to indicate the base change  $\otimes_R \overline{R}, \otimes_K \overline{K}, \otimes_k \overline{k}$ , where  $\overline{K} \supset K, \ \overline{k} \supset k$  are the algebraic closures and  $\overline{R} \supset R$  is the normalization of R in  $\overline{K}$ . We consider as in [9, (2.1)] the *F*-equivariant exact sequence ([8, 3.6(6)])

(2.2) 
$$\ldots \to H^i_{\bar{B}}(\mathcal{Y}^u) \xrightarrow{\iota} H^i(\bar{B}) = H^i(\mathcal{Y}^u) \xrightarrow{sp^u} H^i(Y^u) \to \ldots,$$

where  $F \in \text{Gal}(\bar{k}/k)$  is the geometric Frobenius, and  $B = \mathcal{Y} \otimes k$ . We have [10, Claim 2.2] unchanged:

**Claim 2.1.** The eigenvalues of the geometric Frobenius  $F \in \text{Gal}(\bar{k}/k)$  acting on  $H^i_{\bar{B}}(\mathcal{Y}^u)$ , thus a fortiori on  $\iota(H^i_{\bar{B}}(\mathcal{Y}^u)) \subset H^i(\bar{B})$ , lie in  $q \cdot \bar{\mathbb{Z}}$  for all  $i \geq 1$ .

Proof. For sake of completeness, we reproduce the proof of [9, Theorem 2.2], which is itself derived from [10, Claim 2.2]. By (iii), one has  $H^i_{\overline{B}}(\mathcal{Y}^u) = H^i_{\overline{C}}(\mathcal{Z}^u)^G \subset$  $H^i_{\overline{C}}(\mathcal{Z}^u)$ , where  $C = \pi^{-1}(B)$ . By (iv),  $\mathcal{Z}$  is regular. Thus  $\mathcal{Z}^u$ , being the base change of  $\mathcal{Z}$  by the unramified extension  $R^u \supset R$ , is regular as well. So it is enough to show that the eigenvalues of F acting on  $H^i_{\overline{C}}(\mathcal{Z}^u)$  lie in  $q \cdot \overline{\mathbb{Z}}$  for all  $i \ge 1$ , where now the scheme  $\mathcal{Z}^u$  is regular and C has codimension  $\ge 1$ . Let  $C^0 \subset C$  be the smooth locus of C, let  $C^1 \subset C \setminus C^0$  be the smooth locus of  $C^0$  etc. Then  $\overline{C}^i$  is smooth. Using localization

$$\ldots \to H^i_{\bar{C}^1}(\mathcal{Z}^u) \to H^i_{\bar{C}}(\mathcal{Z}^u) \to H^i_{\bar{C}^0}(\mathcal{Z}^u \setminus \bar{C}^1) \to \ldots$$

and purity  $H^{i-2}(\bar{C}^0)(-1) \cong H^i_{\bar{C}^0}(\mathcal{Z}^u \setminus \bar{C}^1)$  ([11, Theorem 2.1.1]) etc., one reduces the problem to integrality of the eigenvalues of F acting on  $H^j(\bar{D})$  for any smooth variety D defined over k and any  $j \ge 1$ . One applies then Deligne's integrality theorem [7, Lemme 5.5.3 iii)] and duality on D or directly [9, Appendix, Corollary 0.4].

So the problem is to show that the eigenvalues of F acting on  $\operatorname{Im}(sp^u) \subset H^i(Y^u)$ lie in  $q \cdot \overline{\mathbb{Z}}$  as well. One has the following claim.

**Claim 2.2.** The eigenvalues of the geometric Frobenius  $F \in \text{Gal}(\bar{k}/k)$  acting on  $H^i(Y^u)$ , and therefore on  $\text{Im}(sp^u) \subset H^i(Y^u)$ , lie in  $q \cdot \bar{\mathbb{Z}}$  for all  $i \geq 1$ .

