
CONGRUENCE FOR RATIONAL POINTS OVER FINITE FIELDS

AND CONIVEAU OVER LOCAL FIELDS

HÉLÈNE ESNAULT AND CHENYANG XU

Abstract. If the `-adic cohomology of a projective smooth variety, defined

over a local field K with finite residue field k, is supported in codimension

≥ 1, then every model over the ring of integers of K has a k-rational point.
For K a p-adic field, this is [10, Theorem 1.1]. If the model X is regular, one

has a congruence |X (k)| ≡ 1 modulo |k| for the number of k-rational points

([9, Theorem 1.1]). The congruence is violated if one drops the regularity
assumption.

1. Introduction

Let X be a projective variety defined over a local field K with finite residue field
k = Fq. Let R be the ring of integers of K. A model of X/K is a flat projective
morphism X → Spec(R), with X an integral scheme, such that tensored with K
over R, it coincides with X → Spec(K). As in [9] and [10], we consider `-adic
cohomology Hi(X̄) with Q`-coefficents. Recall briefly that one defines the first
coniveau level

N1Hi(X̄) = {α ∈ Hi(X̄),∃ divisor D ⊂ X s.t. 0 = α|X\D ∈ Hi(X \D)}.

As Hi(X̄) is a finite dimensional Q`-vector space, one has by localization

∃D ⊂ X s.t. N1Hi(X̄) = Im
(
Hi
D̄(X̄)→ Hi(X̄)

)
,

where D ⊂ X is a divisor. One says that Hi(X̄) is supported in codimension ≥ 1
if N1Hi(X̄) = Hi(X̄). The purpose of this note is twofold. We show the following
theorem.

Theorem 1.1. Let X be a smooth, projective, absolutely irreducible variety defined
over a local field K with finite residue field k. Assume that `-adic cohomology
Hi(X̄) is supported in codimension ≥ 1 for all i ≥ 1. Let X be a model of X
over the ring of integers R of K. Then there is a projective surjective morphism
σ : Y → X of R-schemes such that

|Y(k)| ≡ 1 mod |k|.
In particular, any model X/R of X/K has a k-rational point.

This generalizes [10, Theorem 1.1] where the theorem is proven under the as-
sumption that K has characteristic 0. On the other hand, assuming that X is
regular, we showed in [9, Theorem 1.1] that the number of k-rational points |X (k)|
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is congruent to 1 modulo |k|. It was in fact the way to show that k-rational points
exist on X , as surely |k|, being a p-power, where p is the characteristic of k, is
> 1. We show that if we drop the regularity assumption, there are models which,
according to Theorem 1.1, have a rational point, but do not satisfy the congruence.

Theorem 1.2. Let X0 = P2 over K0 := Qp or Fp((t)). Then there is a finite field
extension K ⊃ K0, which can be chosen to be unramified, and there is a normal
model X/R of X := X0 ⊗K0

K, such that |X (k)| is not congruent to 1 modulo |k|.

The `-adic proof of Theorem 1.1 follows closely the one in unequal characteristic
in [10, Theorem 1.1], and, in addition to Deligne’s integrality theorem [7, Corol-
laire 5.5.3] and [9, Appendix] and purity [11], relies strongly on de Jong’s alteration
theorem as expressed in [6]. However, we have to replace the trace argument we
used there by a more careful analysis of the Leray spectral sequence stemming
from de Jong’s construction. The construction of the examples in Theorem 1.2
uses Artin’s contraction theorem as expressed in [1] and is somewhat inspired by
Kollár’s construction exposed in [4, Section 3.3].

Acknowledgements: We thank Johan de Jong for his interest, and Dan Abramovich
for a careful reading which helped us clarifying the exposition.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Let K be a local field with finite residue field k. Let R ⊂ K be its valuation

ring. Let X → SpecR be a model of a projective variety X → SpecK. We do
not assume here that X is absolutely irreducible, nor do we assume that X/K is
smooth. Then by [6, Corollary 5.15], there is a diagram

Z

((QQQQQQQQQQQQQQ
π // Y

""FF
FF

FF
FF

F
σ // X

��
SpecR

(2.1)

and a finite group G acting on Z over Y with the properties

(i) Z → SpecR and Y → SpecR are flat,
(ii) σ is projective, surjective, K(X ) ⊂ K(Y) is a purely inseparable field ex-

tension,
(iii) Y is the quotient of Z by G,
(iv) Z is regular.

