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Abstract. Let f : X → S be a smooth projective morphism over an algebraically closed field, with
X andS regular. When(E, ∇) is a flat bundle overX, then its Gauss–Manin bundles onS have a
flat connection and one may ask for a Riemann–Roch formula relating the algebraic Chern–Simons
and Cheeger–Simons invariants. We give an answer forX = Y × S, f = projection. The method
of proof is inspired by the work of Hitchin and Simpson.
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0. Introduction

LetX be a smooth variety defined over an algebraically closed fieldk, and let(E, ∇)

be a bundle with an integrable connection. Then(E, ∇) carries algebraic classes
cn(E, ∇) in the subgroupH n(X, �∞Kn) of the group of algebraic differential char-
acters ADn(X) consisting of the classes mapping to 0 inH0(X, �2n

X ). These classes
lift the Chern classescn(E, ∇) ∈ CHn(X), the algebraic Chern–Simons invariants
wn(E, ∇) ∈ H0(X,H2n−1

DR ) for n > 2, as well as the analytic secondary invariants
can
n (E, ∇) ∈ H2n−1(Xan, C/Z(n)) whenk = C (see [5, 3, 6] and Section 1).

Let nowf : X → S be a smooth projective morphism. Then the de Rham coho-
mology sheavesRjf∗(�•

X/S ⊗ E, ∇) carry the (flat) Gauss–Manin connection, still
denoted by∇. Therefore, one can ask for a Riemann–Roch formula relating

cn(
∑

(−1)j (Rjf∗(�•
X/S ⊗ E, ∇), ∇))

andcm(E, ∇), as the classescn(E, ∇) verify the Whitney product formula for exact
sequences of bundles with compatible (flat) connections. This formula should be com-
patible with Riemann–Roch–Grothendieck formula in CHn(S), and with Bismut–
Lott and Bismut formula inH2n−1(Xan, C/Z(n)) whenk = C ([1, 2]). In this note,
we propose an answer in the caseX = Y × S andf is the projection:

? This work has been partly supported by the DFG Forschergruppe ‘Arithmetik und Geometrie’.
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THEOREM 0.0.1.Let Y be a smooth projective variety of dimensiond andS be a
smooth variety. Let(E, ∇) be a bundle with a flat connection onX = Y × S. Then

cn

∑
j

(−1)j (Rjf∗(�•
X/S ⊗ E, ∇), ∇)

 = (−1)df∗cn(E, ∇)|cd (�1
X/S

),

wheref is the projection toS, where the right-hand side means that one takes a zero
cycle

∑
i mipi ⊂ Y representingcd(�1

Y ), and

f∗cn(E, ∇)|cd (�1
X/S

) =
∑
i

micn(E, ∇)|{pi}×S ∈ H n(S, �∞Kn)

(see Section 1).

Forn = 1,H 1(S, �∞K1) is the group of isomorphism classes of rank one bundles
with an integrable connection. Thus the formula for the determinant bundle as a flat
bundle is similar to Deligne–Laumon formula for the determinant bundle of a`-adic
sheafE overX with S = SpecFq , (p, `) = 1 ([4, 7]). But here, we treat only the case
wheref is split, which is certainly of no interest from the`-adic viewpoint. However,
we do not know what would be a corresponding formula in higher codimension in
the arithmetic case.

Whenk = C , Theorem 0.0.1 is trivial is one replaces ADn by H 2n−1
an (C/Z(n)).

In fact, the classes ofE on X in this group depend only on the underlying local
systemV , and one knows thatV has a filtrationVi ⊂ V by local subsystems such
thatVi/Vi−1 = Ai ⊗ Bi , whereAi (resp.Bi) is an irreducible local system onY
(resp.S). Consequently, ifS is projective, the algebraic bundle with connectionE

has a filtration by compatible flat subbundlesEi with Ei/Ei−1 = p∗Fi ⊗ f ∗Gi ,
whereFi is flat onY andGi is flat onS (p is the projection toS), and Theorem 0.0.1
is a trivial consequence of the projection formula. In general, the algebraic bundle is
not uniquely determined by its local system.

