
A FORMULA FOR GAUSS-MANIN DETERMINANTS

SPENCER BLOCH AND HÉLÈNE ESNAULT

Abstract. We give an explicit formula for the determinant of the
Gauß-Manin connection for an irregular connection on a Zariski
open set of the projective line P1K over a function field K over a
field k of characteristic zero.

I hasten to write down in verse what I saw then,
For the scene lost to sight can’t be revived again.

Su Shi

1. Introduction

Let K be a function field over a field k of characteristic 0, and let
j : U ⊂ P1

K be a Zariski open set of the projective line. We con-
sider a flat connection (E,∇) on U . The de Rham cohomology groups
H i
DR(U/K,∇/K) carry a K/k connection, the Gauß-Manin connection,

and taking the alternate tensor of the determinant connections

⊗(detH i
DR(U/K,∇/K),Gauß−Manin)(−1)i ,

one defines the Gauß-Manin determinant connection, denoted by

detHDR(U/K,∇/K).

This invariant is living in the group of isomorphism classes of K-lines
endowed with a connection, which is the abelian group

Ω1
K/d logK×.

The aim of this article is to give an explicit formula for it (see theorem
1.3 for a vague formulation, and 2.8 for a precise one) under a genericity
assumption on (E,∇). Special examples are contained in [4].

We comment briefly on the meaning and interest in such a formula.
There is a deep analogy between connections on curves over function
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fields in characteristic 0 and `-adic sheaves E` on curves U over finite
fields Fq. Irregular singular points for the connection correspond to
wild ramification at ∞ for the `-adic sheaf, and the Gauß-Manin de-
terminant connection corresponds to the global epsilon factor

ε(E`) := det(−f | detRΓ(U, E`)).

Our hope is that the local formula we obtain for higher rank irregu-
lar connections will suggest local formulas for ε-factors extending the
abelian Tate theory.

The Gauß-Manin construction is fairly standard and we do not recall
it in detail. By way of example, we cite two classical formulas (Gauß
hypergeometric and Bessel functions, respectively) :

Γ(b)Γ(c− b)
Γ(c)

F (a, b; c; z) =

∫ 1

0

ub−1(1− u)c−b−1(1− uz)−adu

Jn(z) =
1

2πi

∫
S0

u−n exp
z

2

(
u+

1

u

)du
u

(S0 = circle about 0).

In both cases, the integrand is a product of a solution of a rather
simple degree 1 differential equation in u, the solution being either

ub−1(1− u)c−b−1(1− uz)−a or u−n exp
z

2

(
u+

1

u

)
,

with an algebraic 1-form (du or du
u

). The integral is taken over a chain
in the u-plane. The resulting functions F (a, b; c; z) and Jn(z) satisfy
Gauß-Manin equations, which are much more interesting degree 2 equa-
tions in z.

It is not our purpose to go further into the classical theory, but, to
understand the rôle of the determinant, we remark that in each of the
above cases, there is a second path and a second algebraic 1-form such
that the two integrals, say f1(z) and f2(z), satisfy the same second
order equation. The Wronskian determinant∣∣∣∣f1 f2

df1
dz

df2
dz

∣∣∣∣
satisfies the degree 1 equation given by the determinant of Gauß-Manin.
It seems to us to be possible using the theory of Stokes structures to
formulate a theory of period integrals for irregular connections in such
a way that the Gauß-Manin determinant connection has as solution
the determinant of the period matrix. We hope to return to this in a
future paper.
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Let X be a complete, smooth curve over K. For purposes of this
article, we define the group of relative algebraic differential characters

(1.1) AD2(X/K) := H2(X,K2
d log−→ Ω2

X/(OX ⊗ Ω2
K))

(The notation here differs from [7], as one has factored out 2-forms
coming from the base and in particular truncated the differential forms
of degree 3). The transfer

(1.2) f∗ : AD2(X/K)→ AD1(K) = Ω1
K/d logK×

maps the group of relative algebraic differential characters of degree 2
on X to the group of algebraic characters of degree 1 on K, which is the
group of connections on K. Indeed this is an isomorphism (lemma 2.7).
But to write connections on K as coming from differential characters
on X allows to single out two types of classes, global decomposable
classes and local classes, which we discuss in the sequel.

Let D =
∑
mixi be an effective divisor on X, and let D =

∑
xi be

the corresponding reduced divisor. We define a sheaf of meromorphic
1-forms

(1.3) Ω1
X(D −D) ⊂ Ω1

X{D} ⊂ Ω1
X(D)

as follows. If z is a local parameter at a point x of multiplicity m in D,
a 1-form is a section of Ω1

X{D} if it can be written in local coordinates
in the form

(1.4)
fdz

zm
+

η

zm−1

where f ∈ OX,x and η ∈ OX,x ⊗ Ω1
K are regular at x. We define

Ωp
X{D} = Ω1

X{D} ∧ Ωp−1
X ⊂ Ωp

X(D). There is an exact sequence

(1.5) 0→ OX(D −D)⊗ Ω1
K → Ω1

X{D} → ωX/K(D)→ 0

where we write ωX/K for the sheaf of relative 1-forms.
The graded algebra ⊕n ∧n (Ω1

X{D}) is closed under exterior d. Fur-
ther, writing I = O(−D) ⊂ OX for the ideal sheaf, we have

(1.6) d log((1 + I)×) ∧ Ωp
X{D} ⊂ Ωp+1

X .

Let E be a vector bundle on X, and let

(1.7) ∇ : E → E ⊗ Ω1
X{D}

be an absolute connection (i.e. parameters from K are also differenti-
ated).

Definition 1.1. The connection ∇ is vertical, if the curvature

∇2 : E → E(∗D)⊗ Ω2
K .
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We assume our connection ∇ is vertical. (Of course the most impor-
tant case is that of a flat connection ∇2 = 0.) We write ∇/K : E →
ωX/K(D) for the corresponding relative connection. Viewing D as a
nilpotent subscheme of X, it is easy to check that ∇ induces a function
linear “polar part” map

∇D : E|D → E ⊗
(

Ω1
X{D}

/
Ω1
X

)
(Absolute)(1.8)

∇D/K : E|D → E ⊗ ωD/K = E ⊗ (ωX/K(D)/ωX/K) (Relative)

Definition 1.2. The connection (1.7) is said to be admissible if the
relative polar parts map ∇D/K : E|D → E ⊗ ωD/K is an isomorphism
in a singular point of multiplicity ≥ 2, and if in a singular point of
multiplicity 1, Deligne’s condition [6] that the eigenvalues of the residue
do not belong to {0, 1, 2 . . .} is fulfilled.

Notice that the notion of admissibility depends on the extension of
E to all of X. Although the definition makes reference only to the
relative connection, admissibility depends also on the absolute connec-
tion, which is required to take values in Ω1

X{D} ⊂ Ω1
X(D). It is a

local formal property. The motivation for this definition comes from a
struture theorem ([8], [13], [9], compare also with [10], p.124) asserting
that locally formally, after ramification of the curve, a flat connection
(E,∇) becomes a direct sum of summands L⊗ Λ, where Λ is a higher
rank flat connection with logarithmic singularities, and L is either a
rank 1 trivial connection or a rank 1 flat connection with multiplicity
≥ 2 (strictly speaking, this is proven in [9] only over C, outside of a
Baire set). Since rank 1 vertical connections are admissible ([3], lemma
3.1), we see that up to ramification, any flat connection is locally of
sum of admissible and logarithmic connections.

For a rank 1 vertical connection we may view

(1.9) ∇D/K : E|D ∼= E|D ⊗ ωX/K(D)|D
as defining a trivialization of ωX/K(D)|D, i.e. a class (ωX/K(D),∇D/K) ∈
Pic(X,D). There is a cohomological pairing (j : X −D ↪→ X)

{ , } : Pic(X,D)⊗H1(X, j∗O×X−D → Ω1
X{D})(1.10)

→ AD2(X) = H2(X,K2
d log−−→ Ω2

X)

and in the rank 1 case (see main theorem of [3])

detHDR(U/K,∇/K) = −f∗{(ωX/K(D),∇D/K), (E,∇)}(1.11)

∈ Ω1
K/d logK× ⊗Q.
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In higher rank, however, we have examples of connections (E,∇) with
(det(E), det(∇)) trivial but non-trivial Gauß-Manin determinant con-
nection (see [4], remark 3.3, equation 3.27, and remark 2.9).

mH Still, we choose a meromorphic section s ∈ ωX/K(D) ⊗ K(X)
which generates the sheaf at the points of D defines a rigidification
c1(ωX/K(D), s) ∈ Pic(X,D). We keep this choice fix, and express the
invariants needed for the formula as a function of s. The choice of s
allows to define a class

{c1(ωX/K(D), s), det(E,∇)} ∈ AD2(X).

We refer to it as the global factor (see formula (2.5)).
mH mH
In each singularity, we define local factors (see proposition 2.4) de-

pending on the choice of s as a rational section of ωX(D), which play
the rôle of the local epsilon factors defined to express the global epsilon
of an `-adic sheaf. If Ai = gis + νi, with νi ∈ Mr(Ω

1
K ⊗ K(X)) and

gi ∈ GLr(OX,ai), is the equation of ∇ in a local basis around the point
ai ∈ D, one defines Trdgig

−1
i Ai ∈ AD2(X/K).