*Proof.* Let us decompose the morphism  $\sigma$  as

(2.3) 
$$\sigma: Y \xrightarrow{\tau} X_1 \xrightarrow{\epsilon} X$$

where  $X_1$  is the normalization of X in K(Y). Thus in particular,  $\tau$  is birational,  $\epsilon$  is finite and purely inseparable. Let us denote by  $U \subset X$  a non-empty open such that  $\tau|_{\epsilon^{-1}(U)} : \tau^{-1}\epsilon^{-1}(U) \to \epsilon^{-1}(U)$  is an isomorphism, and let us set  $D := X \setminus U$ . We define

(2.4) 
$$\mathcal{C} := \operatorname{cone}(\mathbb{Q}_{\ell} \to R\tau_*\mathbb{Q}_{\ell})[-1]$$

as an object in the bounded derived category of  $\mathbb{Q}_{\ell}$ -constructible sheaves on  $X_1$ . Since  $\tau_*\mathbb{Q}_{\ell} = \mathbb{Q}_{\ell}$ , the cohomology sheaves of  $\mathcal{C}$  are in degree  $\geq 1$ , and have support in  $D_1 := D \times_X X_1$ . We conclude

(2.5) 
$$H^{i}_{D^{u}_{t}}(X^{u}_{1}, \mathcal{C}) = H^{i}(X^{u}_{1}, \mathcal{C}) \ \forall i \geq 0.$$

One has the commutative diagram of exact sequences

. . .

$$(2.6) \qquad \begin{array}{c} H_{D_{1}^{u}}^{i+1}(X_{1}^{u}) \\ & \uparrow \\ & & \uparrow \\ H_{D_{1}^{u}}^{i}(X_{1}^{u},\mathcal{C}) \xrightarrow{=(2.5)} H^{i}(X_{1}^{u},\mathcal{C}) \\ & & \uparrow \\ & & \uparrow \\ H_{E^{u}}^{i}(Y^{u}) \longrightarrow H^{i}(Y^{u}) \\ & & \uparrow \\ & & & \uparrow \\ H_{D_{1}^{u}}^{i}(X_{1}^{u}) \longrightarrow H^{i}(X_{1}^{u}) \end{array}$$

where  $E = \sigma^{-1}(D)$ . So to show the claim, via the right vertical exact sequence, it is enough to show that the eigenvalues of F acting on  $H^i(X_1^u)$  and on  $H^i(X_1^u, \mathcal{C})$  lie in  $q \cdot \overline{\mathbb{Z}}$ . This is true on  $H^i(X_1^u)$  by [9, Theorem 1.5 and Appendix]. For  $H^i(X_1^u, \mathcal{C})$ , via the left vertical exact sequence, it is enough to show that the eigenvalues of Facting on  $H^i_{E^u}(Y^u)$  and on  $H^{i+1}_{D^u}(X_1^u)$  lie in  $q \cdot \overline{\mathbb{Z}}$ . Writing  $H^i_{E^u}(Y^u) = H^i_{L^u}(Z^u)^G$ where  $L = D \times_X Z$ , one is reduced to showing that the eigenvalues of F acting on  $H^j_{V^u}(W^u)$  lie in  $q \cdot \overline{\mathbb{Z}}$  for W a regular K-scheme and  $V \subset W$  a closed K-subscheme of codimension  $c \ge 1$ . If V is regular, one applies purity  $H^{j-2c}(V^u)(-c) \cong H^j_{V^u}(W^u)$ again, and one is reduced to showing that the eigenvalues of F acting on  $H^i(V^u)$ lie in  $\overline{\mathbb{Z}}$  for all  $i \ge 0$ . One applies [9, Appendix, Corollary 0.3]. If V is not regular, one writes the F-equivariant exact sequence  $\ldots \to H^i_{(V^1)^u}(W^u) \to H^i_{V^u}(W^u) \to$  $H^i_{(V^0)^u}((W^0)^u) \to \ldots$ , where  $V^0 \subset V$  is the regular locus,  $W^0 = W \setminus V^1$ ,  $V^1 =$  $V \setminus V^0$  and one argues inductively as in the proof of Claim 2.1.

We conclude now the proof of Theorem 1.1: all the eigenvalues of F acting on  $H^i(\bar{B})$  lie in  $q \cdot \bar{\mathbb{Z}}$  for  $i \geq 1$ , thus the Grothendieck-Lefschetz trace formula applied to  $H^*(\bar{B})$ , together with the absolute connectedness of B, which follows from the absolute irreducibility of Y, imply the congruence. This finishes the proof of Theorem 1.1. To summarize:  $\mathcal{Z}$  of course has a complicated cohomology as the covering  $\mathcal{Z} \to \mathcal{Y}$  might be non-trivial, while  $\mathcal{Y}$  is cohomologically the same as  $\mathcal{X}$ and is nearly regular as a quotient of  $\mathcal{Z}$ .

