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Abstract. For X a projective, geometrically irreducible variety
defined over a finite field Fq, which is smooth and whose Chow
group of 0-cycles fulfills base change, i.e. CH0(X×Fq

Fq(X)) = Q,
the main theorem of [8] (Corollary 1.2) asserts that the number of
rational points satisfies |X(Fq)| ≡ 1 modulo q. If X is not smooth,
this is no longer true. Indeed J. Kollár constructed an example of
a rationally connected surface over Fq without any rational points.
We show that Theorem 1.1 of [2] allows to define a notion of Witt-
rational singularities in characteristic p > 0 (Definition 2.3). Then
if X/Fq is a projective, geometrically irreducible variety, such that
it has Witt-rational singularities and its Chow group of 0-cycles
fulfills base change, then |X(Fq)| ≡ 1 modulo q (Theorem 1.1).

1. Introduction

If X is a projective, geometrically irreducible variety defined over a
finite field Fq, such that it is smooth and its Chow group of 0-cycles ful-

fills base change, i.e. CH0(X ×Fq Fq(X)) = Q, then the main theorem
of [8] (Corollary 1.2) asserts that its number of rational points fulfills
|X(Fq)| ≡ 1 modulo q. Smoothness enters into the proof at two lev-
els. One uses that the Chow group CH∗(X ×X) acts on cohomology
H∗(X) via correspondences, where H i(X) denotes either crystalline
cohomology or `-adic cohomology. Then, one uses purity in order to
show that on the first coniveau N1H∗(X) of cohomology, the eigenval-
ues of the geometric Frobenius are divisible by q as algebraic integers if
H∗(X) is `-adic cohomology, or have slopes < 1 if H∗(X) is crystalline
cohomology. Once this has been established, the argument is simple.
Bloch’s decomposition of the diagonal, which is equivalent to the Chow
group condition, forces cohomology to have coniveau 1, which in turn
implies the result using Grothendieck-Lefschetz trace formula. If X is
no longer smooth, CH∗(X ×X) does not act on cohomology, one does
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not have purity, and it may happen that H i(X) = N1H i(X) and yet
the eigenvalues are not divisible, as demonstrated by the example of a
rational nodal curve, for which N1H1(X) = H1(X) = Q`(0). Indeed,
J. Kollár constructed an example of a rationally connected surface over
Fq without any rational points (see section 3.3).

On the other hand, we show in [2], Theorem 1.1 that if X is proper
over a perfect field k of characteritic p > 0, then the slope < 1 piece of
rigid cohomology H i(X/K)<1 is computed by Witt vector cohomology
H i(X,WOX)K , where K = Frac(W (k)) is the field of fractions of
the ring of Witt vectors W (k) and K means ⊗W (k)K. We explain
in section 2 how this suggests a good definition of rational singularities
over a perfect field of characteristic p > 0, which we call Witt-rational
singularities. Indeed, if X is proper over k of characteristic 0, the corner
piece gr0

FH
i(X) of its F -filtration on de Rham cohomology receives

surjectively OX-cohomology H i(X,OX) ([7], Proposition 1.2). Thus if
X has rational singularities, that is if

σ∗ : OX
∼=−→ Rσ∗OY(1.1)

for a desingularization σ : Y → X, then σ∗ induces an isomorphism

σ∗ : gr0
FH

i(X)→ gr0
FH

i(Y ).(1.2)

The analogy between the corner piece gr0
FH

i(X) in de Rham cohomol-
ogy in characteristic 0 with the slope < 1 piece of rigid cohomology
over a perfect field of characteristic p > 0 for a proper variety suggests
that a good definition of rational singularities in characteristic p > 0
should imply (1.2) with gr0

FH
i(X) replaced with H i(X/K)<0. Since

in general we do not have a desingularization at disposal, it should be
replaced by an alteration σ : Y → X which is generically étale. Then

σ∗ : H i(X/K)<1 → H i(Y/K)<1 should be injective.(1.3)

So we define X over a perfect field k of characteristic p > 0 to have
Witt-rational singularities (see Definition 2.3) if for a generically étale
alteration σ : Y → X,

σ∗ : (WOX)K → Rσ∗(WOY )K splits.(1.4)

This definition does not depend on the choice of σ. In characteristic
0, as observed by Kovács ([14], Theorem 1), using Serre duality and
Grauert-Riemenschneider vanishing theorem, one can replace the char-
acterization (1.1) by σ∗ : OX → Rσ∗OY being split for σ : Y → X an
alteration. Furthermore, our definition forces (1.3) to be fulfilled.