We finally define a 2-torsion local factor 1
2
d log(dethi(ai))) ∈ AD2(X/K)

(see definition 2.5), which depends only on the relative connection

∇X/K , with local equation Ai = hi
d(z)
zmi

for a local parameter z at ai ∈ D,
with hi ∈ GLr(OX,ai). It does not depend on s. (Note the relation be-

tween gi and hi: if s = w d(z)
zmi

at the point, for a local unit w ∈ O×X,ai ,
then gi = whi.)

The main theorem of this article says mH

Theorem 1.3. Let (E,∇) be an admissible connection on P1
K having

at least one point of multiplicity ≥ 2. Then mH mH

detHDR(U,∇/K) = −f∗{c1(ωX/K(D), s), det(E,∇)}+∑
i

resai Tr
(
dgig

−1
i Ai

)
+
mi

2

∑
i

d log(det(hi(ai)))

∈ Ω1
K/d log(K×).

(See theorem 2.8 for a slightly more precise formulation).
The cases rank (E) = 1, resp. ∇ with logarithmic poles, were con-

sidered in the earlier articles [3], resp. [2], except (mH ??) that
for the rank 1 case, our results did not include torsion. In those
two cases, there is a well defined class γ(E,∇) ∈ AD2(X) such that
f∗γ(E,∇) = detHDR(U/K,∇/K) modulo torsion. In the higher rank,
non-logarithmic case considered here, one still has the global factor in
AD2(X), but the local factors are well defined in AD2(X/K) only (see
proposition 2.4).
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It would be of great interest to find some variant of this formula
which applied to epsilon factors for `-adic sheaves.

We now discuss the proof of the main theorem. Let K be a field in
characteristic 0. A classical theorem by Euler ([12], III, 6, lemma 2)
asserts that if g ∈ K[t] is a polynomial, and h ∈ L = K[u]/gK[u], then
the trace of multiplication by h, viewed as a K-linear map from L to
itself, is computed by

−resu=∞dgg
−1h.

We define a generalization of this in the non-commutative situation
as follows. Let V be a finite dimensional K-vectorspace, and g =∑

i=0 giu
i ∈ End(V )[u] be a polynomial with coefficients in the en-

domorphisms of E, such that the leading coefficient gm ∈ Aut(V ) is
invertible. The invertibility of gm allows us to write an element of W =
V [u]/gV [u] as the class of an element

∑m−1
r=0 viu

i, where vi ∈ V , yield-
ing a splitting σ : W → V [u] of the natural projection p : V [u] → W .
For any h ∈ End(V )[u], φ(h) := p ◦ h ◦ σ : W → W will have a trace.
Proposition 5.1 says

TrV [u]/gV [u](φ(h)) = −TrV resu=∞(dgg−1h).

The second point is to relate the trace of this linear operator with
the trace of a differential operator. The crucial case to understand is
that of a connection on a trivial bundle E = V ⊗K OP1 on P1

K . Such a
connection is given by a matrix which has the shape

(1.12)
N∑
i=1

mi∑
r=1

g
(i)
r d(t− ai)
(t− ai)r

+ η = g + η,

where g
(i)
r ∈ End(V ) and η ∈ End(V ) ⊗ Ω1

K ⊗ OP1K (∗D). We write g
also for the corresponding matrix of relative forms, so ∇/K = d+g. We
fix a certain finite-dimensional vector subspace σ : H ↪→ H0(P1

K , V ⊗K
ω(∗D)) such that composition with the natural projections give iso-
morphisms

H
σ→ H0(P1

K , V ⊗K ω(∗D))
p∇→ H1

DR(U/K,∇/K)(1.13)

= H0(P1
K , V ⊗K ω(∗D))/Im∇/K

H
σ→ H0(P1

K , V ⊗K ω(∗D))
pg→ H0(P1

K , V ⊗K ω(∗D))/Im g

The operators

η∇ := (p∇ ◦ σ)−1p∇ ◦ η ◦ σ : H → H ⊗ Ω1
K

ηγ := (pg ◦ σ)−1pg ◦ η ◦ σ : H → H ⊗ Ω1
K
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will be referred to as the (Gauß-Manin) de Rham operator and Higgs
operator respectively. The traces of these operators play a central rôle
in the Gauß-Manin determinant, and the remarkable fact is that for an
admissible, vertical connection on a trivial bundle on P1

K one finds

(1.14) Tr(η∇ − ηγ) ≡
1

2

∑
i

mid log(det(g(i)
mi

)) mod d log(K×).

(Here the g
(i)
mi are as in (1.12).) This result is theorem 3.6. It is reminis-

cent of Hitchin’s comparison of de Rham and Higgs twisted cohomolo-
gies on projective manifolds, and of Kontsevich’s theorem comparing
de Rham and Higgs cohomology of df , where f is a regular function on
a manifold. Algebraically, if

(
gm
zm

+
gm−1

zm−1
+ . . .)dz +

ηm−1

zm−1
+
ηm−2

zm−2
+ . . . ,

represents the polar part of our admissible, vertical connection at a
point z = 0, the essential result (proposition 3.8) is that

Tr
m−1∑
s=0

g−1
m [gm−s, ηs]

is identically vanishing. We must confess that, even after performing
the computation, we don’t really understand its meaning.

Acknowledgements: It is a pleasure to thank A. Beilinson, C. Sabbah
and T. Saito for interesting discussions related to the topics discussed
in this article.

2. Admissible Connections

Let K be a function field over a field k of characteristic 0, f : X →
SpecK be a smooth projective curve, j : U ⊂ X a non-trivial Zariski
open set such that the closed points of D = X \ U are K rational
points, and (E,∇) a global connection of rank r on X which is regular
on U . Barring express mention to the contrary, we shall always assume
∇ to be vertical (definition 1.1). We shall need a small generalization
of the notion of admissibility introduced in definition 1.2.

Definition 2.1. The connection (E,∇) is pseudo-logarithmic at x ∈
X \ U if the local equation of ∇ in some basis of E has the shape

A = g
dz

z
+
η

z
,
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where z is a local parameter around x, η ∈ M(r × r,Ω1
K ⊗ OX), g ∈

GL(r,Ox). The connection (E,∇) is pseudo-admissible if it is admis-
sible in singularities with multiplicities m ≥ 2 and pseudo-logarithmic
in points with multiplicities m = 1.

We will use a very special simple shape of pseudo-logarithmic singu-
larities, which we single out in the following definition.

Definition 2.2. A special pseudo-logarithmic point of a connection
(E,∇) is pseudo-logarithmic, and there is local basis

(eν) = ((e1, . . . , es), (es+1, . . . , er))

with respect to which the block-matrix of the connection has the shape(
A+mdz

z
zB

C
z

D + ndz
z

)
,

where the connection matrix (
A B
C D

)
has no poles and m,n ∈ k.

A connection is special pseudo-logarithmic if it is admissible, and
special pseudo-logarithmic in pseudo-logarithmic points.

Working with pseudo-admissible connections will enable us to reduce
the Gauß-Manin determinant computation for a general (E,∇) on P1

to the case where E ∼= O⊕rP1 . We use the following:

Theorem 2.3. [Compare with [2], lemma 4.2 and reduction 4.1] Let
(E,∇) be an admissible connection on P1

K having a singularity of mul-
tiplicity ≥ 2. Then there are finitely many points pi ∈ U(K), such that
if λ : V = U \{pi} → P1

K denotes the open embedding, then (E|V ,∇|V )
extends to a special pseudo-admissible connection (⊕r1OP1K ,∇) on P1

K

such that

(⊕r1OP1K )
∇/K−−→ ω(D +

∑
i

pi)⊗ (⊕r1OP1K )

→ (λ∗EV
∇/K−−→ λ∗(ω ⊗ EV ))

is a quasiisomorphism.

Proof. Without loss of generality, we may assume that ∞ is a smooth
point of the connection. Let x be a point of multiplicity ≥ 2, and let
z be a local coordinate at x. Note the effect of twisting (i.e. replacing
E by E(Nx)) is to replace the local connection matrix A at x with
respect to a basis ei with A − N dz

z
I for the basis ei

zN
. In particular,
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x will remain an admissible singularity for the new connection. After
such a twist, we may assume E = ⊕ri=1O(ni), with 0 ≤ n1 ≤ n2 ≤ . . ..
We argue by induction on nr − n1. If nr − n1 = 0, we replace E by
E(−n1x) and argue as above.

Assume nr − n1 > 0. Let E ′ = ⊕r−1
i=1O(ni) ⊕O(nr − 1), and embed

E ′ in E via O((nr − 1)∞)→ O(nr∞). If z is a local parameter at ∞,
and eν is a local basis of O(nν) at ∞, then ((eν , µ ≤ r − 1), zer) is a
local basis of E ′, and if (

A B
C D

)
(2.1)

is the local block matrix of the connection∇ in the basis ((e1, . . . , er−1), er),
then ( A zB

C
z

D + dz
z

)
(2.2)

is the local block matrix of the connection in the basis ((e1, . . . , er−1), zer).
If C has a local expansion C = C0 + C1z + . . ., then the polar part of
this connection is ( 0 0

C0

z
dz
z

)
.(2.3)

Thus replacing now E ′ by E ′′ = E ′(2∞) ∼= ⊕r−1
i=1O(ni + 2)⊕O(nr + 1),

the local equation of the connection at ∞ becomes(
A− 2dz

z
0

C
z

D − dz
z

)
,(2.4)

and therefore, is pseudo-admissible. On the other hand, nr − n1 has
decreased. We conclude by induction. �

Next we describe the class γ(E,∇) ∈ AD2(X/K) := H2(X,K2
d log−→

Ω2
X/OX⊗Ω2

K) from theorem 2.8. If we choose a meromorphic section s
of ωX/K(D) which generates this sheaf in a neighborhood of D, we may
view s as defining a trivialization of ωX/K(D)|D, i.e. a class (ω(D), s) ∈
Pic(X,D). As in (1.10), we may consider the product

{(ω(D), s), (det(E), det(∇))} ∈ AD2(X).(2.5)

We refer to this class as the global factor.
Fix a basis ei for E in a neighborhood of D. the choice of ei de-

termines a local connection matrix A, so ∇ = d + A. Let OX,D de-
note the semi-local ring of functions regular at all points of D. The
choice of s determines g ∈ GLr(OX,D) such that the relative connection
∇/K = d+gs. Note the hypothesis of pseudo-admissibility insures that
g is invertible.
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The basic local invariant we consider is

(2.6) Tr(dgg−1A) ∈ H0
(
X,Ω2

X{D}
/(

Ω2
X +OX(D −D)⊗ Ω2

K

))
.