#### 3. Construction of examples

This section is devoted to the proof of Theorem 1.2.

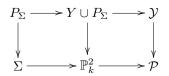
Let us first recall that if E is a smooth genus 1 curve over a finite field  $\mathbb{F}_q$ , it is always an elliptic curve, which means that it always carries a  $\mathbb{F}_q$ -rational point. Furthermore one has

**Claim 3.1.** Given an elliptic curve  $E/\mathbb{F}_q$ , there is a finite field extension  $\mathbb{F}_{q^n} \supset \mathbb{F}_q$  such that  $|E(\mathbb{F}_{q^n})|$  is not congruent to 1 modulo  $q^n$ .

*Proof.* By the trace formula,  $|E(\mathbb{F}_{q^n})|$  being congruent to 1 modulo  $q^n$  for all  $n \ge 1$  is equivalent to saying that the eigenvalues of  $F^n$  acting on  $H^i(\bar{E})$  lie in  $q^n \cdot \bar{\mathbb{Z}}$  for all  $n \ge 1$  and  $i \ge 1$ . By purity (which in dimension 1 is Weil's theorem), this is

equivalent to saying that the eigenvalues of  $F^n$  acting on  $H^1(\overline{E})$  lie in  $q^n \cdot \overline{\mathbb{Z}}$  for all  $n \geq 1$ . On the other hand, by duality, if  $\lambda$  is an eigenvalue, then  $\frac{q^n}{\lambda}$  is also an eigenvalue. It is then impossible that both  $\lambda$  and  $\frac{q^n}{\lambda}$  be  $q^n$ -divisible as algebraic integers.

We now construct the following scheme. Let us set  $\mathcal{P}_0 := \mathbb{P}^2$  over  $R_0 := \mathbb{Z}_p$  or over  $\mathbb{F}_p[[t]]$ . Choose an elliptic curve  $E_0 \subset \mathcal{P}_0 \otimes \mathbb{F}_p = \mathbb{P}_{\mathbb{F}_p}^2$  defined over  $\mathbb{F}_p$ . Let  $k \supset \mathbb{F}_p$  be a finite field extension such that  $|E_0(k)|$  is not k-divisible (Claim 3.1). Set  $E := E_0 \otimes_{\mathbb{F}_p} k$ ,  $\mathcal{P} := \mathcal{P}_0 \otimes_{R_0} R$ , with R = W(k) or  $\mathbb{F}_q[[t]]$ , and  $K = \operatorname{Frac}(R)$ . Choose a smooth projective curve  $\mathcal{C} \subset \mathcal{P}$  over R, of degree  $\geq 4$ , such that  $C := \mathcal{C} \otimes k$ is transversal to E. Define  $\Sigma = E \cap C \subset E$  to be the 0-dimensional intersection subscheme. It has degree  $\geq 12$ , thus in particular > 9. Let  $b : \mathcal{Y} \to \mathcal{P}$  be the blow up of  $\Sigma \subset \mathcal{P}$ . We denote by  $P_{\Sigma}$  the exceptional locus, which is a trivial  $\mathbb{P}^2$  bundle over  $\Sigma$ , by Y the strict transform of  $\mathbb{P}_k^2$ , and we still denote by  $E \subset Y$  the strict transform of the elliptic curve. So one has the following diagram:



Then the conormal bundle  $N_{E/\mathcal{Y}}^{\vee}$  of E in  $\mathcal{Y}$  is an extension of the conormal bundle  $N_{E/Y}^{\vee}$  of E in Y by the restriction to E of the conormal bundle  $N_{Y/\mathcal{Y}}^{\vee}$  of Yin  $\mathcal{Y}$ , both ample line bundles on E by the condition on the degree of  $\Sigma$ .

Let  $I \subset \mathcal{O}_{\mathcal{Y}}$  be the ideal sheaf of E. For a coherent sheaf  $\mathcal{F}$  on  $\mathcal{Y}$ , we denote by  $I^n/I^{n+1} \cdot \mathcal{F}$  the image of  $I^n/I^{n+1} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{F}$  in  $\mathcal{F}$ , where  $n \in \mathbb{N}$ .

**Claim 3.2.** For every coherent sheaf  $\mathcal{F}$  on  $\mathcal{Y}$ , one has  $H^1(E, I^n/I^{n+1} \cdot \mathcal{F}) = 0$  for all  $n \in \mathbb{N}$  large enough.