The method used is inspired by the work of Hitchin and Simpson. We deform∑
j

(−1)j (Rjf∗(�•
X/S ⊗ E, ∇), ∇)

to the alternate sum of a flat structure

(Rjf∗(�•
X/S ⊗ E, α),∇i )

defined on the cohomology of a Higgs bundle, where the Higgs structure is defined
by a formα ∈ H0(Y, �1

Y ), if H 0(Y, �1
Y ) 6= 0. If not, one has to introduce poles (see

Section 2).
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1. Trace of Algebraic Differential Characters

1.1. algebraic differential characters

Let X be a smooth variety,D ⊂ X be a normal crossing divisor,Kn be the Zarisky
sheaf image of the Zarisky sheaf of MilnorK-theory inKM

n (k(x)). We recall [6],
Section 2, that the group

ADn(X, D):= H n(X,Kn

d log−−−→ �n
X(log D) → · · · → �2n−1

X (log D))

has a commutative product

ADm(X, D) × ADn(X, D) → ADm+n(X, D),

respecting the subgroup

H n(X, �∞
X (log D)Kn)

:= H n(X,Kn

d log−−−→ �n
X(log D) → · · ·)

= Ker (ADn(X, D) → H 0(X, �2n
X (log D))

and compatible with the products inKn and�>n
X (log D). A bundle(E, ∇) with a

�1
X(log D) connection has functorial and additive classescn(E, ∇) ∈ ADn(X, D),

lying in H n(X, �∞
X (log D)Kn) when∇2 = 0.

LEMMA 1.1.1. Let X = P1 × S, with S smooth,B ⊂ P1 be a divisor,D = B ×
S, pi, i = 1, 2 be the projections ofX to P1 and S. Then one has a direct sum
decomposition

p∗
2 ⊕ p∗

2 ⊗ p∗
1:

H n(S, �∞
S Kn) ⊕ H n−1(S, �∞

S Kn−1) ⊗ H 1(P1, �∞
P1(log B)K1)

→ H n(X, �∞
X (log D)Kn).

Proof. One has the K̈unneth formulae

H`(X,Kn)

= p∗
2H`(S,Kn) ⊕ p∗

2H`−1(S,Kn−1) ∪ p∗
1H 1(P1,K1);

H `(X, �>n
X (log D))

= p∗
2H `(S, �>n

S ) ⊕ p∗
2H `(S, �>n−1

S ) ∪ p∗
1H 0(P1, �1

P1(log B)) if B 6= ∅;
H `(X, �>n

X (log D))

= p∗
2H `(S, �>n

S ) ⊕ p∗
2H `−1(S, �>n−1

S ) ∪ p∗
1H 1(P1, �1

P1) if B = ∅.

Moreover, in the long exact cohomology sequence associated to the short exact
sequence

0 → �>n
X (log D)[n − 1] → �∞

X (log D)Kn → Kn → 0
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the map

H`(X,Kn)
d log−−−→ H `+n(X, �> n

X (log D))

respects this direct sum composition. (IfB 6= ∅, the term

p∗
2H`−1(S,Kn−1) ∪ p∗

1H 1(P1,K1)

maps to zero.) This proves the lemma. 2

1.2. trace

PROPOSITION 1.2.1.Let X = Y × S, with Y smooth projective,S smooth, and
f : X → S be the projection. Let6 = ∑

mipi be a zero cycle inY , and(E, ∇) be
a bundle with an integrable connection onX. Then

f∗cn(E, ∇)|6×S :=
∑

micn((E, ∇)|{pi}×S) ∈ H n(S, �∞
S Kn)

does not depend on the choice of the representative6 in its equivalence class[6] ∈
CH0(S).

Proof. Let 6′ = ∑
mip

′
i be another choice. Then there are rational functionsfi

on curvesCi ⊂ Y such that6 − 6′ = ∑
div fi . Therefore, it is sufficient to prove

the following: letν: C → Y be the normalization of an irreducible curveν(C) ⊂ Y ,
andϕ: C → P1 be a nontrivial rational function onC. Then

cn((ν × idS)∗(E, ∇)|ϕ−1(0)×S) = cn((ν × idS)∗(E, ∇)|ϕ−1(∞)×S).