The boundary map from the exact sequence

(2.7) 0→ Ω2
X/OX ⊗ Ω2

K → Ω2
X{D}

/(
OX(D −D)⊗ Ω2

K

)
→ Ω2

X{D}
/(

Ω2
X +OX(D −D)⊗ Ω2

K

)
→ 0

together with the evident map H1(X,Ω2
X/OX ⊗ Ω2

K) → AD2(X/K)
enables us to define an element, which we denote by abuse of notation

(2.8) Tr(dgg−1A) ∈ AD2(X/K).

Proposition 2.4. Let (E,∇) be a pseudo-admissible vertical connec-
tion on X. The element Tr(dgg−1A) (2.8) is independent of the choice
of local bases around D. The element

(2.9) −{(ω(D), s), (det(E), det(∇))}+ Tr(dgg−1A) ∈ AD2(X/K)

is independent both of the choice of local bases and the trivializing mero-
morphic section s of ω(D).

Proof. We show first that Tr(dgg−1A) is independent of the local bases.
We work locally around a point x which is a singular point of the
connection with multiplicity m. We assume first that s = dz

zm
for a

local coordinate, and that the connection matrix is

A =
gdz

zm
+

η

zm
.

with g ∈ GLr(O) and η ∈ Mr(O ⊗ Ω1
K). (This includes both the

admissible and pseudolog cases.) We take a gauge transformation of
the form A 7→ φAφ−1 + dφφ−1 with φ ∈ GLr(O). This amounts to

g 7→ φgφ−1 + zm
dφ

dz
φ−1; η 7→ φηφ−1 + zmdKφφ

−1.

Here d = dz + dK . We claim

Tr(dgg−1A) ∈ Ω2
X(D)

/(
O(D)⊗ Ω2

K + Ω2
X

)
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is invariant. We compute (writing T (A) := Tr(dgg−1A), and computing
modulo Ω2

X)

(2.10) T (φAφ−1 + dφφ−1) =

Tr
(
d(φgφ−1 + zm

dφ

dz
φ−1)(φgφ−1 + zm

dφ

dz
φ−1)−1(φAφ−1 + dφφ−1)

)
≡

Tr
(
d(φgφ−1 + zm

dφ

dz
φ−1)φg−1φ−1φAφ−1

)
≡

Tr
(

(dφφ−1 + φdgg−1φ−1 − φgφ−1dφφ−1φg−1φ−1

+mzm−1dφ

dz
g−1φ−1dz)φAφ−1

)
≡

Tr
(
φ−1dφA+ dgg−1A− gφ−1dφg−1A+mzm−1φ−1dφ

dz
g−1dz ∧ A

)
≡

Tr
(
dgg−1A+ φ−1dφ(A− g−1Ag) +mzm−1φ−1dφ

dz
g−1dz ∧ A

)
≡

Tr
(
dgg−1A+ φ−1dφ

dz
g−1dz(gA− Ag +mzm−1A)

)
(Note that gA−Ag has entries in Ω1

K ⊗K(X), justifying replacing dφ
by dφ

dz
dz.) To show invariance, it will suffice to show

dz ∧ (gA− Ag +mzm−1A) ≡ 0 mod Ω2
X .

This expression can be written

(∗) =
dz

zm
∧ [g, η] +m

dz

z
∧ η.

Verticality gives

dg ∧ dz

zm
+mη ∧ dz

zm+1
+
dzη

zm
=

dz

z2m
[g, η]

Multiplying through by zm, the expression (∗) above becomes

(∗) ≡ m
dz

z
∧ η +mη ∧ dz

z
≡ 0 mod Ω2

X .

It remains to show independence of s. Let s′ = fs where f is mero-
morphic on X and invertible on D. Consider a diagram
(2.11)

H0(O×D)
∂−−→ H1((1 + ID)×) = Pic(X,D) −−→ H1(O×X) = Pic(X)

× × ×

Ω1
X{D}

/(
Ω1
X + d log j∗O×X−D

)
←−− H1(j∗O×X−D → Ω1

X{D}) ←−− H1(O×X → Ω1
X)y y y

Ω2
X{D}

/(
Ω2
X + d log j∗K2,OX−D

)
−−→ AD2(X/K) AD2(X/K)
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The classes of the rigidified bundles (ω(D), s) and (ω(D), fs) differ

by ∂(f̃), where f̃ ∈ H0(OD) is the image of f . It follows that (with
notation as above)

(2.12) {(ω(D), fs)(ω(D), s)−1, (det(E), det(∇))} = Tr(
df̃

f̃
A)

Replacing s with fs in (2.9), this gives the desired invariance. �

mH To complete the construction of the class γ(E,∇) ∈ AD2(X/K)
we need two more invariants, which are 2-torsion.

Let x ∈ D and assume m ≥ 2, where m is the multiplicity of x in D.
Let z be a local coordinate at x. Write the local relative connection
∇/K = d+ h dz

zm
= hmdz

zm
+ hm−1dz

zm−1 + . . . with hm ∈ GLr(K).

Definition 2.5. If the multiplicity is ≥ 2, the invariant

τx(E,∇/K) :=
m

2
d log(det(hm)) ∈ 1

2
d log(K×)

/
d log(K×)

is associated to the rank 1 quadratic form

dethmm ∈ K×/(K×)2 ∼= H1(K,Z/2Z).

In a point of multiplicity 1, we set τx(E,∇/K) = 1.

A change of local gauge replaces h with PhP−1 + zmdP
dz
P−1 with

P ∈ GLr(K[[z]]). It follows that det(hm) is invariant under gauge
transformation of m ≥ 2. On the other hand, replacing z with z′ = uz
leads to h′m = um−1gm, whence det(h′m) = ur(m−1) det(hm) and

m

2
d log(det(h′m)) =

m

2
d log(det(hm)) +

rm(m− 1)

2
d log(u(0)),

so the definition is independent of the choice of z. mh Another way to
phrase this is to refer to [11], chapter 6, section 8: the quadratic ω(D)-

valued quadratic form defined by the matrix hd(z)
zm

is not well defined,
but the first Stiefel-Whitney class of its residue is (we are thankful to
J.-P. Serre for showing us the reference [11]).

mH mH For x ∈ X(K), we define a map

(2.13) ρx : K×/K×2 → AD2(X/K)

as follows. One has a map of exact sequence of complexes
(2.14)

K2X −→ jx∗K2,X−{x} −→ ix∗K
×y y ya

Ω2
X/OX ⊗ Ω2

K −→ Ω2
X{x}/OX ⊗ Ω2

K −→ Ω2
X{x}/

(
OX ⊗ Ω2

K + Ω2
X

)
.
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Write z for a local coordinate and let a be as in (2.14). The mapping

(2.15) K× ⊗Q/Z→ coker(a); κ⊗ 1

n
7→ 1

n

dz

z
∧ dκ
κ

is well-defined. We compose this with the boundary map from (2.14)
to define ρx. mH

Definition 2.6. Let (E,∇) be a pseudo-admissible connection as above,
with local equation Ai = gis + νi in a local basis at the point ai ∈ X,
with gi ∈ GLr(OX,ai) and νi ∈Mr(Ω

1
K ⊗K(X)). Then

(2.16) γ(E,∇) = −{(ω(D), s), (det(E), det(∇))}

+ι(ωX , s)+
∑
ai∈D

Tr(dgig
−1
i Ai)+

∑
x∈D,mx≥2

ρx(τx(E,∇/K)) ∈ AD2(X/K).

We continue to assume f : X → Spec (K) is a smooth, projective
curve. The transfer map f∗ : AD2(X/K) → Ω1

K/d log(K×) is defined
as follows. We remark that H2(X,K2) = (0) and Ω2

X/OX ⊗ Ω2
K
∼=

ωX/K ⊗ Ω1
K , and we define f∗ from the diagram

(2.17)

H1(X,K2) −→ H1(X,ωX/K)⊗ Ω1
K −→ AD2(X/K) −→ 0yTr

y∼= yf∗
K× −→ Ω1

K −→ Ω1
K/d log(K×) −→ 0

The check that with γ(E,∇) defined as in (2.16), f∗γ(E,∇) has the
form as in theorem 1.3 is straightforward and will be omitted. Since
the trace map Tr : H1(X,K2) → K×, which is simply defined on the
generators ⊕xλx ∈ ⊕x∈X(1)K(x)× by Tr[K(x):K]d log λx, is surjective, we
obtain the

Lemma 2.7. The transfer map

f∗ : AD2(X/K)→ AD1(K) = Ω1
K/d logK×

is an isomorphism.