*Proof.* As by definition one has a surjection  $I^n/I^{n+1} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{F} \to I^n/I^{n+1} \cdot \mathcal{F}$ , it is enough to show  $H^1(E, I^n/I^{n+1} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{F}) = 0$  for n large enough. As  $I^n/I^{n+1}$  is locally free,  $I^n/I^{n+1} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{F}$  is an extension of  $I^n/I^{n+1} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{F}_0$  by  $I^n/I^{n+1} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{T}$ , where  $\mathcal{T} \subset \mathcal{F}$  is the maximal torsion subsheaf and  $\mathcal{F}_0 = \mathcal{F}/\mathcal{T}$  is locally free. As  $H^1(E, I^n/I^{n+1} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{T}) = 0$ , we may assume that  $\mathcal{F}$  is locally free. As  $I^n/I^{n+1}$  is a locally free filtered sheaf, with associated graded a sum of ample line bundles of strictly increasing degree as n grows, we have  $H^1(E, \operatorname{gr}(I^n/I^{n+1}) \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{F}) = 0$  for n large enough, and thus  $H^1(E, I^n/I^{n+1} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{F}) = 0$  as well.

Artin's contraction criterion [1, Theorem 6.2] applied to  $E \to \text{Spec}(k)$ , together with Artin's existence theorem [1, Theorem 3.1] show the existence of a contraction

$$(3.1) a_1: \mathcal{Y} \to \mathcal{X}_1$$

where  $\mathcal{X}_1$  is an algebraic space over R,  $a_1|_{\mathcal{Y}\setminus E}$  is an isomorphism and  $a_1(E) =$ Spec(k). Let  $\mathcal{X} \xrightarrow{\nu} \mathcal{X}_1$  be the normalization of  $\mathcal{X}_1$  in  $K(\mathcal{Y}) = K(\mathcal{P})$ . This is a normal algebraic space over R. One has a diagram

(3.2) 
$$\begin{array}{c} \mathcal{Y} \xrightarrow{a_1} \mathcal{X} \xrightarrow{\nu} \mathcal{X}_1 \\ \downarrow \\ \mathcal{P} \end{array}$$

Claim 3.3.  $|\mathcal{X}(k)|$  is not congruent to 1 modulo |k|.

*Proof.* Recall  $a_1(E)$  is a rational point of  $\mathcal{X}_1$ . By [9, Theorem 1.1] (or by a simple computation in this case),  $|\mathcal{Y}(k)|$  is congruent to 1 modulo |k|. By Claim 3.1 and the choice of E,  $|\mathcal{X}_1(k)|$  is not congruent to 1 modulo |k|. On the other hand, as the fibers of  $a_1$  are absolutely irreducible,  $\nu$  has to be a homeomorphism. Thus  $|\mathcal{X}(k)| = |\mathcal{X}_1(k)|$ . This finishes the proof.

In order to finish the proof of Theorem 1.2, it remains to show

Claim 3.4.  $\mathcal{X} \to \operatorname{Spec}(R)$  is a model of  $X = \mathbb{P}^2/K$ .

Proof. We have to show that  $\mathcal{X} \to \operatorname{Spec}(R)$  is a flat projective morphism. Since  $\mathcal{X}$  is integral,  $\operatorname{Spec}(R)$  is regular of dimension 1, then [12, IV Proposition 14.3.8] allows to conclude that  $\mathcal{X}/R$  is flat. Thus we just have to show that  $\mathcal{X}/R$  is projective. To this aim, we want a line bundle to descend from  $\mathcal{Y}$  to an ample line bundle on  $\mathcal{X}$ . Recall  $P_{\Sigma} = b^{-1}(\Sigma)$ . Let us define the line bundle  $\mathcal{M} := b^* \mathcal{O}_{\mathcal{P}}(\mathcal{C})(-P_{\Sigma})$  on  $\mathcal{Y}$ . By definition, one has

$$(3.3)\qquad\qquad\qquad\mathcal{M}|_E\cong\mathcal{O}_E.$$

**Claim 3.5.** The line bundle  $\mathcal{M}$  descends to  $\mathcal{X}$ , that is there is a line bundle  $\mathcal{L}$  on  $\mathcal{X}$  with  $a^*\mathcal{L} = \mathcal{M}$ .