Let (E, D):= (ν × idX)∗(E, ∇). Let B ⊂ P1 be the ramification locus ofϕ, π =
ϕ × idS : C × S → P1 × S. Thenπ∗(E, D) is a bundle with an integrable connection
with logarithmic poles alongD = B × S, and has classes

cn(π∗(E, D)) ∈ H n(P1 × S, �∞
X (log D)Kn).

For t /∈ B, then

cn(π∗(E, D)|{t}×S) =
∑

s∈ϕ−1(t)

cn((E, D)|{s}×S) = cn(E, D)|ϕ−1(t)×S.

For t ∈ B, the residue map

res{t}×S : p∗
2�n−1

S ⊗ p∗
1�1

P1(log B) → �n−1
{t}×S

verifies

res{t}×S ⊗OP1×S
O{t}×S = Identity{t}×S.

Therefore, there is a canonical splitting

�n
X(log D)|{t}×S = �n

S ⊕ �n−1
{t}×S.
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Thus the connection

π∗D: π∗E → �1
P1×S

(log D) ⊗ π∗E

restricts to

π∗D|{t}×S : π∗E|{t}×S → (�1
S ⊕ OS) ⊗ π∗E|{t}×S

defining, by projection, the connection

π∗D|{t}×S : π∗E|{t}×S → �1
S ⊗ (π∗E)|{t}×S.

The integrability ofπ∗D|{t}×S implies the integrability of the genuine connection
π∗D|{t}×S , and

cn((E, D)|ϕ−1(t) × S) = cn(π∗E|{t}×S, π∗D|{t}×S).

Now by [7],

cn(π∗(E, D)) = p∗
2a +

∑
i

p∗
2bi ∪ p∗

1ci,

wherea ∈ H n(S, �∞
S Kn), and the preceding discussion shows that

cn((E, D)|ϕ−1(t)×S) = a ∈ H n(S, �∞
S Kn)

whethert ∈ B or t /∈ B. 2

2. Proof of the Theorem

2.1. notations

Let H0, . . . , HN be the restriction of the coordinate hyperplanesH ′
0, . . . , H

′
N in an

embeddingY ⊂ PN . Since�1
PN (logH ′

0∪. . . H ′
N) ∼= ⊕N

1 OPN , the sheaf�1
Y (logH0∪

. . . ∪ HN) is globally generated. We denote byH(`) the normalization of thè by `

intersections of theHj , H(0) = X, H(δ) = ∅ for δ > d, by H the union of theHj ,
by

�a
H(`)(log H(`+1))

the sheaf ofa forms onH(`) with logarithmic poles along the(` + 1) by (` + 1)

intersections. One has the following resolution of the de Rham complex:

�•
X/S → �•

X/S(log(H × S)) → �•−1
H(1)×S/S

(log(H (2) × S)) → · · ·
→ �•−`

H(`)×S/S
(log (H (`+1) × S)) → · · ·

→ �•−d

H(d)×S/S
→ 0. (2.1.1)
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2.2. proof of theorem 0.0.1

The resolution 2.1.1 is compatible with the Gauss–Manin connection, as

H(`) × S

is dominant overS.
Therefore, in theK groupK(S,flat) of bundles onS with an integrable connection,

one has∑
j

(−1)jRjf∗(�•
X/S ⊗ E, ∇)

=
∑

(−1)jRjf∗(�•
X/S(log(H × S)) ⊗ E, ∇) +

+
∑

(−1)jRjf∗(�•
H(1)×S/S

(log(H (2) × S)) ⊗ E, ∇) + · · ·
+

∑
(−1)jRjf∗(�•

H(`)×S/S
(log(H (`) × S)) ⊗ E, ∇) + · · ·

+ f∗(�•
H(d)×S/S

⊗ E, ∇).