Witt-rational singularities are a broader class than the more restric-
tive class of rational singularities defined by Kempf [13]. Indeed, his
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class is defined only under the condition that the singularity admits
a resolution, and then the request consists of both (1.1) and Grauert-
Riemenschneider vanishing theorem. For those singularities for which
one knows the existence of a resolution, his definition is more restrictive
(see the example discussed in section 2.3).

Our main theorem, proven in section 3, is then

Theorem 1.1. Let X be a geometrically irreducible projective variety
defined over the finite field Fq. If X has Witt-rational singularities and

its Chow group of 0-cycles fulfills base change CH0(X×Fq Fq(X)) = Q,
then |X(Fq)| ≡ 1 modulo q.

Theorem 1.1 partly answers the questions raised in [8], section 3 and
[9], 5.2.

The method follows the pattern of the proof of Corollary 1.2 in [8].
Bloch’s decomposition of the diagonal holds true even for singular va-
rieties. The crucial observation is that even if CH∗(X × X) does not
act on cohomology, the decomposition of the diagonal implies that the
piece of cohomology of X which survives in the cohomology of an al-
teration lies indeed in the first coniveau level:

Proposition 1.2. Let X be a projective variety defined over a field k of
finite type over Fp such that CH0(X×kk(X)) = Q. Then if σ : Y → X
is a generically étale alteration, one has

σ∗H i(X) ⊂ N1H i(Y ).(1.5)

Here H i(X) denotes either `-adic cohomology H i(X̄,Q`) or rigid co-
homology H i(X̄/Frac(W (k̄))).

Acknowledgments: The notion of Witt-rational singularities defined
in this note relies on properties of Witt vector cohomology developed in
[2]. We thank P. Berthelot and S. Bloch for the interesting discussions
we had on Witt vector cohomology while thinking of [2]. We thank N.
Fakhruddin and E. Viehweg for discussions on rational singularities in
characteristic 0. Finally we thank J. Kollár for sending us his inspiring
example and for discussions.

2. Rational singularites

2.1. Characteristic 0. Let X be a variety defined over a field k of
characteristic 0. Then to say that X has rational singularities is to say
that if σ : Y → X is a desingularization, then

σ∗ : OX → Rσ∗OY(2.1)
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is an isomorphism. Grauert-Riemenschneider vanishing theorem assert-
ing that Riσ∗ωY = 0 for i > 0 implies that condition (2.1) is equivalent
to saying that

X Cohen−Macaulay and σ∗ : ωX → σ∗ωY is an isomorphism.(2.2)

Kovács [14], Theorem 1, observes then that the birationaliy of σ in for-
mulation (2.2) is not important, for example if σ : Y → X was instead
an alteration, that is proper generically finite with Y smooth, then (2.2)
would be equivalent to the conditions X being Cohen-Macaulay and
σ∗ : ωX → σ∗ωY being split. So [14], Theorem 1, applied to alterations
says

Proposition 2.1. Let X be a variety over a field of characteristic 0.
Then X has rational singularities if and only if for some (and then
any) alteration σ : Y → X, the natural map σ∗ : OX → Rσ∗OY splits
in the bounded derived category of coherent sheaves on X.

One of the important properties of projective varieties with rational
singularities is that its O-cohomology computes the corner piece gr0

F

of the F -Hodge filtration on de Rham cohomology:

Proposition 2.2. Let X be a projective variety with rational singular-
ities. Then there is a functorial isomorphism H i(X,OX)→ gr0

FH
i(X)

for all i ≥ 0. If σ : Y → X is a desingularization, then σ∗ : gr0
FH

i(X)→
gr0
FH

i(Y ) is an isomorphism and if σ : Y → X is an alteration, then
σ∗ : gr0

FH
i(X)→ gr0

FH
i(Y ) is injective.

