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For a local system V on a topological manifold S associated to a represen-
tation

ρ : π1(S, s) → GL(n,C)

of the fundamental group we denote by

ĉi(V ) = ĉi(ρ) = βi + γi ∈ H2i−1(S,C/Z)

the class defined in [4], [1] :

βi ∈ H2i−1(S,R) ([1] , (2.20))

γi ∈ H2i−1(S,R/Z) ([4] , §4).

If f : X → S is a smooth proper morphism of C∞ manifolds with orientable
fibers, the Riemann-Roch theorem ([1], Theorem (0.2), Theorem (3.11)) says

ĉi(

dim(X/S)∑

j=0

(−1)jRjf∗C) = 0

in H2i−1(S,C/Q), for all i ≥ 1.

The purpose of this short note is to show how to apply Reznikov’s ideas [12]
to obtain vanishing of the single classes ĉi(Rjf∗C) under some assumptions.

Definition 0.1. Let A be a ring with Z ⊂ A ⊂ C. A local system of A
hermitian vector spaces is a local system associated to a representation ρ whose
image ρ(π1(S, s)) lies in GLn(A) ⊂ GLn(C) and U(p, q) ⊂ GLn(C), for some
pair (p, q) with n = p + q, where U(p, q) is the unitary group with respect to
a non degenerate hermitian form with p positive, and q negative eigenvalues.

Theorem 0.2. Let S be a topological manifold and let ρ : π1(S, s) → GL(n, F )
be a representation of the fundamental group with values in a number field
F . Assume that for all real and complex embeddings σ : F → R(⊂ C) and
σ : F → C, σ ◦ ρ : π1(S, s) → GL(n,C) is a local system of σ(F ) hermitian
vector spaces. Then ĉi(ρ) = 0 in H2i−1(S,C/Q) for all i ≥ 1.

Examples of local systems of Q hermitian vector spaces are provided by
Q variations of Hodge structures [9] I.2, whose main instances are the Gauß-
Manin local systems Rjf∗C, where f : X → S is a smooth proper morphism
of complex manifolds with Kähler fibres. So Theorem 0.2 implies

Theorem 0.3. Let f : X → S be a smooth proper morphism of complex
manifolds with Kähler fibres. Then

ĉi(R
jf∗C) = 0

in H2i−1(S,C/Q) for all i ≥ 1, j ≥ 0.
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In the C∞ category, other examples are provided by Poincaré duality:

Theorem 0.4. Let f : X → S be a smooth proper morphism of C∞ manifolds
with orientable fibres. Then

ĉi(R
jf∗C⊕R(dim(X/S)−j)f∗C) = 0

in H2i−1(S,C/Q) and

ĉi(R
dim(X/S)/2f∗C) = 0

in H2i−1(S,C/Q) if dim(X/S) is even.

Proof of Theorem 0.2.
The U(p, q) flat bundle being isomorphic to the conjugate of its dual, the
formula ([1] (2.21)) says that βi = 0. Thus we just have to consider γi.

We may first assume that Λnρ : π1(S, s) → C∗ is trivial. In fact, it is torsion
as a unitary and rational representation, say of order N , and V ⊕ . . .⊕ V (N
times) has trivial determinant. On the other hand

ĉi(V ⊕ . . .⊕ V ) = Nĉi(V )

in H2i−1(S,C/Q), as

ĉi(V ).ĉj(V ) = 0

for i ≥ 1, j ≥ 1, in H2(i+j)−1(S,C/Q). (The multiplication is defined by
Image (ĉi(V ) in H2i(S,Z)). ĉj(V ) [4] (1.11)).

Furthermore, by adding trivial factors to V , one may assume that n is as
large as one wants.

There is an open cover S = ∪αSα trivializing V with transition functions

λαβ ∈ Γ(Sαβ , SLn(F ))

such that

σ ◦ λαβ ∈ Γ(Sαβ , SLn(σ(F )) ∩ U(p, q)).

One has the continuous maps

ϕ : S•

λ
−−→ BSLn(F )

σ
−−→ BSLn(σ(F ))

τ
−−→ BSLn(C)δ

ι
−−→ BSLn(C),

and

ψ : S•

σ◦λ
−−→ BSU(p, q)

µ
−−→ BSLn(C),

where S• is the simplicial classifying manifold associated to the open cover
Sα, BSLn(F ) and BSLn(σ(F )) are the simplicial classifying sets, BG is the
simplicial (C∞) classifying manifold for

G = SLn(C), SU(p, q),

BSLn(C)δ is the discrete simplicial classifying set. So ϕ = ψ.

By [4] §8 , there is a class γunivi ∈ H2i−1(BSLn(C)δ,R), whose image

γunivi ∈ H2i−1(BSLn(C)δ,R/Q) = H2i−1(BSLn(C)δ,R)/H
2i−1(BSLn(C)δ,Q)

verifies

γi = λ∗σ∗τ ∗γunivi .
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We now apply Reznikov’s idea to use Borel’s theorem. By [2], (7.5), (11.3)
and [3] (6.4) iii, (6.5), for n sufficiently large compared to i, H2i−1(BSLn(F )),R)
is generated by

(
⊗

σ

σ∗τ ∗ι∗H•(BSLn(C),R))
(2i−1)

where (2i− 1) denotes the part of the tensor product of degree (2i− 1). Thus
σ∗τ ∗γiuniv ∈ H2i−1(BSLn(F ),R) is a sum of elements of the shape ⊗σσ∗τ ∗ι∗xσ,
where at least one xσ ∈ H2j−1

cont (SLn(C),R), for some j ≤ i. This implies that

γi =
∑

⊗σ(σ ◦ λ)∗µ∗xσ,

and for each summand, there is at least one

µ∗xσ ∈ H2j−1
cont (SU(p, q),R).