We want to show that this Y is a model satisfying the congruence |Y(k)| ≡ 1 modulo
|k| of Theorem 1.1. Let us set

Y = Y ⊗K, Z = Z ⊗K.
The only difference from [10, (2.1)] is that K(X ) ⊂ K(Y) may be a purely insep-
arable extension rather than an isomorphism. Thus, the argument there breaks
down as one does not have traces as in [10, (2.3), (2.4)]. We do not have [10, (2.5)]
a priori, and we can not conclude [10, Claim 2.1].

Let us overtake the notations of loc. cit.: we endow all schemes considered (which
are R-schemes) with the upper subscript u to indicate the base change ⊗RRu or
⊗KKu, where Ku ⊃ K is the maximal unramified extension, and Ru ⊃ R is
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the normalization of R in Ku. Likewise, we write ? to indicate the base change
⊗RR̄, ⊗KK̄, ⊗kk̄, where K̄ ⊃ K, k̄ ⊃ k are the algebraic closures and R̄ ⊃ R is
the normalization of R in K̄. We consider as in [9, (2.1)] the F -equivariant exact
sequence ([8, 3.6(6)])

. . .→ Hi
B̄(Yu)

ι−→ Hi(B̄) = Hi(Yu)
spu−−→ Hi(Y u)→ . . . ,(2.2)

where F ∈ Gal(k̄/k) is the geometric Frobenius, and B = Y ⊗ k. We have [10,
Claim 2.2] unchanged:

Claim 2.1. The eigenvalues of the geometric Frobenius F ∈ Gal(k̄/k) acting on
Hi
B̄

(Yu), thus a fortiori on ι(Hi
B̄

(Yu)) ⊂ Hi(B̄), lie in q · Z̄ for all i ≥ 1.

Proof. For sake of completeness, we reproduce the proof of [9, Theorem 2.2], which
is itself derived from [10, Claim 2.2]. By (iii), one has Hi

B̄
(Yu) = Hi

C̄
(Zu)G ⊂

Hi
C̄

(Zu), where C = π−1(B). By (iv), Z is regular. Thus Zu, being the base
change of Z by the unramified extension Ru ⊃ R, is regular as well. So it is enough
to show that the eigenvalues of F acting on Hi

C̄
(Zu) lie in q · Z̄ for all i ≥ 1, where

now the scheme Zu is regular and C has codimension ≥ 1. Let C0 ⊂ C be the
smooth locus of C, let C1 ⊂ C \ C0 be the smooth locus of C0 etc. Then C̄i is
smooth. Using localization

. . .→ Hi
C̄1(Zu)→ Hi

C̄(Zu)→ Hi
C̄0(Zu \ C̄1)→ . . .

and purity Hi−2(C̄0)(−1) ∼= Hi
C̄0(Zu \ C̄1) ([11, Theorem 2.1.1]) etc., one reduces

the problem to integrality of the eigenvalues of F acting on Hj(D̄) for any smooth
variety D defined over k and any j ≥ 1. One applies then Deligne’s integrality the-
orem [7, Lemme 5.5.3 iii)] and duality on D or directly [9, Appendix, Corollary 0.4].

�

So the problem is to show that the eigenvalues of F acting on Im(spu) ⊂ Hi(Y u)
lie in q · Z̄ as well. One has the following claim.

Claim 2.2. The eigenvalues of the geometric Frobenius F ∈ Gal(k̄/k) acting on
Hi(Y u), and therefore on Im(spu) ⊂ Hi(Y u), lie in q · Z̄ for all i ≥ 1.

Proof. Let us decompose the morphism σ as

σ : Y
τ−→ X1

ε−→ X(2.3)

where X1 is the normalization of X in K(Y ). Thus in particular, τ is birational, ε
is finite and purely inseparable. Let us denote by U ⊂ X a non-empty open such
that τ |ε−1(U) : τ−1ε−1(U)→ ε−1(U) is an isomorphism, and let us set D := X \U .
We define

C := cone(Q` → Rτ∗Q`)[−1](2.4)

as an object in the bounded derived category of Q`-constructible sheaves on X1.
Since τ∗Q` = Q`, the cohomology sheaves of C are in degree ≥ 1, and have support
in D1 := D ×X X1. We conclude

Hi
Du

1
(Xu

1 , C) = Hi(Xu
1 , C) ∀i ≥ 0.(2.5)
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One has the commutative diagram of exact sequences