On the other hand,

cd(�1
X/S) = cd(�1

X/S(log(H × S))) −
−cd−1(�

1
H(1)×S/S

(log(H (2) × S)) + · · ·
+(−1)`cd−`(�

1
H(`)×S/S

(log(H (`+1) × S)) + · · ·
+(−1)d [H(d) × S],

where [H(d) × S] means the codimensiond cycle, image ofH(d) × S in Y × S.
Therefore, one just has to prove the following formula:

cn

(∑
(−1)j (Rjf∗(�•

X/S(logD × S) ⊗ E), ∇), ∇)
)

= (−1)df∗cn(E, ∇)|cd (�1
X/S

(log(H×S)).

We denote byτ : �1
X(log(H × S)) → f ∗�1

S the splitting of the one forms, which
induces a splitting

τ : �•
X(log(H × S)) → f ∗�•

S

of the de Rham complex, where the differentialf ∗�i
S → f ∗�i+1

S is defined byτdι,
ι: f ∗�i

S → �i
X(log(H × S)) being the natural embedding. This defines af ∗�1

S

valued connection∇τ on �i
X/S(log(H × S)) ⊗ E by embedding�i

X/S(log(H ×
S)) ⊗ E into �i

X(log(H × S)) ⊗ E via the splitting, then taking∇, then projecting
onto the factor

f ∗�1
S ⊗ �1

X/S(log(H × S)) ⊗ E
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with the sign(−1)i . The integrability condition∇2 = 0 then implies that

∇τ ◦ ∇X/S = ∇X/S ◦ ∇τ ,

where

∇X/S : �i
X/S(log(H × S)) ⊗ E → �i+1

X/S(log(H × S)) ⊗ E.

Taking cohomology defines a flat connection, still denoted by∇τ

∇τ : Rjf∗�i
X/S(log(H × S)) ⊗ E → �1

S ⊗ Rjf∗�i
X/S(log(H × S)) ⊗ E

which is compatible with the Gauss–Manin connection. The integrability of∇ implies
the integrability of∇τ . Therefore, inK(S, flat) one has

(Rjf∗(�•
X/S(log(H × S)) ⊗ E, ∇), ∇)

= ⊕i ((R
j−if∗�i

X/S(log(H × S)) ⊗ E, ∇τ ), ∇τ )

and ∑
j

(−1)j ((Rjf∗�•
X/S(log (H × S)) ⊗ E, ∇), ∇)

=
∑
i,j

(−1)i+j ((Rjf∗�i
X/S(log(H × S)) ⊗ E, ∇τ ), ∇τ ).

Let α ∈ H 0(Y, �1
Y (logH)) be a nontrivial generic section. We still denote byα the

corresponding formp∗
1α ∈ H0(X, �1

X/S(log(H ×S))). Then, it defines a morphism

αX/S : �i
X/S(log(H × S)) ⊗ E → �i+1

X/S(log(H × S)) ⊗ E

by αX/S(w ⊗ e) = α ∧ w ⊗ e. As dα = 0, one has

αX/S ◦ ∇τ = ∇τ ◦ αX/S.

Thus inK (S, flat) one has∑
i,j

(−1)i+j (Rjf∗(�i
X/S(log(H × S)) ⊗ E, ∇τ ), ∇τ )

=
∑
j

(−1)j (Rjf∗(�•
X/S(log(H × S)) ⊗ E, αX/S), ∇τ ).

On the other hand, the complex

(�•
X/S(log(H × S)), αX/S)
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is quasi-isomorphic toO6×S [−d], where6 is the zero set ofα, and one, furthermore,
has a commutative diagram of complexes

(�•
X/S(log(H × S)) ⊗ E, αX/S)

∇τ−−−−−−−−−−−→ f ∗�1
S ⊗ (�•

X/S(log(H × S)) ⊗ E, αX/S)
|||↓

|||↓
E|6×S [−d]

∇|6×S−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ �1
6×S ⊗ E[−d]

This shows the equality inK (S, flat)∑
j

(−1)j ((Rjf∗(�•
X/S(log(H × S)) ⊗ E, α),∇τ )

= (−1)d ⊕σ∈6 (E, ∇)|σ×S

and completes the proof.
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