Now we are in the position to give a slightly more precise formulation
of our main theorem.

Theorem 2.8. Let (E,∇) be a special pseudo-admissible connection on
P1
K, smooth over ∅ 6= U ⊂ P1

K, such that the singularities P1
K \ U = D

of ∇ consist of K-rational points. Then, with the notation of definition
2.6, one has

detHDR(U/K,∇/K) = f∗γ(E,∇) ∈ AD1(K) = Ω1
K/d logK×.

Finally, we take a moment to point out some simple consequences of
theorem 2.8.
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Remark 2.9. (i). Let (E,∇) be an admissible connection on P1
K , and

let (E∨,∇∨) be the dual connection. then

(2.18) detHDR(E,∇) ∼= detHDR(E∨,∇∨)(−1).

Indeed, replacing E with E∨ replaces g with −tg and A with −tA.
Verticality and admissibility imply that [g, A] has no pole, so

Tr(d(−tg)(−tg)−1(−tA)) = −Tr(t(g−1dg)tA) = −Tr(g−1dgA)

= −Tr(dgAg−1) = −Tr(dgg−1A).

(ii). In [4], remark 3.3, equation 3.27, we give an example of an admis-
sible connection on P1

K with trivial determinant, for which the deter-
minant of the Gauß-Manin connection is not torsion. More generally,
given the main theorem of [3], if (L,∇L) and (M,∇M) are two con-
nections, say on P1

K , with the same singularities D, which are generic
enough so that the singularites of (L⊗M,∇L⊗∇M) are exactly D as
well, then detA, with

A =
( L⊗M 0 0

0 L−1 0
0 0 M−1

)
(2.19)

is trivial, while the main theorem of [3] says that the Gauß-Manin
determinant is computed by

c1(ω(D),ΓL + ΓM) · c1(∇L +∇M)(2.20)

−c1(ω(D),ΓL) · c1(∇L)− c1(ω(D),ΓM) · c1(∇M),

where ΓL and ΓM are the principal parts of ∇L and ∇M . For generic
L and M , this won’t vanish.

3. Higgs and de Rham Traces

In this section we introduce the concepts of Higgs and de Rham
operators associated to a vertical pseudo-admissible connection on the
trivial bundle on P1

K , and analyse the difference between the traces of
those operators.

It will be convenient to write E = V ⊗ O with V = Γ(P1, E). Let
(eµ), µ = 1, . . . , r be a basis of V . The connection ∇ will be a vertical

pseudo-admissible connection on E with poles on D =
∑N

i=1(ai) where
for simplicity we take ai ∈ P1(K). We assume ∞ 6∈ D. The relative
connection is given by

(3.1) ∇/Keµ =
N∑
i=1

mi∑
r=1

g
(i)
r (eµ)dt

(t− ai)r
.
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Here the g
(i)
r are matrices with entries inK. The admissibility condition

implies that g
(i)
mi is invertible over OP1K ,ai . Regularity of the connection

at infinity means

N∑
i=1

g
(i)
1 = 0.(3.2)

Definition 3.1. Let Mi = mi − 1 if mi ≥ 2, and Mi = mi = 1 else.

The absolute connection has the following equation

(3.3) ∇eµ =
N∑
i=1

mi∑
r=1

g
(i)
r (eµ)d(t− ai)

(t− ai)r
+

N∑
i=1

Mi∑
r=1

η
(i)
r (eµ)

(t− ai)r
+ η0(eµ),

where the η are matrices with entries in Ω1
K .

Definition 3.2. We define γK by ∇/K = d+ γK , thus concretely

γK =
N∑
i=1

mi∑
r=1

g
(i)
r dt

(t− ai)r
.

We define η by

η =
N∑
i=1

Mi∑
r=1

η
(i)
r

(t− ai)r
+ η0,

and γ by

γ =
N∑
i=1

mi∑
r=1

g
(i)
r d(t− ai)
(t− ai)r

,

so that ∇ = d+ γ + η.

We have natural identifications

Γ(E(∗D)) = V [
1

t− a1

, . . . ,
1

t− aN
](3.4)

Γ(E ⊗ ω(∗D))  V [
1

t− a1

, . . . ,
1

t− aN
]dt(3.5)

where the strict inclusion in (3.5) comes from the requirement of no
poles at infinity.

The following lemma will be useful in the sequel.

Lemma 3.3. For integers r, s ≥ 1 one has a formal identity

1

(t− a)r(t− b)s
=

r∑
p=1

Ap(a, b)

(t− a)p
+

s∑
q=1

Bq(a, b)

(t− b)q
.
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One has

Ar = (a− b)−s; Bs = (−1)r(a− b)−r = (b− a)−r.

The partial fraction expansion of 1
(t−b)s(t−a)

begins

1

(t− b)s(t− a)
=

(a− b)−s

t− a
− (a− b)−s

t− b
+ . . .

In particular, we have

(3.6)
1

(t− b)s
(d(a− b) ∧ dt

t− a
− d(aN − b) ∧ dt

t− aN

)
= (a− b)−sd(a− b) ∧ dt

( 1

t− a
− 1

t− aN

)
+
(

(aN − b)−sd(aN − b) ∧ dt− (a− b)−sd(a− b) ∧ dt
)

×
( 1

t− b
− 1

t− aN

)
+ terms involving

1

(t− b)r
for r ≥ 2.

Proof. We have

(3.7)
1

(t− b)s(t− a)r

=
1

(s− 1)!(r − 1)!

( d
db

)s−1( d
da

)r−1((a− b)−1

t− a
− (a− b)−1

t− b

)
.

The formulas in the lemma follow easily from this. �

Definition 3.4. We denote by H
σ
↪→ Γ(E ⊗ ω(∗D)) be the K-vector

subspace with basis

eµdt

(t− ai)r
,

{
2 ≤ r ≤ mi 1 ≤ i ≤ N − 1

2 ≤ r ≤ mN − 1 i = N
,(3.8)

eµdt
( 1

t− ai
− 1

t− aN

)
, i < N.

There are two splittings of σ,

πγ : Γ(E ⊗ ω(∗D))→ Γ(E ⊗ ω(∗D))/γKΓ(E(∗D)) ∼= H

π∇ : Γ(E ⊗ ω(∗D))→ Γ(E ⊗ ω(∗D))/∇/KΓ(E(∗D)) ∼= H

There is a multiplication map

η : Γ(E ⊗ ω(∗D))→ Γ(E ⊗ ω(∗D))⊗ Ω1
K .

We define now two K-linear operators.
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Definition 3.5. The composite map

ηγ := πγ ◦ η ◦ σ : H → H ⊗ Ω1
K

(resp.

η∇ := π∇ ◦ η ◦ σ : H → H ⊗ Ω1
K)

will be called the Higgs (resp. de Rham) operator. Similarly, if h is one

of the terms η
(i)
r

(t−ai)r appearing in the definition of η, we denote by hγ
and h∇ the corresponding Higgs and de Rham operators.

The rest of this section is devoted to the comparison of the trace of
those two K-linear operators. We will show

Theorem 3.6. Let (E,∇) be a pseudo-admissible connection on the
trivial bundle E ∼= ⊕r1OP1K on P1

K having at least one singularity of
order ≥ 2. Then

Tr(ηγ − η∇) ≡ 1

2

∑
mi≥2

mid log(det(g(i)
mi

)) mod d logK×.

We assume henceforth that mN ≥ 2.
Suppose first ai is a pseudo-logarithmic point for the connection. We

write h = η(i)

t−ai , and we compute Tr(h∇)− Tr(hγ).

The notation x = y+ (H) will mean x and y differ by an element in
H. The pattern is then we take x in the basis of H. We write

h(x) = γKy + (H) = ∇/Ky
′ + (H).(3.9)

Then

z := h∇(x)− hγ(x) = −dy′ + γK(y − y′).(3.10)

Of course, if h(x) ∈ H then y = y′ = z = 0. Also, we are only
interested in the trace, so if the expansion of z in the basis of H does
not involve x, we can ignore it. Suppose e.g. x = eµdt

(t−aj)r , j 6= i.

Then h(x) = (∗)dt
(t−ai)(t−aj)r ∈ H (the condition to lie in H amounts to a

bound on the pole order together with no pole of the differential form
at infinity.) Thus such elements x contribute 0. Similarly, if j 6= i then

(∗)dt
(t− ai)(t− aj)

− (∗)dt
(t− ai)(t− aN)

∈ H(3.11)

so

x = eµdt
( 1

t− aj
− 1

t− aN

)
(3.12)

contributes 0.
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It remains to consider x = eµdt
(

1
t−ai −

1
t−aN

)
. We have

h(x) =
η

(i)
1 (eµ)dt

(t− ai)2
+ (H).(3.13)

So we can take

y =
(g

(i)
1 )−1η

(i)
1 (eµ)dt

t− ai
; y′ =

(g
(i)
1 − I)−1η

(i)
1 (eµ)dt

t− ai
.(3.14)

Write γK =
g
(i)
1 dt

t−ai + γ′K . Then

z = γ′K(y − y′).(3.15)

Since we are interested in the trace, we need only consider the coeffi-

cient of eµdt
(

1
t−ai −

1
t−aN

)
in the expansion of z in the basis of H. This

coefficient is the coefficient of eµ in

γ′K |t=ai(y − y′) =
∑
j 6=i
r

(ai − aj)−rg(j)
r

(
(g

(i)
1 − I)−1 − (g

(i)
1 )−1

)
η

(i)
1 (eµ).