Hi+1
Du

1
(Xu

1 )

Hi
Du

1
(Xu

1 , C)

OO

=(2.5) // Hi(Xu
1 , C)

Hi
Eu(Y u)

OO

// Hi(Y u)

OO

Hi
Du

1
(Xu

1 )

OO

// Hi(Xu
1 )

OO

(2.6)

where E = σ−1(D). So to show the claim, via the right vertical exact sequence, it
is enough to show that the eigenvalues of F acting on Hi(Xu

1 ) and on Hi(Xu
1 , C) lie

in q · Z̄. This is true on Hi(Xu
1 ) by [9, Theorem 1.5 and Appendix]. For Hi(Xu

1 , C),
via the left vertical exact sequence, it is enough to show that the eigenvalues of F
acting on Hi

Eu(Y u) and on Hi+1
Du (Xu

1 ) lie in q · Z̄. Writing Hi
Eu(Y u) = Hi

Lu(Zu)G

where L = D ×X Z, one is reduced to showing that the eigenvalues of F acting on
Hj
V u(Wu) lie in q ·Z̄ for W a regular K-scheme and V ⊂W a closed K-subscheme of

codimension c ≥ 1. If V is regular, one applies purity Hj−2c(V u)(−c) ∼= Hj
V u(Wu)

again, and one is reduced to showing that the eigenvalues of F acting on Hi(V u)
lie in Z̄ for all i ≥ 0. One applies [9, Appendix, Corollary 0.3]. If V is not regular,
one writes the F -equivariant exact sequence . . . → Hi

(V 1)u(Wu) → Hi
V u(Wu) →

Hi
(V 0)u((W 0)u) → . . ., where V 0 ⊂ V is the regular locus, W 0 = W \ V 1, V 1 =

V \ V 0 and one argues inductively as in the proof of Claim 2.1.
�

We conclude now the proof of Theorem 1.1: all the eigenvalues of F acting
on Hi(B̄) lie in q · Z̄ for i ≥ 1, thus the Grothendieck-Lefschetz trace formula
applied to H∗(B̄), together with the absolute connectedness of B, which follows
from the absolute irreducibility of Y , imply the congruence. This finishes the proof
of Theorem 1.1. To summarize: Z of course has a complicated cohomology as the
covering Z → Y might be non-trivial, while Y is cohomologically the same as X
and is nearly regular as a quotient of Z.

3. Construction of examples

This section is devoted to the proof of Theorem 1.2.
Let us first recall that if E is a smooth genus 1 curve over a finite field Fq, it

is always an elliptic curve, which means that it always carries a Fq-rational point.
Furthermore one has

Claim 3.1. Given an elliptic curve E/Fq, there is a finite field extension Fqn ⊃ Fq
such that |E(Fqn)| is not congruent to 1 modulo qn.

Proof. By the trace formula, |E(Fqn)| being congruent to 1 modulo qn for all n ≥ 1
is equivalent to saying that the eigenvalues of Fn acting on Hi(Ē) lie in qn · Z̄ for
all n ≥ 1 and i ≥ 1. By purity (which in dimension 1 is Weil’s theorem), this is
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equivalent to saying that the eigenvalues of Fn acting on H1(Ē) lie in qn · Z̄ for

all n ≥ 1. On the other hand, by duality, if λ is an eigenvalue, then qn

λ is also an

eigenvalue. It is then impossible that both λ and qn

λ be qn-divisible as algebraic
integers.

�

We now construct the following scheme. Let us set P0 := P2 over R0 := Zp or
over Fp[[t]]. Choose an elliptic curve E0 ⊂ P0 ⊗ Fp = P2

Fp
defined over Fp. Let

k ⊃ Fp be a finite field extension such that |E0(k)| is not k-divisible (Claim 3.1).
Set E := E0 ⊗Fp

k, P := P0 ⊗R0
R, with R = W (k) or Fq[[t]], and K = Frac(R).