Proof. By [7], Proposition 1.2, there is a functorial surjectionH i(X,OX)→
gr0
FH

i(X). On the other hand, let σ : Y → X be a desingularization.
Then one has the commutative diagram

H i(Y,OY )
∼=−−−→ gr0

FH
i(Y )

σ∗

x σ∗

x
H i(X,OX)

surj−−−→ gr0
FH

i(X)

(2.3)

By the rationality condition, σ∗ on the left is an isomorphism. This
implies that σ∗ on the right and the surjection are isomorphisms as
well. If now σ : Y → X is an alteration, then Proposition 2.1 together
with the case of a desingularization in Proposition 2.2 allow to conclude
that σ∗ : gr0

FH
i(X)→ gr0

FH
i(Y ) is injective. �

2.2. Characteristic p > 0. Let X be a variety defined over a perfect
field k of characteristic p > 0. Then one has at disposal Berthelot’s rigid
cohomology H i(X/K), together with its slope filtration. Here K =
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Frac(W (k)) is the field of fractions of the ring of Witt vectors W (k)
of k. The pair (H i(X/K), slope filtration) behaves analogously to the
pair (de Rham cohomology, F-filtration) in characteristic 0. We denote
by H i(X/K)<1 the slope < 1 piece. Thus, a definition of rational
singularities in characteristic p > 0 should imply injectivity of σ∗ :
H i(X/K)<1 → H i(Y/K)<1 where σ : Y → X is a generically étale
alteration, if X is projective. By [5], Theorem 4.1 and Remark 4.2,
they exists, after a finite separable extension k′ ⊃ k, a generically étale
alteration σ : Y → X. Since the slope decomposition is defined over
k (see [2], Section 5.2), we may replace k by k′ and assume that σ is
defined over k. Moreover, by [2], Theorem 1.1 one has

X proper =⇒ H i(X/K)<1 ∼= H i(X,WOX)K ∼= H i(X,WOX,K)(2.4)

where the identification of the slope < 1 piece of rigid cohomology
with Witt vector cohomology is functorial. This generalizes to the
non-smooth case the classical slope theorem of Bloch-Illusie (see Intro-
duction of [2] and references there).

As in [2], section 2, we consider for an alteration σ : Y → X which
is generically étale the sheaves of abelian groups Riσ∗WOY,K on X. In
the bounded derived category of sheaves of abelian groups on X taken
with the Zariski topology, one has the map

σ∗ : WOX,K → Rσ∗WOY,K .(2.5)

Definition 2.3. Let X be a variety defined over a perfect field k of
characteristic p > 0. Then X has Witt-rational singularities if there is
a finite separable extension of k′ ⊃ k and a generically étale alteration
σ : Y → X over k′ for which (2.5) splits in the derived category of
sheaves of abelian groups on X taken with the Zariski topology.

So far we do not know if for a Witt rational X all generically étale
alterations σ′ : Y ′ → X satisfy the assertion of the definition. To prove
such a statement one would have to show that (2.5) splits, assuming
X smooth and σ : Y → X any generically étale alteration. In charac-
teristic 0, to show the corresponding statement with WOX,K replaced
by OX , one would use duality and Grauert-Riemenschneider vanishing
theorem, which is analytic. We do not address this delicate point here
and instead remark the following.

Proposition 2.4. Let X be a proper variety defined over a perfect field
k of characteristic p > 0. Then if X has Witt-rational singularities and
σ : Y → X is any alteration, then σ∗ : H i(X/K)<1 → H i(Y/K)<1 is
injective.
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Proof. Let σ0 : Y0 → X be an alteration with (2.5) splitting for σ0 and
let σ : Y → X be any alteration. One constructs

Z
τ−−−→ Y0

τ0

y σ0

y
Y

σ−−−→ X

(2.6)

with τ, τ0 alterations. By [5], Theorem 4.1 and Remark 4.2, they exist
after a finite separable extension k′ ⊃ k. Since the slope decomposition
is defined over k (see [2], Section 5.2), we may replace k by k′ and
assume τ, τ0 are defined over k. On the other hand, by [2], Theorem
1.1, one has H i(X/K)<1 = H i(X,WOX,K). By the Witt-rationality
assumption, one has σ∗0 : H i(X,WOX,K)→ H i(Y0,WOY0,K) injective.
By the classical Bloch-Illusie slope theorem, one has H i(Y0,WOY0,K) =
H i(Y0/K)<1. By smoothness of Z and Y0, τ