Proof of Claim 3.5. The proper morphism of algebraic spaces  $a: \mathcal{Y} \to \mathcal{X}$ , with  $a_*\mathcal{O}_{\mathcal{Y}} = \mathcal{O}_{\mathcal{X}}$ , has the property that  $a^{-1}a(E) = E$  set-theoritically, that  $a|_{\mathcal{Y}\setminus E} : \mathcal{Y}\setminus E \to \mathcal{X}\setminus a(E)$  is an isomorphism, and that  $H^1(E, I^n/I^{n+1}) = 0$  for  $n \geq 1$ . So Keel's theorem [13, Lemma 1.10] asserts that some positive power  $\mathcal{M}^{\otimes r}$  descends to  $\mathcal{X}$  if the following condition is fulfilled

(3.4) 
$$\forall m > 0, \exists r(m) > 0 \text{ s.t } \mathcal{M}^{\otimes r(m)}|_{E_m} \text{ descends to } a(E_m)$$
  
where  $E_m := \operatorname{Spec}(\mathcal{O}_{\mathcal{V}}/I^{m+1}).$ 

So we just have to check that (3.4) is fulfilled with r = 1 in our situation. The scheme  $a(E_m)$  has Krull dimension 0. Thus by Hilbert 90's theorem (see e.g. [14, Corollary 11.6]) one has

We conclude that to check (3.4) is equivalent to checking that  $\mathcal{M}^{\otimes r(m)}|_{E_m} \cong \mathcal{O}_{E_m}$ for some positive power r(m). In fact one has

(3.6) 
$$\mathcal{M}|_{E_m} \cong \mathcal{O}_{E_m} \ \forall m \ge 1.$$

For m = 1, this is (3.3). We argue by induction and assume that for m > 1, we have a trivializing section  $s_m : \mathcal{O}_{E_m} \xrightarrow{\cong} \mathcal{M}|_{E_m}$ . We want to show that it lifts to a

trivializing section  $s_{m+1} : \mathcal{O}_{E_{m+1}} \xrightarrow{\cong} \mathcal{M}|_{E_{m+1}}$ . One has an exact sequence

(3.7) 
$$0 \to I^{m+1}/I^{m+2} \to \mathcal{M}|_{E_{m+1}} \to \mathcal{M}|_{E_m} \to 0.$$

Since  $H^1(E, I^{m+1}/I^{m+2}) = 0$ , as  $m \ge 0$ , the trivializing section of  $s_m : \mathcal{O}_{E_m} \xrightarrow{\cong} \mathcal{M}|_{E_m}$  lifts to a section  $s_{m+1} : \mathcal{O}_{E_{m+1}} \to \mathcal{M}|_{E_{m+1}}$ , and likewise, its inverse  $t_m : \mathcal{M}|_{E_m} \xrightarrow{\cong} \mathcal{O}_{E_m}$  lifts to  $t_{m+1} : \mathcal{M}|_{E_{m+1}} \to \mathcal{O}_{E_{m+1}}$ . The composite  $t_{m+1} \circ s_{m+1} : \mathcal{O}_{E_{m+1}} \to \mathcal{O}_{E_{m+1}}$  lifts the identity of  $\mathcal{O}_{E_m}$ . Therefore it is invertible. This shows that  $s_{m+1}$  trivializes. The proof of Keel's theorem (see (2) after [13, (1.10.1)]) shows then that one can take r = 1.

In order the finish the proof of Claim 3.4, it remains to see that  $\mathcal{L}$  on  $\mathcal{X}$  is ample. We first show the following claim.