(3.16)

Summing over µ yields finally

Tr(h∇ − hγ) = Tr
(∑

j 6=i
r

(ai − aj)−rg(j)
r

(
(g

(i)
1 − I)−1 − (g

(i)
1 )−1

)
η

(i)
1

)
.

(3.17)

Next we consider i with mi ≥ 2. Take first

x =
eµdt

(t− ai)r
;

{
2 ≤ r ≤ mi 1 ≤ i ≤ N − 1

2 ≤ r ≤ mN − 1 i = N
.

Since we have already handled the h = η(i)

t−ai in pseudo-logarithmic
points, we introduce the notation

η′ = η −
∑

pseudo−log

η(i)

t− ai
,(3.18)

γ′K = γK −
∑

pseudo−log

g
(i)
i

(t− ai)
dt.

Take

(3.19) y0 = (g(i)
mi

)−1η
(i)
mi−1(eµ)/(t− ai)r−1.

It follows from lemma 3.3 that η′x = γ′Ky0 + lower order terms. Here
“lower order terms” means terms with denominators (t − aj)

s where
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s ≤ mj, j 6= i and s ≤ mi + r − 2 for j = i. Now continue in this way,
replacing y0 by

(3.20) y = y0 +
r−2∑
s=0

vs
(t− ai)s

.

We may write

(3.21) η′(eµ)dt/(t− ai)r = γ′Ky +
N−1∑
j=1

mj∑
u=1

wj,udt

(t− aj)u
+

mN−1∑
u=1

wN,udt

(t− aN)u
.

From equations (3.19) and (3.20) we may also write

(3.22)
η′(eµ)dt

(t− ai)r
= (d+ γ′K)y +

N−1∑
j=1

mj∑
u=1

wj,udt

(t− aj)u
+

mN−1∑
u=1

wN,udt

(t− aN)u

+ (r − 1)(g(i)
mi

)−1η
(i)
mi−1(eµ)dt/(t− a)r +

r−2∑
s=1

svsdt

(t− ai)s+1
.

For r = 1 we may write for suitable v, wj,u ∈ Γ(E)
(3.23)

η′(eµ)dt(
1

t− ai
− 1

t− aN
) = γ′Kv +

N−1∑
j=1

mj∑
u=1

wj,udt

(t− aj)u
+

mN−1∑
u=1

wN,udt

(t− aN)u
.

Since dv = 0 in (3.23) we conclude from equations (3.17), (3.22) and
(3.23) that

(3.24) Tr(η∇ − ηγ) =
N−1∑
i=1

mi∑
r=2

(r − 1)Tr
(

(g(i)
mi

)−1η
(i)
mi−1

)
+

mN−1∑
r=2

(r − 1)Tr
(

(g(N)
mN

)−1η
(N)
mN−1

)
+
∑
i

mi=1

Tr
(∑

j 6=i
r

(ai − aj)−rg(j)
r

(
(g

(i)
1 − I)−1 − (g

(i)
1 )−1

)
η

(i)
1

)
.

(Notice that replacing γK by γ′K in (3.21), (3.22) and (3.23) will not
affect the trace calculation.) We now use the verticality condition dA =
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A ∧ A mod Ω2
K ⊗K(X).

(3.25) 0 =
N∑
i=1

mi∑
r=1

dg
(i)
r dt

(t− ai)r
+

N∑
i=1

Mi∑
s=1

sη
(i)
s dt

(t− ai)s+1

+
N∑

i,j=1

mi,Mj∑
r,s=1

[g(i)
r , η

(j)
s ]

dt

(t− ai)r(t− aj)s
+

N∑
i=1

mi∑
r=1

[g(i)
r , η0]

dt

(t− ai)r
.

Dropping terms with poles at t = ai of degree > Mi + 1, we find

(3.26) 0 =
N∑
i=1

mi∑
r=1

dg
(i)
r dt

(t− ai)r
+

N∑
i=1

Mi∑
s=1

sη
(i)
s dt

(t− ai)s+1

+
N∑

i,j=1; i 6=j

mi,Mj∑
r,s=1

[g(i)
r , η

(j)
s ]

dt

(t− ai)r(t− aj)s

+
N∑
i=1

∑
r+s≤Mi+1

[g(i)
r , η

(i)
s ]

dt

(t− ai)r+s
+

N∑
i=1

mi∑
r=1

[g(i)
r , η0]

dt

(t− ai)r
.

In an admissible point, we calculate as before, multiplying through
by

(g(i)
mi

)−1(t− ai)mi/dt

and set t = ai to get

(3.27) 0 = (g(i)
mi

)−1dg(i)
mi

+ (mi − 1)(g(i)
mi

)−1η
(i)
mi−1

+
∑
j 6=i

Mj∑
s=1

(g(i)
mi

)−1[g(i)
mi
, η(j)
s ]/(ai − aj)s +

∑
r+s=mi

(g(i)
mi

)−1[g(i)
r , η

(i)
s ]

+ (g(i)
mi

)−1[g(i)
mi
, η0].

Taking traces gives

(3.28) 0 = d log(det(g(i)
mi

)) + (mi − 1)Tr((g(i)
mi

)−1η
(i)
mi−1)

+
∑

r+s=mi

Tr
(

(g(i)
mi

)−1[g(i)
r , η

(i)
s ]
)
.

On the other hand, in a pseudo-logarithmic point, we multiply through
by (t− ai)2/dt and then set t = ai getting

η
(i)
1 = [η

(i)
1 , g

(i)
1 ].(3.29)
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Now discard those terms, multiply by (t − ai)/dt and set t = ai. One
gets

0 = dg
(i)
1 +

∑
j 6=i

Mj∑
s=1

(ai − aj)−s
(

[g
(i)
1 , η(j)

s ] + [g(j)
s , η

(i)
1 ]
)

+ [g
(i)
1 , η0].

(3.30)

Formula (3.29) gives

η
(i)
1 (g

(i)
1 − I) = g

(i)
1 η

(i)
1 ,(3.31)

whence, assuming the indicated matrices invertible, one has

η
(i)
1 (g

(i)
1 − I)−1 = (g

(i)
1 )−1η

(i)
1 .(3.32)

Using Tr(a[b, c]) = 0 if [a, b] = 0, multiplying equation (3.30) on the

left by (g
(i)
1 )−1 (resp. by (g

(i)
1 − I)−1) and taking traces yields

Tr
(∑

j 6=i

Mj∑
s=1

(ai − aj)−s(g(i)
1 )−1[g(j)

s , η
(i)
1 ]
)
∈ d logK×,(3.33)

Tr
(∑

j 6=i

Mj∑
s=1

(ai − aj)−s(g(i)
1 − I)−1[g(j)

s , η
(i)
1 ]
)
∈ d logK×.

We now get

(3.34)
∑
i

mi=1

Tr
(∑

j 6=i
r

(ai − aj)−rg(j)
r

(
(g

(i)
1 − I)−1 − (g

(i)
1 )−1

)
η

(i)
1

)
=
∑
i

mi=1

Tr
(∑

j 6=i
r

(ai − aj)−r
(

(g
(i)
1 − I)−1 − (g

(i)
1 )−1

)
η

(i)
1 g(j)

r

)

≡
∑
i

mi=1

Tr

(∑
j 6=i
r

(ai − aj)−r
(
η

(i)
1 (g

(i)
1 − I)−1 − (g

(i)
1 )−1η

(i)
1

)
g(j)
r

)

≡ 0 mod (d logK×).

Now one can compare (3.24), (3.28), and (3.34) and deduce:
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Proposition 3.7. With notation as in definition 3.5 above, and as-
suming that aN has multiplicty mN ≥ 2, one has

Tr(η∇−ηγ) ≡ −
N−1∑
i=1

mi

2

(
d log(det(g(i)

mi
))+Tr

∑
r+s=mi

(g(i)
mi

)−1[g(i)
r , η

(i)
s ]
)

− mN − 2

2

(
d log(det(g(N)

mN
)) + Tr

∑
r+s=mN

(g(N)
mN

)−1[g(N)
r , η(N)

s ]
)

mod d logK×.

To complete the proof of theorem 3.6, we must show

Proposition 3.8. Let (E,∇) be a vertical admissible connection, with
local equation

gmdz

zm
+
gm−1dz

zm−1
+ . . .+

ηm−1

zm−1
+
ηm−2

zm−2
+ . . .

in an admissible point. Then

Φ = Tr(g−1
m

m−1∑
s=0

[gm−s, ηs]) = 0

Proof. The connection ∇ is vertical. Vanishing for curvature terms
involving z−p for p ≥ m+ 1 implies

[gm, η`] + [gm−1, η`+1] + . . . [g`+1, ηm−1] = 0(3.35)

for ` = 1, . . . ,m− 1.

The tactic is to eliminate first η1 from Φ, then η2 etc. One easily
verifies matrix relations

[a−1, b] = −a−1[a, b]a−1(3.36)

Tr(g−1[a, b]) = −Tr(a[g−1, b]) = Tr(ag−1[g, b]g−1)

Tr(ag−1[b, η]g−1) = Tr(ag−1bηg−1)− Tr(bg−1ag−1η).

In particular,

Tr(ag−1[b, η]g−1) = Tr(ag−1bg−1[g, η]g−1) if ag−1b = bg−1a.(3.37)

Write

Φ = Trg−1
m [gm−1, η1] + Tr

m−1∑
s=2

g−1
m [gm−s, ηs].(3.38)
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This yields

Φ = −Trg−1
m gm−1g

−1
m [gm−1, η2] + Trg−1

m [gm−2, η2](3.39)

−Tr
m−1∑
s=3

g−1
m gm−1g

−1
m [gm−s+1, ηs] + Tr

m−1∑
s=3

g−1
m [gm−s, ηs].