∗ : H i(Y0/K)→ H i(Z/K)
is injective on the whole crystalline cohomology (as one has duality and
a trace map), a fortiori on the slope < 1 piece. Thus

τ ∗ ◦ σ∗0 = τ ∗0 ◦ σ∗ : H i(X/K)<1 → H i(Z/K)<1 injective.(2.7)

As σ∗ : H i(X/K)→ H i(Y/K) factors through τ ∗0 ◦σ∗, it is injective as
well. This shows the proposition. �

Remark 2.5. Let X be a variety defined over a perfect field of charac-
teristic p > 0. AssumeX admits a resolution of singularities σ : Y → X
with the property that the natural map σ∗ : OX → Rσ∗OY be an iso-
morphism. Then X has Witt-rational singularities.

Proof. Indeed, one has Riσ∗OY = 0 for all i ≥ 1. Consequently,
Riσ∗WOY = 0 for all i ≥ 1, thus a fortiori Riσ∗WOY,K = 0 for all
i ≥ 1. On the other hand, the extra condition σ∗OY = OX implies
σ∗WOY = WOX . Thus the splitting in Definition 2.3 is in fact an
isomorphism. �

2.3. Example. It is easy to produce examples for which the converse
of Remark 2.5 is not true. Indeed, let X0 ⊂ P3 be one of Shioda surfaces
over a finite field Fp ([16]). This means that X0 is smooth, unirational,
but has large degree. Thus in particular H2(X0,OX0) 6= 0. Since

CH0(X×FpFp(X)) = Q, [7], Lemma 2.1 implies thatH i(X0,WOX0,K) =
0 for all i > 0. Let X ⊂ P4 be the cone over X0, and σ : Y → X be the
blow up of the vertex v. Then one has R2σ∗OY � H2(X0,OX0) 6= 0,
thus the singularity is not rational in the sense of Remark 2.5, a fortiori
in the sense of Kempf. However the singularity is Witt-rational. In-
deed, by [2], Theorem 2.4, applied to I = maximal ideal of the vertex



RATIONAL SINGULARITIES AND RATIONAL POINTS 7

and I ′ = OY (−X0), one has Riσ∗IK = 0 for i ≥ 1 thus

Riσ∗WOY,K =

{
WOX,K i = 0

H i(X0,WOX0,K) = 0 i ≥ 1
(2.8)

where for i ≥ 1 it means the skyscraper sheaf with this value supported
in v, showing that X has Witt-rational singularities.

3. Homological Chow group and alterations

3.1. Chow groups. As explained in [4], sections 1 and 4, the right
motivic condition for X projective over a perfect field k of characteristic
p > 0 which forces H i(X/K)<1 = 0 for all i ≥ 1 is as follows. Let
X ⊂ PN be a projective embedding, σ : P → PN be an alteration so
that Y := σ−1(X) is a normal crossings divisor. Then the graph of the
alteration Γσ ∈ H2N(P × (Pn \ X), Y × (PN \ X), N) ⊗ Q should be
supported along a divisor A ⊂ P which is in good position relatively
to Y . Hypersurfaces of degree ≤ N in PN fulfill this condition ([4],
Theorem 1.1) but in general, given X this is difficult to compute as X
does not have a privileged embedding.

If we do not give ourselves an embedding but consider conditions
defined directly on X, then a very strong one is to assume that motivic
cohomology fulfills H2n(X,Xsing, n) ⊗ Q = Q. Here one has to pay
attention. Relative motivic cohomology is defined when Xsing ⊂ X is a
normal crossings divisor (see [15] Chapter 4, 2.2 and p. 209), so is here
not appropriate. But we could consider geometric conditions which
would imply this motivic condition if we had resolution of singularities
in charateristic p > 0. One such geometric condition is to assume
that X \Xsing is rationally connected in the sense that any two closed
points can be linked by a connected chain of rational projective curves
in X \Xsing. Indeed, take X0 ⊂ PN smooth of degree N + 1, and define
X ⊂ PN+1 to be the cone over X0. Then for N large enough, X0 is
not rationally connected, (X \Xsing) is not rationally connected, yet X
fulfills the condition H i(X/K)<1 = 0 for all i ≥ 1 ([4], Theorem 1.1),
thus over a finite field Fq, one has |X(Fq)| ≡ 1 modulo q (which is Ax’
theorem).