Choose a smooth projective curve C ⊂ P over R, of degree ≥ 4, such that C := C⊗k
is transversal to E. Define Σ = E ∩ C ⊂ E to be the 0-dimensional intersection
subscheme. It has degree ≥ 12, thus in particular > 9. Let b : Y → P be the blow
up of Σ ⊂ P. We denote by PΣ the exceptional locus, which is a trivial P2 bundle
over Σ, by Y the strict transform of P2

k, and we still denote by E ⊂ Y the strict
transform of the elliptic curve. So one has the following diagram:

PΣ

��

// Y ∪ PΣ

��

// Y

��
Σ // P2

k
// P

Then the conormal bundle N∨E/Y of E in Y is an extension of the conormal

bundle N∨E/Y of E in Y by the restriction to E of the conormal bundle N∨Y/Y of Y

in Y, both ample line bundles on E by the condition on the degree of Σ.
Let I ⊂ OY be the ideal sheaf of E. For a coherent sheaf F on Y, we denote by

In/In+1 · F the image of In/In+1 ⊗OY F in F , where n ∈ N.

Claim 3.2. For every coherent sheaf F on Y, one has H1(E, In/In+1 · F) = 0 for
all n ∈ N large enough.

Proof. As by definition one has a surjection In/In+1 ⊗OY F → In/In+1 · F , it is
enough to show H1(E, In/In+1 ⊗OY F) = 0 for n large enough. As In/In+1 is
locally free, In/In+1⊗OY F is an extension of In/In+1⊗OY F0 by In/In+1⊗OY T ,
where T ⊂ F is the maximal torsion subsheaf and F0 = F/T is locally free. As
H1(E, In/In+1 ⊗OY T ) = 0, we may assume that F is locally free. As In/In+1 is
a locally free filtered sheaf, with associated graded a sum of ample line bundles of
strictly increasing degree as n grows, we have H1(E, gr(In/In+1) ⊗OY F) = 0 for
n large enough, and thus H1(E, In/In+1 ⊗OY F) = 0 as well.

�

Artin’s contraction criterion [1, Theorem 6.2] applied to E → Spec(k), together
with Artin’s existence theorem [1, Theorem 3.1] show the existence of a contraction

a1 : Y → X1(3.1)

where X1 is an algebraic space over R, a1|Y\E is an isomorphism and a1(E) =

Spec(k). Let X ν−→ X1 be the normalization of X1 in K(Y) = K(P). This is a
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normal algebraic space over R. One has a diagram

Y

b

��

a1

''
a

// X ν
// X1

P

(3.2)

Claim 3.3. |X (k)| is not congruent to 1 modulo |k|.

Proof. Recall a1(E) is a rational point of X1. By [9, Theorem 1.1] (or by a simple
computation in this case), |Y(k)| is congruent to 1 modulo |k|. By Claim 3.1 and
the choice of E, |X1(k)| is not congruent to 1 modulo |k|. On the other hand, as
the fibers of a1 are absolutely irreducible, ν has to be a homeomorphism. Thus
|X (k)| = |X1(k)|. This finishes the proof.

�

In order to finish the proof of Theorem 1.2, it remains to show

Claim 3.4. X → Spec(R) is a model of X = P2/K.

Proof. We have to show that X → Spec(R) is a flat projective morphism. Since X
is integral, Spec(R) is regular of dimension 1, then [12, IV Proposition 14.3.8] allows
to conclude that X/R is flat. Thus we just have to show that X/R is projective.
To this aim, we want a line bundle to descend from Y to an ample line bundle on
X . Recall PΣ = b−1(Σ). Let us define the line bundle M := b∗OP(C)(−PΣ) on Y.
By definition, one has

M|E ∼= OE .(3.3)

Claim 3.5. The line bundle M descends to X , that is there is a line bundle L on
X with a∗L =M.

Proof of Claim 3.5. The proper morphism of algebraic spaces a : Y → X , with
a∗OY = OX , has the property that a−1a(E) = E set-theoritically, that a|Y\E :

Y \ E → X \ a(E) is an isomorphism, and that H1(E, In/In+1) = 0 for n ≥ 1. So
Keel’s theorem [13, Lemma 1.10] asserts that some positive power M⊗r descends
to X if the following condition is fulfilled

∀m > 0,∃r(m) > 0 s.t M⊗r(m)|Em descends to a(Em)(3.4)

where Em := Spec(OY/Im+1).