Applying again now the relations (3.36) yields

Φ = Tr(−g−1
m gm−1g

−1
m gm−1g

−1
m + g−1

m gm−2g
−1
m )[gm, η2](3.40)

−Tr
m−1∑
s=3

g−1
m gm−1g

−1
m [gm−s+1, ηs] + Tr

m−1∑
s=3

g−1
m [gm−s, ηs].

Assume inductively that for some t ≥ 2, one can write Φ as follows:

Φ = Tr(
t∑

a=1

(−1)a−1
∑

τ1+...+τa=t

g−1
m gm−τ1 · · · g−1

m gm−τag
−1
m )[gm, ηt](3.41)

+Tr
m−1∑
s=t+1

t−1∑
`=0

(
∑̀
a=0

(−1)a
∑

τ1+...+τa=`

g−1
m gm−τ1 · · · g−1

m gm−τag
−1
m )[gm−s+`, ηs].

Applying (3.35) to the first line, and isolating the terms in ηt+1 and in
ηs, s ≥ (t+ 2), one obtains

Φ = F (t+ 1)+(3.42)

Tr
m−1∑
s=t+2

t∑
`=0

(
∑̀
a=0

(−1)a
∑

τ1+...+τa=`

g−1
m gm−τ1 · · · g−1

m gm−τag
−1
m )[gm−s+`, ηs],

with

F (t+ 1) = Tr(
t∑

a=1

(−1)a
∑

τ1+...τa=t

g−1
m gm−τ1 · · · g−1

m gm−τag
−1
m )[gm−1, ηt+1]

(3.43)

+Tr
t−1∑
`=0

(
∑̀
a=0

(−1)a
∑

τ1+...+τa=`

g−1
m gm−τ1 · · · g−1

m gm−τag
−1
m )[gm−t−1+`, ηt+1].

It remains to arrange F (t+ 1). To this aim, write

F (t+ 1) =
t∑

`=0

∑̀
a=0

∑
τ1+...+τa=`

Tr(3.44)

((−1)agm−τ1g
−1
m · · · gm−t−1+`ηt+1g

−1
m − (−1)agm−t−1+`g

−1
m · · · gm−τag−1

m ηt+1).

Now we group those terms differently. To a tuple (τ1, . . . , τa), with
τ1+. . .+τa = `, we associate the tuple (τ ′1, . . . , τ

′
a) with τ ′1+. . . τ ′a+τ1 =
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t + 1, τ ′a = t + 1− `, and otherwise τi = τ ′i−1 for i ≥ 2. Using the first
relation of (3.35) again, this gives for those 2 terms together

Tr(−1)ag−1
m gm−τ1g

−1
m · · · gm−t−1+`g

−1
m [gm, ηt+1].(3.45)

This shows that the relation (3.41) is true, with t replaced by t+ 1. As
the last equation of (3.35) for ` = m− 1 is [gm, ηm−1] = 0, one obtains
by induction that Φ vanishes on the variety defined by (3.35). �

Remark 3.9. Writing ai = gi and bi = ηi−1, the above proposition
can be restated as follows. Suppose a(t) = amt

m + . . .+ a1t and b(t) =
bmt

m + . . . + b1t are polynomials with matrix coefficients satisfying
a(0) = b(0) = 0 and am invertible. Assume [a(t), b(t)] = cmt

m +
lower order terms. Then Tr(a−1

m cm) = 0.

4. The Gauß-Manin Determinant: Step 1

In this section we begin the computation of the Gauß-Manin deter-
minant appearing in the main theorem 2.8.

We keep the same notations as in section 3. In particular, E is
a trivial bundle on P1

K with basis eµ, having at least one point of
multiplicity ≥ 2, D = {a1, . . . , aN}, and H ↪→ Γ(E ⊗ω(∗D)) is the K-
subspace with basis defined in 3.4. We continue to write ∇ = d+γ+ η
and ∇/K = d+ γK as in definition 3.2.

The Gauß-Manin connection is computed from the diagram

(4.1)
Γ(E(∗D)) Γ(E(∗D))y∇ y∇/K

Γ(E(∗D))⊗ Ω1
K −→ Γ(E ⊗ Ω1(∗D))

s←−→ Γ(E ⊗ ω(∗D))y∇/K⊗1

y∇
Γ(E ⊗ ω(∗D))⊗ Ω1

K

∼=−→
ι

Γ(E ⊗ Ω2(∗D)/F 2)

Here in the central column Ω refers to the Kähler differentials ΩP1K/k,

and F 2 := OP1(∗D)⊗Ω2
K ⊂ Ω2(∗D). We are interested in the induced

map from H1
DR = H1

DR/K(P1−D, (E,∇)), which is the cokernel of the

right hand column, to H1
DR ⊗K Ω1

K , which is the cokernel of the left
hand column. Let p : Γ(E ⊗ ω(∗D)) → H1

DR be the projection. By
construction, H ↪→ Γ(E ⊗ ω(∗D)) splits p. Let q : H1

DR
∼= H denote
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the splitting. The section s is given on H by

(4.2) s
( eµdt

(t− ai)r
)

=
eµd(t− ai)
(t− ai)r

;

s
(
eµdt

( 1

t− ai
− 1

t− aN
))

=
eµd(t− ai)
t− ai

− eµd(t− aN)

t− aN
.

Lemma 4.1. The Gauß-Manin determinant is the trace of the map

(q ⊗ 1) ◦ (p⊗ 1) ◦ ι−1 ◦ ∇ ◦ s : H → H.

Proof. Straightforward. �

Explicitly, this map is obtained by applying the projection (q ⊗ 1) ◦
(p⊗ 1) to the right hand side in

(4.3)
eµdt

(t− ai)r
7→

N∑
j=1

mj∑
s=1

g
(j)
s (eµ)d(ai − aj) ∧ dt

(t− aj)s(t− ai)r

+
∑
j

Mj∑
s=1

η
(j)
s (eµ) ∧ dt

(t− aj)s(t− ai)r

(4.4) eµdt
( 1

t− ai
− 1

t− aN

)
7→

N∑
j=1

mj∑
s=1

g(j)
s (eµ)

( d(ai − aj) ∧ dt
(t− aj)s(t− ai)

− d(aN − aj) ∧ dt
(t− aj)s(t− aN)

)

+
∑
j

Mj∑
s=1

η(j)
s (eµ) ∧ dt

( 1

(t− aj)s(t− ai)
− 1

(t− aj)s(t− aN)

)
.

We leave aside for the moment the terms in the trace involving η and
focus on the trace of the map which we rewrite using lemma 3.3 as

(4.5)
eµdt

(t− ai)r
7→

N∑
j=1

mj∑
s=1

g(j)
s (eµ)d(ai − aj) ∧ dt

((ai − aj)−s

(t− ai)r
+ . . .

)
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(4.6) eµdt
( 1

t− ai
− 1

t− aN

)
7→

N∑
j=1

mj∑
s=1

g(j)
s (eµ)

[
(ai − aj)−sd(ai − aj) ∧ dt

( 1

t− ai
− 1

t− aN

)
+
(

(aN − aj)−sd(aN − aj) ∧ dt− (ai − aj)−sd(ai − aj) ∧ dt
)

×
( 1

t− aj
− 1

t− aN

)
+ . . .

]
.

Terms are to be dropped if some factor becomes 0. The terms repre-
sented by ellipses (. . .) do not enter into the trace calculation. Also all
terms lie in the K-span of the basis (3.19). Let Ψ denote the resulting
endomorphism of H. The contribution to Tr(Ψ) from (4.5) is

(4.7)
N∑
i=1

(mi − 1)
N∑
j=1
j 6=i

mj∑
s=1

Tr(g(j)
s )(ai − aj)−sd(ai − aj) ∧ dt

−
N−1∑
j=1

mj∑
s=1

Tr(g(j)
s )(aN − aj)−sd(aN − aj) ∧ dt.

The second sum arises because eµdt

(t−aN )mN
is not a basis element for H.

The contribution from (4.6) is

(4.8)
N−1∑
i=1

N∑
j=1
j 6=i

mj∑
s=1

Tr(g(j)
s )(ai − aj)−sd(ai − aj) ∧ dt

+
N−1∑
j=1

mj∑
s=1

Tr(g(j)
s )(aN − aj)−sd(aN − aj) ∧ dt.

In total, this gives

(4.9)
N∑
i=1

mi

N∑
j=1
j 6=i

mj∑
s=1

Tr(g(j)
s )(ai − aj)−sd(ai − aj) ∧ dt

−
N−1∑
j=1

mj∑
s=1

Tr(g(j)
s )(aN − aj)−sd(aN − aj) ∧ dt.
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In fact, the above analysis of Tr(Ψ) omits some terms. On the right
in (4.3) taking j = N and s = mN gives a term

g
(N)
mN (eµ)d(ai − aN) ∧ dt
(t− aN)mN (t− ai)r

.

Expanding this by lemma 3.3 yields a term (for 2 ≤ r ≤ mi)

(4.10)
g

(N)
mN (eµ)(aN − ai)−rd(ai − aN) ∧ dt

(t− aN)mN

≡ −
∑′

j,s

g
(j)
s (eµ)(aN − ai)−rd(ai − aN) ∧ dt

(t− aj)s
.

Here ≡ means equivalent in H1
DR ⊗ Ω1

K . The prime in the sum means
omit the pair j = N, s = mN .