The purpose of section 3.2 is to show that the triviality of the ho-
mological Chow group CH0, which is bad to count points as CH does
not act on cohomology, nevertheless has a nontrivial consequence on
the part of cohomology surviving in alterations.

3.2. CH and the image of the cohomology in the cohomology
of an alteration. We now show Proposition 1.2 (see Introduction).
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Proof of Proposition 1.2. We apply Bloch’s decomposition of cycles in
[3], Appendix to lecture 1. Since it is written for X smooth proper, and
applied to the diagonal, and we need it for X projective not smooth,
applied to the graph of the alteration, let us redo the argument.

First we observe that the kernel of CH0(X×kk(Y ))→ CH0(X×kK)

is torsion, for K = k(X). Indeed, if a cycle ξ ∈ CH0(X×k k(Y )) fulfills
ξ =

∑
div(fW ), with W curve on X ×k K and fW ∈ K(W )×, then

(W, fW ) is defined over a finite extension K0 of k(Y ), of degree d say,
so dξ =

∑
W divNm(K0/k(Y ))(fW ).

Then one has

CH0(X ×k k(Y )) = lim−→
∅6=V open⊂Y

CHn(X × V ), n = dim(Y ).(3.1)

Indeed, if ξ ∈ CH0(X×k k(Y )), it is defined over some ∅ 6= V ⊂ Y and
similarly if (W, fW ) is a relation, it is defined over some open V 6= ∅ as
well.

We consider the class of Spec(k(X) ×k(X) k(Y )) ∼= Spec(k(Y )) in
CH0(X ×k k(Y )). In view of (3.2), this is the restriction to X ×k k(Y )
of the class of the graph of the alteration ∆σ ⊂ X×Y . The assumption
CH0(X ×k K) = Q implies that there is a 0-cycle ξ ∈ CH0(X) and
M ∈ Z \ {0} so that M∆σ ≡ ξ ∈ CH0(X ×k k(Y )). Thus we conclude
by (3.2) that there is also a dimension n cycle Γ ⊂ X ×k Y , and a
divisor A ⊂ Y with

M∆σ ≡ ξ × Y + Γ ∈ CHn(X ×k Y ), Γ ⊂ X × A.(3.2)

Let X ⊂ Pn+c =: P be an embedding of X (recall n = dim(X)). By
[11], Chapter 19, one has a homomorphism

CHn(X × Y )→ H
2(n+c)
X×Y (P× Y )(n+ c).(3.3)

Since this is an important point in the argument, and the reference
[11] is written for Borel-Moore homology over C, let us rewrite the
argument. Indeed, for an irreducible variety W of dimension n in

X ×Y , one has by purity a cycle class in H
2(n+c)
W (P×Y )(n+ c), which

maps to H
2(n+c)
X×Y (P× Y )(n+ c). And if f :W → P1 is a rational map,

yielding

W ⊂−−−→ X × Y ⊂−−−→ P× Y

f

y
P1

(3.4)

then if Wt is a fiber of f over t, of dimension n, one has that its cycle

class in H
2(n+c)
X×Y (P×Y )(n+c) is the image of the class of t ∈ H2(W)(1)
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via

H2(W)(1)
Gysin−−−→ H

2(n+c)
W (P× Y )(n+ c)→ H

2(n+c)
X×Y (P× Y )(n+ c).

(3.5)

So the difference of the classes of two fibers maps to 0. Now one has
an action

H i(X)×H2(n+c)−i
X (P)⊗H i(Y )→ H i(Y )(−n− c)(3.6)

via the duality on the first component. We apply this to the class

∆σ ∈ H2(n+c)
X×Y (P× Y )(n+ c) =(3.7) ∑

i

[∆i] ∈ ⊕iH2(n+c)−i
X (P)⊗H i(Y )(n+ c),

where the decomposition on the second line is the Künneth decompo-
sition. One has

[M∆σ] = [ξ ×X] + [Γ](3.8)

Now

[ξ ×X]i ∈ Im H
2(n+c)−i
|ξ| (P)⊗H i(Y )(n+ c)(3.9)

thus by purity

[ξ ×X]i = 0 for i 6= 0.(3.10)

On the other hand

[Γ]i ∈ ImH
2(n+c)−i
X (P)⊗H i

A(Y )(n+ c).(3.11)

Thus

σ∗ : H i(X)→ N1H i(Y ) ∀i ≥ 1.(3.12)

This finishes the proof. �

We now prove the main theorem of this note (see Theorem 1.1 of the
Introduction).