So we just have to check that (3.4) is fulfilled with r = 1 in our situation. The
scheme a(Em) has Krull dimension 0. Thus by Hilbert 90’s theorem (see e.g. [14,
Corollary 11.6]) one has

Pic(a(Em)) = 0.(3.5)

We conclude that to check (3.4) is equivalent to checking that M⊗r(m)|Em
∼= OEm

for some positive power r(m). In fact one has

M|Em
∼= OEm

∀m ≥ 1.(3.6)

For m = 1, this is (3.3). We argue by induction and assume that for m > 1, we

have a trivializing section sm : OEm

∼=−→M|Em
. We want to show that it lifts to a
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trivializing section sm+1 : OEm+1

∼=−→M|Em+1 . One has an exact sequence

0→ Im+1/Im+2 →M|Em+1
→M|Em

→ 0.(3.7)

Since H1(E, Im+1/Im+2) = 0, as m ≥ 0, the trivializing section of sm : OEm

∼=−→
M|Em

lifts to a section sm+1 : OEm+1
→ M|Em+1

, and likewise, its inverse tm :

M|Em

∼=−→ OEm
lifts to tm+1 : M|Em+1

→ OEm+1
. The composite tm+1 ◦ sm+1 :

OEm+1
→ OEm+1

lifts the identity of OEm
. Therefore it is invertible. This shows

that sm+1 trivializes. The proof of Keel’s theorem (see (2) after [13, (1.10.1)])
shows then that one can take r = 1. �

In order the finish the proof of Claim 3.4, it remains to see that L on X is ample.
We first show the following claim.

Claim 3.6. L|X⊗k is an ample line bundle on X ⊗ k.

Proof. We first show that M|Y⊗k is nef and big. In fact, we prove a more precise
property: for any irreducible curve Γ on Y ⊗ k, one has M|Y⊗k · Γ ≥ 0, and the
equality holds if and only if Γ = E. By construction, Y ⊗ k = PΣ ∪ Y and each
component over k̄ of PΣ is isomorphic to P2

k̄
. Since the restriction of M on every

component of PΣ is isomorphic to O(1), we can assume Γ ⊂ Y . The embedding
E ⊂ Y is a section of the line bundle b|∗YO(3)(−EΣ), where EΣ = PΣ ∩ Y . There
is also a large enough n, such that H = b|∗YO(n)(−EΣ) is ample. So M|Y =
b|∗YO(C)(−EΣ) ≡Q e0E + e1H, where 0 < e0, e1 < 1 and e0 + e1 = 1. From this,
we easily see that M|Y · Γ > 0, when Γ ⊂ Y and Γ 6= E. And the above argument
also shows the bigness of M|Y⊗k: on PΣ, it is ample; and on Y , it is a convex
combination of an effective divisor and of an ample divisor.

Since a∗(L) =M, the nefness and bigness ofM|Y⊗k imply that the same prop-
erties hold for L|X⊗k. So L|X⊗k is semiample by [13, Corollary 0.3]. Furthermore,
the more precise property we proved above for M|Y⊗k implies the intersection of
L|X⊗k with any curve on X ⊗ k is positive, thus we conclude L|X⊗k is ample. �

So by Serre vanishing theorem, for sufficiently large m, H1(X ⊗ k,L|⊗mX⊗k) =

0. Base change implies H1(X ,L⊗m) ⊗ k = 0 ([12, III Theorem 7.7.5]), thus by
Nakayama’s lemma, one has

H1(X ,L⊗m) = 0 for m large enough.(3.8)

As L is invertible, multiplication L⊗m π−→ L⊗m by the uniformizer π is injective,
with quotient L|⊗mX⊗k. Thus (3.8) implies surjectivity H0(X ,L⊗m) → H0(X ⊗
k,L|⊗mX⊗k) for m large enough. Thus H0(X ,L⊗m) is a free R-module, and the

linear system H0(X ,L⊗m) maps without base points X to PNR , with N + 1 =
rankRH

0(X ,L⊗m). As it embeds X ⊗ k, it embeds X as well. This finishes the
proof.