Similarly, from (4.4) we get a term

(4.11)
g

(N)
mN (eµ)(aN − ai)−1d(ai − aN) ∧ dt

(t− aN)mn

≡ −
∑′

j,s

g
(j)
s (eµ)(aN − ai)−1d(ai − aN) ∧ dt

(t− aj)s
.

Of course, in (4.10) and (4.11) the contribution to the trace comes
from j = i. These precisely cancel the second double sum on the right
in (4.11). Thus, one gets

(4.12) Tr(Ψ) =
N∑
i=1

mi

N∑
j=1
j 6=i

mj∑
s=1

Tr(g(j)
s )(ai − aj)−sd(ai − aj) ∧ dt.

Finally, comparing (4.3), (4.4), and definition 3.5, we have

Proposition 4.2. With notation as above (definition 3.5 and equation
(4.12)), the Gauß-Manin trace on H1

DR is given by

TrGM(H1
DR) = Tr(Ψ) + Tr(η∇)

thm.3.6≡ Tr(Ψ) + Tr(ηγ) +
1

2

∑
i; mi≥2

mid log(det(g(i)
mi

)) mod d logK×.

5. The Higgs Trace

The purpose of this section and of the next one is to rewrite the
Higgs trace Tr(ηγ) as a sum of terms which are in some sense local,
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associated to the singularities ai of the connection. In the next section
we will compute these local traces.

It will be convenient to write

V := Γ(E(∗D)); W := Γ(E ⊗ ω(∗D)) ⊂ Vdt;(5.1)

γK =
N∑
j=1

mj∑
r=1

g
(j)
r dt

(t− aj)r
: V → W .

(See equations (3.5) and definition 3.2).
We identify H ↪→ W with basis (3.8). As in section 3, there is a

splitting H ∼=W/γKV . We write

(5.2) η = η0 +
N∑
j=1

Mj∑
s=1

η
(j)
s

(t− aj)s
= η0 +

∑
j

η(j).

The η
(j)
s are matrices with entries in Ω1

K . We view these objects as
linear maps H → H ⊗K Ω1

K :

H ↪→W η(i)−→W ⊗ Ω1
K � H ⊗ Ω1

K

Now fix an i. It will be convenient to put ai at ∞, so we set

u :=
1

t− ai
.(5.3)

Define

(5.4) R := Γ(P1 −D,O) = K[
1

t− a1

, . . . ,
1

t− aN
]

= K
[ u

1− (a1 − ai)u
, . . . , u, . . . ,

u

1− (aN − ai)u

]
.

In the u coordinates,

(5.5) γK =
∑

g(j)
s

( u

1− (aj − ai)u

)s
.

The basis of H is

eµdt
( u

1− (aj − ai)u

)r
; 2 ≤ r ≤ mj (resp. 2 ≤ r ≤ mN − 1),(5.6)

eµdt
( u

1− (aj − ai)u
− u

1− (aN − ai)u

)
= eµdt

(aj − aN)u2

(1− (aj − ai)u)(1− (aN − ai)u)
; j 6= N.



A FORMULA FOR GAUSS-MANIN DETERMINANTS 29

Define

θ :=
∏
j 6=i

(1− (aj − ai)u)mj ,(5.7)

θ1 := θ/(1− (aN − ai)u),

g = θ · γK =
∑
j,s

g(j)
s us.

Note that θ is a unit in R. We can write

(5.8) g =
∏
j 6=i

(ai − aj)mjg(i)
mi
um + lower order terms

= u2 + higher order terms,

where m =
∑
mj. Let V = ⊕µKeµ = Γ(P1, E) and write

(5.9) H ′ := V u2dt⊕ . . .⊕ V um−1dt ⊂ V [u]dt.

As a consequence of (5.9) we have

(5.10) θ1H = H ′.

We are interested in the trace of η(i) =
∑Mi

s=1 η
(i)
s us. Consider the

diagram
(5.11)

H
⊂−→ W η(i)−−→ W ⊗ Ω1

K −→W/γKV ⊗ Ω1
K

∼=←− H ⊗ Ω1
Ky∼= θ1

y∼= θ−1
1

x∼= θ−1
1

x∼= x∼=
H ′

⊂−→ W η(i)−−→ W ⊗ Ω1
K −→W/γKV ⊗ Ω1

K

∼=←− H ′ ⊗ Ω1
K∥∥∥ ∪

x ∪
x ∼=

xa ∥∥∥
H ′

⊂−→ u2V [u]dt
η(i)−−→ u2V [u]dt⊗ Ω1

K −→
u2V [u]
gV [u]

dt⊗ Ω1
K

∼=←− H ′ ⊗ Ω1
K

Proposition 5.1. The following maps have the same trace

η(i) : H → H ⊗ Ω1
K

η(i) : H ′ → H ′ ⊗ Ω1
K

η(i) :
V [u]

gV [u]
dt→ V [u]

gV [u]
dt⊗ Ω1

K .

Here the first two maps are given by horizontal rows in (5.11). The
third is given by embedding

V [u]

gV [u]
dt ↪→ V [u]dt
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via the basis V ⊕ V u⊕ . . .⊕ V um−1 and then proceeding as in (5.11).

Proof. The first two traces are equal by the diagram. For the third,
note that since g = u2 + higher, it follows that one has an exact
sequence compatible with the endomorphism multiplication by u

0→ H ′ → V [u]/gV [u]dt→ V [u]/u2V [u]dt→ 0.

Since η(i) has no constant term in u, it acts nilpotently on the right. �

6. The Higgs trace: local calculation

In this section we give a formula for the trace of η(i) as in proposition
5.1, involving residues. As already mentioned in the introduction, the
method here is reminiscent of the classical residue calculation for the
trace of an element in a field extension.

To simplify, we write h in place of η(i). We also suppress the Ω1
K

and treat h(u) as a polynomial with matrix coefficients. The case
of matrices with coefficients in Ω1

K follows immediately by applying
arbitrary derivations Ω1

K → K to the entries.
To avoid confusion we write

(6.1) φ(h) : V [u]/gV [u] ↪→ V [u]
h·−→ V [u] � V [u]/gV [u],

where V [u]/gV [u] ↪→ V [u] is defined as in proposition 5.1 via the in-
vertibility of the leading coefficient of g

V ⊕ V u⊕ . . .⊕ V um−1 ↪→ V [u].(6.2)

By (4.9) and admissibility, the leading coefficient of g(u) is invertible
so g−1 ∈ End(V )((u−1)). Write dg = dg

du
du and let

resu=∞ : End(V )((u−1))→ End(V )

be the evident extension of the residue map.
One has

Proposition 6.1. The notations being as above, one has

TrV [u]/gV [u](φ(h)) = −TrV resu=∞(dgg−1h).

Proof. Write g = a0u
m + a1u

m−1 + . . .+ am. Note that neither side of
the identity changes if we replace g by ga−1

0 so we may assume a0 = 1.
Also, by linearity, we may assume h = cup. The matrix for the action

of u on V [u]/gV [u], the entries of which are themselves matrices, is

M =


0 0 . . . −an
1 0 . . . −an−1
...

...
...

...
0 0 1 −a1
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The matrix for up is Mp. We write TrMp ∈ End(V ) for the naive trace,
i.e. the sum of the diagonal elements. E.g. TrM = −a1 ∈ End(V ).
Then

Tr(φ(cup)) = TrV (Tr(Mp)c).

Also

TrV resu=∞(dgg−1cup) = TrV (res (dgg−1up) · c).
(The residue is computed in the ring End(V )((u−1)). Since u is in the
center of this ring, we may move c past up under the residue.) It will
therefore suffice to show

(6.3) Tr(Mp) = −resu=∞(dgg−1up).

Let z = u−1 and write g = umG(z) with G(z) = I + a1z + . . .+ amz
m.

The assertion becomes

(6.4) dGG−1 = (Tr(M) + Tr(M2)z + . . .)dz.

Lemma 6.2. Let X = (xij) be an m×m matrix. Then

(6.5) Tr(XMp) =

p∑
q=0

(−1)q
∑

1≤m1,...,mq≤m
1≤i,i1≤m∑
mk=p+i−i1

m1≥m−i1+1

xi,i1am1 . . . amq .

In particular, taking X = I it follows that

(6.6) Tr(Mp) =

p∑
q=1

(−1)q
∑

1≤m1,...,mq≤m
1≤i≤m∑
mk=p

m1≥m−i+1

am1 . . . amq .

proof of lemma. Write M = (Mij)1≤i,j≤m. We have Mi+1,i = 1, Mi,m =
−am+1−i, and Mij = 0 otherwise. Thus

(6.7)

Tr(XMp) =
∑

i,i1,...,ip

xi,i1Mi1,i2 · · ·Mip,i =
∑

i,i1,q,j1,...,jq

xi,i1Mj1,m · · ·Mjq ,m

=
∑

i,i1,q,j1,...,jq

(−1)qxi,i1am−j1+1 · · · am−jq+1

The conditions on the tuples {i, i1, q, j1, . . . , jq} over which the right
hand sums are taken become

0 ≤ q ≤ p; j1 ≤ i1;(6.8)

(i1 − j1) + 1 + (m− j2) + 1 + . . .+ (m− jq) + 1 + (m− i) = p
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Replacing jk by mk := m− jk + 1, these become

(6.9) 0 ≤ q ≤ p; m1 ≥ m− i1 + 1;
∑

mk = p+ i− i1,

proving the lemma. �

Write cp = Tr(Mp). We must show

(6.10) − (c1 + c2z + c3z
2 + . . .)(1 + a1z + . . .+ amz

m)

= a1 + 2a2z + . . .+mamz
m−1.