**Claim 3.6.**  $\mathcal{L}|_{\mathcal{X}\otimes k}$  is an ample line bundle on  $\mathcal{X}\otimes k$ .

Proof. We first show that  $\mathcal{M}|_{\mathcal{Y}\otimes k}$  is nef and big. In fact, we prove a more precise property: for any irreducible curve  $\Gamma$  on  $\mathcal{Y} \otimes k$ , one has  $\mathcal{M}|_{\mathcal{Y}\otimes k} \cdot \Gamma \geq 0$ , and the equality holds if and only if  $\Gamma = E$ . By construction,  $\mathcal{Y} \otimes k = P_{\Sigma} \cup Y$  and each component over  $\bar{k}$  of  $P_{\Sigma}$  is isomorphic to  $\mathbb{P}^2_{\bar{k}}$ . Since the restriction of  $\mathcal{M}$  on every component of  $P_{\Sigma}$  is isomorphic to  $\mathcal{O}(1)$ , we can assume  $\Gamma \subset Y$ . The embedding  $E \subset Y$  is a section of the line bundle  $b|_Y^* \mathcal{O}(3)(-E_{\Sigma})$ , where  $E_{\Sigma} = P_{\Sigma} \cap Y$ . There is also a large enough n, such that  $H = b|_Y^* \mathcal{O}(n)(-E_{\Sigma})$  is ample. So  $\mathcal{M}|_Y =$  $b|_Y^* \mathcal{O}(C)(-E_{\Sigma}) \equiv_{\mathbb{Q}} e_0 E + e_1 H$ , where  $0 < e_0, e_1 < 1$  and  $e_0 + e_1 = 1$ . From this, we easily see that  $\mathcal{M}|_Y \cdot \Gamma > 0$ , when  $\Gamma \subset Y$  and  $\Gamma \neq E$ . And the above argument also shows the bigness of  $\mathcal{M}|_{\mathcal{Y}\otimes k}$ : on  $P_{\Sigma}$ , it is ample; and on Y, it is a convex combination of an effective divisor and of an ample divisor.

Since  $a^*(\mathcal{L}) = \mathcal{M}$ , the nefness and bigness of  $\mathcal{M}|_{\mathcal{Y}\otimes k}$  imply that the same properties hold for  $\mathcal{L}|_{\mathcal{X}\otimes k}$ . So  $\mathcal{L}|_{\mathcal{X}\otimes k}$  is semiample by [13, Corollary 0.3]. Furthermore, the more precise property we proved above for  $\mathcal{M}|_{\mathcal{Y}\otimes k}$  implies the intersection of  $\mathcal{L}|_{\mathcal{X}\otimes k}$  with any curve on  $\mathcal{X}\otimes k$  is positive, thus we conclude  $\mathcal{L}|_{\mathcal{X}\otimes k}$  is ample.  $\Box$ 

So by Serre vanishing theorem, for sufficiently large m,  $H^1(\mathcal{X} \otimes k, \mathcal{L}|_{\mathcal{X} \otimes k}^{\otimes m}) = 0$ . Base change implies  $H^1(\mathcal{X}, \mathcal{L}^{\otimes m}) \otimes k = 0$  ([12, III Theorem 7.7.5]), thus by Nakayama's lemma, one has

(3.8) 
$$H^1(\mathcal{X}, \mathcal{L}^{\otimes m}) = 0$$
 for *m* large enough.

As  $\mathcal{L}$  is invertible, multiplication  $\mathcal{L}^{\otimes m} \xrightarrow{\pi} \mathcal{L}^{\otimes m}$  by the uniformizer  $\pi$  is injective, with quotient  $\mathcal{L}|_{\mathcal{X}\otimes k}^{\otimes m}$ . Thus (3.8) implies surjectivity  $H^0(\mathcal{X}, \mathcal{L}^{\otimes m}) \to H^0(\mathcal{X} \otimes k, \mathcal{L}|_{\mathcal{X}\otimes k}^{\otimes m})$  for m large enough. Thus  $H^0(\mathcal{X}, \mathcal{L}^{\otimes m})$  is a free R-module, and the linear system  $H^0(\mathcal{X}, \mathcal{L}^{\otimes m})$  maps without base points  $\mathcal{X}$  to  $\mathbb{P}^N_R$ , with  $N + 1 = \operatorname{rank}_R H^0(\mathcal{X}, \mathcal{L}^{\otimes m})$ . As it embeds  $\mathcal{X} \otimes k$ , it embeds  $\mathcal{X}$  as well. This finishes the proof.

## 4. Remarks

**Remark 4.1.** In Theorem 1.1, if X/K has dimension 1, which means concretely if  $X/K = \mathbb{P}^1/K$ , then any normal model  $\mathcal{X}/R$  satisfies the congruence  $|\mathcal{X}(k)| \equiv 1$  modulo |k|. Thus the examples of Theorem 1.2 have the smallest possible dimension.