�

4. Remarks

Remark 4.1. In Theorem 1.1, if X/K has dimension 1, which means concretely
if X/K = P1/K, then any normal model X/R satisfies the congruence |X (k)| ≡ 1
modulo |k|. Thus the examples of Theorem 1.2 have the smallest possible dimen-
sion.
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Proof. Indeed, using (2.1), the only thing to check is that H1(Ā), which is equal to
H1(X u), injects via σ∗ into H1(B̄) = H1(Yu). Here A := X ⊗R k. Let us denote
by X ′ the normalization of X in K(Y), with factorization

Y

σ

''
σ′

// X ′ ν
// X(4.1)

and set A′ := A ×X X ′. Then σ′ induces an isomorphism K(X ′)
∼=−→ K(Y). Fur-

thermore, X ′ ν−→ X and and A′
ν|A−−→ A are homeomorphisms. Thus H1(X u) =

H1(Ā)
ν∗−→ H1((X ′)u) = H1(Ā′) is an isomorphism. On the other hand, since

σ′∗Q` = Q`, the Leray spectral sequence for σ′ applied to H1(Yu) yields an inclu-

sion H1((X ′)u) = H1(Ā′)
inj−→ H1(Yu) = H1(B̄). This finishes the proof. �

Remark 4.2. We generalize Remark 4.1 to the higher dimensional case in the
following form. Let X be a smooth projective variety defined over K and let X/R be
a model over R. Let us use the notations of (2.1). We set A = X ⊗Rk, B = Y⊗Rk.
If the assumptions of Theorem 1.1 are fulfilled, that is if `-adic cohomology Hi(X̄)
is supported in codimension ≥ 1 for all i ≥ 1, and if in addition

σ∗ : Hi(X u) = Hi(Ā)→ Hi(Yu) = Hi(B̄)(4.2)

is injective for all i ≥ 0, then one has

|X (k)| ≡ 1 modulo |k|.(4.3)

Indeed, the exact sequence (2.2) together with Claim 2.1 and Claim 2.2 show
that under the assumptions of Theorem 1.1 one has

eigenvalues of F acting on Hi(B̄) ∈ q · Z̄ ∀i ≥ 1.(4.4)

As σ∗ in (4.2) is equivariant (which of course we used already in the proof of
Theorem 1.1), we conclude

eigenvalues of F acting on Hi(Ā) ∈ q · Z̄ ∀i ≥ 1.(4.5)

Since Hi(Yu) = Hi(Zu)G ⊂ Hi(Zu), injectivity of σ∗ in (4.2) is equivalent to
injectivity of

τ∗ ◦ σ∗ : Hi(X u)→ Hi(Zu).(4.6)

One may ask the following question:

Question 4.3. Let X be an integral R-scheme. What are the type of singularities
of X which force the following: for any alteration π : Y → X in the sense of de
Jong, that is π is proper, dominant with K(X ) ⊂ K(Y) finite, and with Y regular,
one has that the induced map π∗ : Hi

c(X )→ Hi
c(Y) on compactly supported `-adic

cohomology is injective ?

P. Berthelot ([3]) observes that if π is generically étale, that is if K(X ) ⊂ K(Y)
is separable, and X is regular, then purity as in [11] implies immediately injectivity
of π∗. Of course, from the viewpoint of point counting, since regularity of X is the
assumption under which the main result of [9] was shown, this does not bring any
new information. However, this, together with Theorem 1.2 of this note, suggests to
single out a good definition of mild singularities for X which would force injectivity
of π∗. There is the extra problem of separability of K(X ) ⊂ K(Y). It would be



CONGRUENCE FOR RATIONAL POINTS OVER FINITE FIELDS AND CONIVEAU OVER LOCAL FIELDS9

nice not to have it as an assumption. Theorem 1.1 perhaps suggests that this is
not the main point.

Remark 4.4. We can lower the level of difficulty of Question 4.3 by considering
varieties A defined over finite field k, or even a perfect field. In this situation, a
notion of Witt-rational singularities was introduced in [4], which echoes the no-
tion of rational singularities in characteristic zero, and which relies on the slope
theorem [2, Theorem 1.1] in Berthelot’s rigid cohomology. Working `-adically, the
corresponding notion may be: let A be a variety defined over a finite field k. Then
A has `-adic rational singularities if for any alteration π : B → A, the induced
map π∗ : Hi

c(Ā)→ Hi
c(B̄) is injective on the maximal subspace Hi

c(Ā)<1 of Hi
c(Ā),

which is invariant under the geometric Frobenius F , and on which F acts with
eigenvalues not in q · Z̄. Such a definition will force the point counting to work as
on smooth A. For example, [4, Theorem 1.1] would work similarly, with “Witt-
rational singularities” replaced by `-adic rational singularities. But somehow, this
is of restricted interest: the beauty of rational singularities in chararcteristic 0 is
that due to their definition via coherent cohomology, one can understand geometri-
cally well what they are. A definition directly via étale cohomology somehow does
not give such an immediate geometric picture.
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