It remains to observe that

for p+ q = n large H2i−1
cont (SU(p, q),R) = 0.

In fact, if p = q, this is part of [2] 10.6. In general, the continuous cohomology
of the R valued points of the R algebraic group SU(p, q) is computed by

H•

cont(SU(p, q),R) = H•(HomK(Λ
•
G/K),R)

where K is the maximal compact subgroup SU(p, q) ∩ (U(p)× U(q)), K is its
Lie algebra, G is the Lie algebra of SU(p, q). The right hand side equals

H•(HomK(Λ
•
Gc/K),R),

where Gc is the Lie algebra of the compact form SU(p + q) of SU(p, q). This
group is the de Rham cohomology of the manifold SU(p + q)/SU(p + q) ∩
(U(p)× U(q)), a Grassmann manifold without odd cohomology.

Remark 0.5. To a representation ρ, one may also associate the classes

ci(ρ) ∈ H2i−1(S,C/Z(i))

defined by λ∗cunivi , where λ : S• → BGLn(C)δ is defined by locally constant
transition functions of the local system, and

cunivi ∈ H2i−1(BGLn(C)δ,C/Z(i)) = H2i
D (BGLn(C)δ,Z(i)),

where HD is the Deligne-Beilinson cohomology, where cunivi are the restriction
to BGLn(C)δ of the Chern classes in the Deligne-Beilinson cohomology of the
universal bundle on the simplicial algebraic manifold BGLn. One does not
know in all generality that λ∗cunivi = ĉi(V ).

Again writing cunivi as bunivi + zunivi , with

bunivi ∈ H2i−1(BGLn(C)δ,R(i− 1)),

zunivi ∈ H2i−1(BGLn(C)δ,R(i)/Z(i)),

one knows that by definition bunivi lies in the image of the continuous cohomol-
ogy of GLn(C):

H2i−1
D

(BGLn(C)•,Z(i)) −−→ H2i
D (BGLn(C)•,R(i)) −−→

H2i−1(BGLn(C)•,S
∞

R(i−1)) ∼= H2i−1
cont (GLn(C),R(i−1)) −−→ H2i−1(BGLn(C)δ,R(i−1)),

where S∞

R(i−1) is the sheaf of R(i− 1) valued C∞ functions. (In fact Beilinson
gave a precise identification of this class in terms of the Borel regulator. See
[11] for details). Thus by the previous argument, λ∗bunivi = 0.
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As before, we may assume that ρ has SU(p, q) values, since the multiplication

ci(ρ) · cj(ρ)

factorizes through the Betti class in H2i(S,Z(i)) of ρ ([6] (3.4) proof). Fur-
thermore, by definition, zunivi is a discrete cohomology class. Thus one can
apply the same argument as in Theorem 0.2 to prove

Theorem 0.6. Let S be a topological manifold and let ρ : π1(S, s) → GL(n, F )
be a representation of the fundamental group with values in a number field
F . Assume that for all real and complex embeddings σ : F → R(⊂ C) and
σ : F → C, σ ◦ ρ : π1(S, s) → GL(n,C) is a local system of σ(F ) hermitian
vector spaces. Then ci(ρ) = 0 in H2i−1(S,C/Q) for all i ≥ 1.

On the other hand, if S is an algebraic manifold, then the image of ci(ρ)
under the map

H2i−1(S,C/Z(i)) −−→ H2i
D (S,Z(i))

is the Chern class cDi (E) of the underlying algebraic vector bundle E on V ⊗C

OSan [6], (3.5). So one has

Corollary 0.7. Let S be an algebraic manifold and let ρ : π1(S, s) → GL(n, F )
be a representation of the fundamental group with values in a number field
F . Assume that for all real and complex embeddings σ : F → R(⊂ C) and
σ : F → C, σ ◦ ρ : π1(S, s) → GL(n,C) is a local system of σ(F ) hermitian
vector spaces. Then the Chern classes of the underlying algebraic bundle in
the Deligne cohomology are torsion.

Remark 0.8. Let f : X → S be a proper equidimensional morphism of
algebraic smooth complex proper varieties X and S, such that f is smooth
outside a normal crossing divisor Σ, with D := f−1(Σ) a normal crossing
divisor without multiplicities (that is f is “semi-stable” in codimension 1).
Then the Gauß-Manin bundles

Hj = Rjf∗Ω
•

X/S(logD)

have an integrable holomorphic (in fact algebraic) connection with logarithmic
poles along Σ whose residues are nilpotent (monodromy theorem, see eg [8],
(3.1)). This implies [7], appendix B, that the de Rham classes of Hj are zero.
Therefore

cDi (H
j) ∈ H2i−1(S,C/Z(i))/F i ⊂ H2i−1

D
(S,Z(i))

that is, modulo torsion, cDi (H
j) lies in the intermediate Jacobian, and cDi (H

j |S−Σ)
is torsion(Corollary 0.7, Theorem 0.3). It would be interesting to understand
those classes, in particular as one knows that there are only finitely many such
classes for Hj of a given rank, as there are, according to Deligne [5], finitely
many Z variations of Hodge structures of a given rank on S − Σ, and Hj is
the canonical extension of Rjf |S−Σ∗C.

In fact, if f has relative (complex) dimension 1, even the Chern classes of
Hj in the Chow groups of S are torsion, as a consequence of Grothendieck-
Riemann-Roch theorem [10] (5.2).
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