*Proof.* Indeed, using (2.1), the only thing to check is that  $H^1(\bar{A})$ , which is equal to  $H^1(\mathcal{X}^u)$ , injects via  $\sigma^*$  into  $H^1(\bar{B}) = H^1(\mathcal{Y}^u)$ . Here  $A := \mathcal{X} \otimes_R k$ . Let us denote by  $\mathcal{X}'$  the normalization of  $\mathcal{X}$  in  $K(\mathcal{Y})$ , with factorization

(4.1) 
$$\mathcal{Y} \xrightarrow[\sigma']{} \mathcal{X}' \xrightarrow{\nu} \mathcal{X}$$

and set  $A' := A \times_{\mathcal{X}} \mathcal{X}'$ . Then  $\sigma'$  induces an isomorphism  $K(\mathcal{X}') \xrightarrow{\cong} K(\mathcal{Y})$ . Furthermore,  $\mathcal{X}' \xrightarrow{\nu} \mathcal{X}$  and and  $A' \xrightarrow{\nu|_A} A$  are homeomorphisms. Thus  $H^1(\mathcal{X}^u) = H^1(\bar{A}) \xrightarrow{\nu^*} H^1((\mathcal{X}')^u) = H^1(\bar{A}')$  is an isomorphism. On the other hand, since  $\sigma'_* \mathbb{Q}_\ell = \mathbb{Q}_\ell$ , the Leray spectral sequence for  $\sigma'$  applied to  $H^1(\mathcal{Y}^u)$  yields an inclusion  $H^1((\mathcal{X}')^u) = H^1(\bar{A}') \xrightarrow{\text{inj}} H^1(\mathcal{Y}^u) = H^1(\bar{B})$ . This finishes the proof.  $\Box$ 

**Remark 4.2.** We generalize Remark 4.1 to the higher dimensional case in the following form. Let X be a smooth projective variety defined over K and let  $\mathcal{X}/R$  be a model over R. Let us use the notations of (2.1). We set  $A = \mathcal{X} \otimes_R k$ ,  $B = \mathcal{Y} \otimes_R k$ . If the assumptions of Theorem 1.1 are fulfilled, that is if  $\ell$ -adic cohomology  $H^i(\bar{X})$  is supported in codimension  $\geq 1$  for all  $i \geq 1$ , and if in addition

(4.2) 
$$\sigma^*: H^i(\mathcal{X}^u) = H^i(\bar{A}) \to H^i(\mathcal{Y}^u) = H^i(\bar{B})$$

is injective for all  $i \ge 0$ , then one has

$$(4.3) |\mathcal{X}(k)| \equiv 1 \text{ modulo } |k|.$$

Indeed, the exact sequence (2.2) together with Claim 2.1 and Claim 2.2 show that under the assumptions of Theorem 1.1 one has

(4.4) eigenvalues of 
$$F$$
 acting on  $H^i(B) \in q \cdot \mathbb{Z} \ \forall i \ge 1$ .

As  $\sigma^*$  in (4.2) is equivariant (which of course we used already in the proof of Theorem 1.1), we conclude

(4.5) eigenvalues of 
$$F$$
 acting on  $H^i(\bar{A}) \in q \cdot \bar{\mathbb{Z}} \quad \forall i \ge 1$ 

Since  $H^i(\mathcal{Y}^u) = H^i(\mathcal{Z}^u)^G \subset H^i(\mathcal{Z}^u)$ , injectivity of  $\sigma^*$  in (4.2) is equivalent to injectivity of

(4.6) 
$$\tau^* \circ \sigma^* : H^i(\mathcal{X}^u) \to H^i(\mathcal{Z}^u).$$

One may ask the following question:

Question 4.3. Let  $\mathcal{X}$  be an integral *R*-scheme. What are the type of singularities of  $\mathcal{X}$  which force the following: for any alteration  $\pi : \mathcal{Y} \to \mathcal{X}$  in the sense of de Jong, that is  $\pi$  is proper, dominant with  $K(\mathcal{X}) \subset K(\mathcal{Y})$  finite, and with  $\mathcal{Y}$  regular, one has that the induced map  $\pi^* : H^i_c(\mathcal{X}) \to H^i_c(\mathcal{Y})$  on compactly supported  $\ell$ -adic cohomology is injective ?

P. Berthelot ([3]) observes that if  $\pi$  is generically étale, that is if  $K(\mathcal{X}) \subset K(\mathcal{Y})$ is separable, and  $\mathcal{X}$  is regular, then purity as in [11] implies immediately injectivity of  $\pi^*$ . Of course, from the viewpoint of point counting, since regularity of  $\mathcal{X}$  is the assumption under which the main result of [9] was shown, this does not bring any new information. However, this, together with Theorem 1.2 of this note, suggests to single out a good definition of mild singularities for  $\mathcal{X}$  which would force injectivity of  $\pi^*$ . There is the extra problem of separability of  $K(\mathcal{X}) \subset K(\mathcal{Y})$ . It would be nice not to have it as an assumption. Theorem 1.1 perhaps suggests that this is not the main point.