This amounts to

(6.11) cp + cp−1a1 + . . .+ c1ap−1 =

{
−pap p < m

0 else

Suppose first p < m. With reference to (6.6), one can isolate the terms
in cp ending in ak for 1 ≤ k ≤ p− 1 and write

(6.12) cp = cp,1a1 + cp,2a2 + . . .+ cp,p−1ap−1 +Rp.

Here

(6.13) cp,k = −
p−k∑
r=1

(−1)r
∑

1≤m1,...,mr≤m
1≤i≤m∑
mk=p−k

m1≥m−i+1

am1 . . . amr = −cp−k.

(Notice that since each mj ≥ 1, terms with r > p − k are impossible.
Also, since k < p, necessarily r ≥ 1.) The remainder Rp is given by
the terms ap in cp. In the sum for cp these terms arise when q = 1 and
p ≥ m− i+ 1, i.e. m− p+ 1 ≤ i ≤ m. There are p such terms:

(6.14) Rp = −ap.
Finally, in (6.11) we consider the terms with p ≥ m. Writing tk =
Tr(XMk) and replacing X with M j for some j, it suffices to show

(6.15) t0am + . . .+ tm−1a1 + tm = 0.

We start with

(6.16) tm =

p∑
q=1

(−1)q
∑

1≤m1,...,mq≤m
1≤i,i1≤m∑
mk=n+i−i1

m1≥n−i1+1

xi,i1am1 . . . amq .

Note q = 0 is not possible because
∑
mk = m+ i− i1 ≥ 1. Again, by

grouping together the terms ending with ak we get

tm = −tm−1a1 − . . .− t0am,
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which is the desired equation. �

Corollary 6.3. We have with notation as in definition 3.5

Tr(η∇) ≡ (m− 2)Tr(η0)−
∑
i

res t=aiTr(dgg−1η(i))

+
1

2

∑
i; mi≥2

mid log(det(g(i)
mi

)) mod d log(K×).

Proof. By theorem 3.6, we may replace η∇ with ηγ. By proposition 4.2
Tr(ηγ − η0) is the sum of the Tr(η(i)) on V [u]/gV [u]dt. By proposition
5.1 this is the same as −

∑
i TrV res t=ai(dgg

−1η(i)). Note the factor
m − 2 on the right is because as a matrix η0 acts on V = Γ(P1, E)
while the trace one wants is the action on H ∼= V ⊕m−2. �

7. The proof of the main Theorem

In this section we deduce the main theorem 2.8 from the equality of
the Higgs and de Rham traces (theorem 3.6) and from the shape of the
Higgs trace (proposition 6.1) via residues.

We start with an admissible connection (E,∇) on P1
K . Let V ⊂ U

be a Zariski open subset, with complement Z. By localization, one
obtains

detHDR(U,∇/K) = detHDR(V,∇/K) + det∇|Z .(7.1)

On the other hand, at a special pseudo-logarithmic point the local
factor Tr(dgg−1A) = 0. Indeed, writing the connection as g1

dz
z

+g0dz+

. . . + η1
z

+ η0
+
. . ., the local factor is Trg0g

−1
1 η1. The special pseudo-

logarithmic points have, in the notations of the definition 2.2, a local
matrix of the shape (

A+mdz
z

zB
C
z

D + ndz
z

)
.(7.2)

Thus in particular

η1 =
(

0 0
γ0 0

)
,(7.3)

where C = cdz + γ0 + γ1z + . . ., while g0 and g1 are both of the shape( ∗ 0
∗ ∗

)
.(7.4)

Thus Trg0g
−1
1 η1 = 0.

Thus the difference of the right hand side of the theorem 2.8 for U
and V is the difference of the global factors, which is det∇|Z , as one



34 SPENCER BLOCH AND HÉLÈNE ESNAULT

sees taking a trivializing section which is good for V . Thus by theorem
2.3, we may assume that E = ⊕r1OP1K .

Let G = γK ·
∏

j(t − aj)mj . Note G = u−mg(u) with u as in (5.3).
Write the absolute connection as ∇ = d + A with A = γ + η as in
definition 3.2.

Proposition 7.1. We have

(7.5)
∑
i

Tr rest=aidGG
−1A = −

∑
i,j,r
j 6=i

Tr(g(i)
r )mj(aj − ai)−rd(aj − ai)

+
∑
i

Tr rest=ai(dGG
−1η(i)).

Proof. Define absolute forms s, s(i) and η(i):
(7.6)

s =
dt∏

j(t− aj)mj
; s(i) =

d(t− ai)∏
j(t− aj)mj

; ∇ = d+G · s(i) + η(i).

The local term at t = ai is

Tr rest=aidGG
−1A = Tr rest=aidG · s(i) + Tr rest=aidGG

−1η(i).

Applying trace to dA = A ∧ A yields

Tr(dG · s(i) +G · ds(i) + dη(i)) = 0.

(Note here that s(i) is not closed as an absolute form!) Also, modulo
Ω2
K , we have res Tr(dη(i)) = 0 because the residue of an exact form

vanishes. The local term thus becomes

(7.7) Tr rest=aidGG
−1A = −Tr rest=aiG ·ds(i)+Tr rest=aidGG

−1η(i).

We have

(7.8) G · ds(i) =(∏
j

(t− aj)mj
∑
r,k

g
(k)
r

(t− ak)r
)∑

jmj

∏
k 6=j(t− ak)d(t− aj) ∧ d(t− ai)∏

j(t− aj)mj+1

=
(∑

r,k

g
(k)
r

(t− ak)r
)∑

j

mj
d(ai − aj) ∧ dt

t− aj
.

Thus

(7.9) rest=ai Tr(G · ds(i)) = rest=ai

(∑
j,k,r
j 6=i

Tr(g
(k)
r )mjd(ai − aj) ∧ dt
(t− ak)r(t− aj)

)
.
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Expanding

1

(t− aj)
= −(aj − ai)−1

∞∑
n=0

( t− ai
aj − ai

)n
and substituting on the right in (7.9)

(7.10) rest=ai Tr(G · ds(i)) =
∑
j,r
j 6=i

Tr(g(i)
r )mj(aj − ai)−rd(aj − ai)

Thus, (7.9) becomes after summing over i

(7.11)
∑
i

Tr rest=aidGG
−1A = −

∑
i,j,r
j 6=i

Tr(g(i)
r )mj(aj − ai)−rd(aj − ai)

+
∑
i

Tr rest=ai(dGG
−1η(i)).

It remains to compare η(i) and η(i). Recall γK = G · s. We have

γ = γK −
∑
j,r

g
(j)
r daj

(t− aj)r
(7.12)

G · s(i) = γK −
∑
j,r

g
(j)
r dai

(t− aj)r
(7.13)

∇ = d+G · s(i) + η(i) = d+ γ + η0 +
∑
j

η(j).(7.14)

From these equations it follows that

η(i)− η(i) =
∑
j 6=i

k
(j)
r

(t− aj)r
.

Since this difference has no pole at ai, and since G(ai) is invertible, we
find

rest=ai(dGG
−1η(i)) = rest=ai(dGG

−1η(i))

Making this substitution in (7.11) proves the proposition. �

Our calculations to this point have been on H1
DR which introduces a

minus sign in the final formula. (Note, admissibility forces H0
DR = (0).)
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We find therefore

(7.15) − TrGM(H∗DR) = Tr(Ψ) + Tr(η∇) (proposition 4.2)

≡ Tr(Ψ) + (m− 2)Tr(η0)−
∑
i

Tr rest=ai(dgg
−1η(i))

+
1

2

∑
i; mi≥2

mid log(det(g(i)
mi

)) mod d logK× (corollary 6.3)

≡ Tr(Ψ) + (m− 2)Tr(η0)−
∑
i

Tr rest=ai(dGG
−1η(i))

+
1

2

∑
i; mi≥2

mid log(det(g(i)
mi

)) mod d logK×

≡ (m− 2)Tr(η0)−
∑
i

Tr rest=ai(dGG
−1A)

+
1

2

∑
i; mi≥2

mid log(det(g(i)
mi

)) mod d logK× (proposition 7.1).

Note here we can replace g by G = u−mg because η(i) only involves
terms of degrees ≥ 1 in u, so res (du

u
η(i)) = 0.

View s = dt∏
j(t−aj)

mj as a relative form, i.e. as a meromorphic section

of ω(
∑
mj(aj)). As such, it has a zero of order m − 2 at infinity,

(s) = (m − 2)∞. Note det(E,∇)|∞ = (K,Tr(η0)). Since the relative
connection is given by ∇/K = G · s, the desired formula is

(7.16) TrGM(H∗DR) ≡ − det(E,∇)|(s) +
∑
i

rest=aiTr(dGG−1A)

+
1

2

∑
i; mi≥2

mid log(det(g(i)
mi

)) mod d logK×.

mH Finally, comparing (7.15) and (7.16) we see that theorem 2.8 holds
for pseudo-admissible connections on bundles on P1, after checking mH

1

2

∑
i; mi≥2

mid log(det(g(i)
mi

)) =(7.17)

∑
x∈D,mx≥2

ρx(τx(E,∇/K)).

Now from the definition (3.3) of the absolute equation, one has
the local parameter (t − ai) at ai and thus the invariant τai(∇/K) =
mi
2
d log(det(g

(i)
mi)) for mi ≥ 2.

This finishes the proof.
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