Proof of Theorem 1.1. As X has Witt-rational singularities, the map
σ∗ : H i(X/K)<1 → H i(Y/K)<1 is injective by Proposition 2.4. On
the other hand, the Chow group condition implies by Proposition 1.2
that σ∗H i(X/K) ⊂ N1H i(Y/K). But [8], Lemma 2.1 implies that
N1H i(Y/K) ∩H i(Y/K)<1 = 0. Thus we conclude

H i(X/K)<1 = 0.(3.13)
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We then apply the Lefschetz trace formula for rigid cohomology ([10],
Théorème II)

|X(Fq)| = 1 +
∑
i>0

(−1)iTr F |H i(X/K)(3.14)

where F is the geometric Frobenius of Fq. This finishes the proof. �

3.3. Kollár’s example. J. Kollár constructed an example of a ratio-
nally connected surface X/Fq without rational point. Since rational

connectedness implies CH0(X × Fq(X)) = Q , Theorem 1.1 implies
that the singularities are worse than Witt-rational. Here is the exam-
ple. Let Y ′ = C × P1, where C is a genus ≥ 2 curve with C(Fq) = ∅,
let y = (ξ × α) ∈ Y ′, σ : Y → Y ′ be the blow up of the closed point
y (which is not rational), and set τ−1(C) = C ′ + E where E is the
exceptional locus and C ′ is the proper transform of C × α. Then one
has

(C ′)2 = C2 − deg(ξ × α) = −deg(ξ × α),(3.15)

which one computes as when the ground field is algebraically closed by
writing

(C ′ + E) · C ′ = C2 = 0.(3.16)

Thus we conclude that

(C ′)2 < 0.(3.17)

Thus if k = Fq, by Artin theorem ([1], Theorem 2.9), there is a con-
traction τ : Y → X, where X is a projective surface with σ|Y \C′ =
isomorphism and σ(C ′) = x ∈ X. This yields the correspondence

X

σ

x
Y

τ−−−→ Y ′

(3.18)

If deg α > 1, then X has no rational point and yet X×kK is rationally
connected for any algebraically closed field K containing k.

We explain now this example cohomologically. We denote by H(Z)
rigid cohomology H(Z/K). As τ is a blow up on a smooth surface, one
has

τ ∗ : H1(Y ′)
∼=−→ H1(Y )(3.19)

therefore

H1(Y )
rest−−→ H1(C ′)(3.20)
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is injective and not surjective as α is not a rational point. For exam-
ple, if we request α to be of degree 2, then H1(C ′)/H1(Y ) ∼= H1(C).
Consequently

(H1(C ′)/H1(Y ))<1 6= 0.(3.21)

This yields

H1
c (Y \ C ′) = H1(X) = 0(3.22)

0→ H1(C ′)/H1(Y )→ H2
c (Y \ C ′) = H2(X)

σ∗−→ H2(Y )

and violates Proposition 2.4. Therefore the singularities of X are not
Witt-rational.
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Math. vol. 340, 363-400, Berlin Heidelberg New York Springer 1973.

[7] Esnault, H.: Hodge type of subvarieties of Pn of small degrees. Math. Ann.
288 (1990), no. 3, 549-551.

[8] Esnault, H.: Varieties over a finite field with trivial Chow group of 0-cycles
have a rational point, Invent. math. 151 (2003), 187-191.

[9] Esnault, H.: Deligne’s integrality theorem in unequal characteristic and ratio-
nal points over finite fields, preprint 2004, 10 pages, appears in the Annals of
Mathematics.
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[15] Levine, M.: Mixed Motives, Mathematical Surveys and Monographs 57 (1998),
American Mathematical Society.

[16] Shioda, T.: An example of unirational surfaces in characteristic p, Math. Ann.
211 (1974), 233-236.

E-mail address: manuel.blickle@uni-essen.de

E-mail address: esnault@uni-essen.de

Universität Duisburg-Essen, Mathematik, 45117 Essen, Germany