**Remark 4.4.** We can lower the level of difficulty of Question 4.3 by considering varieties A defined over finite field k, or even a perfect field. In this situation, a notion of Witt-rational singularities was introduced in [4], which echoes the notion of rational singularities in characteristic zero, and which relies on the slope theorem [2, Theorem 1.1] in Berthelot's rigid cohomology. Working  $\ell$ -adically, the corresponding notion may be: let A be a variety defined over a finite field k. Then A has  $\ell$ -adic rational singularities if for any alteration  $\pi: B \to A$ , the induced map  $\pi^*: H^i_c(A) \to H^i_c(B)$  is injective on the maximal subspace  $H^i_c(A)^{\leq 1}$  of  $H^i_c(A)$ , which is invariant under the geometric Frobenius F, and on which F acts with eigenvalues not in  $q \cdot \overline{\mathbb{Z}}$ . Such a definition will force the point counting to work as on smooth A. For example, [4, Theorem 1.1] would work similarly, with "Wittrational singularities" replaced by  $\ell$ -adic rational singularities. But somehow, this is of restricted interest: the beauty of rational singularities in characteristic 0 is that due to their definition via coherent cohomology, one can understand geometrically well what they are. A definition directly via étale cohomology somehow does not give such an immediate geometric picture.

### References

- Artin, M.: Algebraization of Formal Moduli: II. Existence of Modifications, Ann. of Math. (2) 91 (1970), 88–135.
- [2] Berthelot, P., Bloch, S., Esnault, H.: On Witt vector cohomology for singular varieties, Compositio Mathematica 143 (2007), 363-392.
- [3] Berthelot, P.: letter to Hélène Esnault dated April 23. 2007.
- [4] Blickle, M., Esnault, H.: Rational singularities and rational points, preprint 2006, 12 pages, appears in the volume dedicated to F. Bogomolov, Pure and Applied Math. Quarterly.
- [5] de Jong, A. J.: Smoothness, semi-stability and alterations, Publ. Math. IHES 83 (1996), 51–93.
- [6] de Jong, A. J.: Families of curves and alterations, Ann. Inst. Fourier 47 no.2 (1997), 599-621.
- [7] Deligne, P.: Théorème d'intégralité, Appendix to Katz, N.: Le niveau de la cohomologie des intersections complètes, Exposé XXI in SGA 7, Lect. Notes Math. vol. 340, 363–400, Berlin Heidelberg New York Springer 1973.
- [8] Deligne, P.: La conjecture de Weil, II. Publ. Math. IHES 52 (1981), 137-252.
- [9] Esnault, H.: Deligne's integrality theorem in unequal characteristic and rational points over finite fields, with an appendix with P. Deligne, Ann. of Math. 164 (2006), 715–730.
- [10] Esnault, H.: Coniveau over p-adic fields and points over finite fields, C. R. Acad. Sci. Paris, Sér.I 345 (2007), 73-76.
- [11] Fujiwara, K.: A Proof of the Absolute Purity Conjecture (after Gabber), in Algebraic Geometry 2000, Azumino, Advanced Studies in Pure Mathematics 36 (2002), Mathematical Society of Japan, 153–183.
- [12] Grothendieck, A.: Éléments de Géométrie Algébrique (EGA): III (2): Étude cohomologique des faisceaux cohérents, Publ. Math. IHES 17 (1963)
  IV (3): Études locales des schémas et des morphismes de schémas, Publ. Math. IHES 28 (1966).
- [13] Keel, S.: Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2) 149 (1999), no.1, 253–286.
- [14] Milne, J.: Lectures on Étale Cohomology, v2 02, August 9 (1998), http://www.jmilne.org/math/.

UNIVERSITÄT DUISBURG-ESSEN, MATHEMATIK, 45117 ESSEN, GERMANY $E\text{-}mail\ address:\ \texttt{esnaultQuni-due.de}$ 

Department of Mathematics, Princeton University, Princeton NJ 08544, USA  $E\text{-}mail\ address:\ \texttt{chenyang@math.princeton.edu}$ 

10