Coniveau of Classes of Flat Bundles Trivialized on a Finite Smooth Covering of a Complex Manifold

HÉLÈNE ESNAULT
Universität-GH-Essen, Fachbereich 6, Mathematik, Universitätsstraße 3, D-45117 Essen, Germany

(Received: Febnary 1994)

Abstract

On a smooth algebraic complex variety X, we show that the classes of a flat bundle, which is trivialized on a finite cover of X, with values in the odd-dimensional cohomology of the underlying complex manifold with $\mathbb{C} / \mathbb{Z}(i)$, are living in the bottom part of Grothendieck's coniveau filtration. This answers positively when the basis is smooth complex a question of Bruno Kahn [K-Theory (1992), conjecture 2].

Key words: Flat bundles, secondary classes, coniveau filtration.

1. Introduction

Let (E, ∇) be an algebraic bundle with a flat connection on a smooth complex variety X. (We know that the flatness condition implies that the bundle is algebraic [2].) Then (E, ∇) has functorial and additive Chern classes

$$
c_{i}(E, \nabla) \in H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

mapping to the Chern classes $c_{i}^{\mathcal{D}}(E)$ of E in the subgroup $H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right) / F^{i}$ of the Deligne-Beilinson cohomology group $H_{\mathcal{D}}^{2 i}(X, \mathbb{Z}(i))$ [4, (2.24)] and Theorem 3.5. There are also classes in $H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)$ defined as the inverse image of the universal classes in $H^{2 i-1}\left(\mathrm{GL}_{n}(\mathbb{C}), \mathbb{C} / \mathbb{Z}(i)\right)$ via locally constant transition functions (Notation 3.2). In fact, the two classes coincide (Theorem 3.4) and they are rigid if $i \geqslant 2$ (3.6).

When (E, ∇) is trivialized on a finite covering $\pi: Y \rightarrow X$, then the class $c_{i}(E, \nabla)$ lies in the torsion subgroup $H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right)$ of $H^{2 i-1}\left(X_{\mathrm{an}}\right.$, $\mathbb{C} / \mathbb{Z}(i))$ (Lemma 4.1). The groups $H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right)$ have a filtration L defined by the Leray spectral sequence associated to the continuous identity map

$$
\alpha: X_{\mathrm{an}} \rightarrow X_{\mathrm{zar}}
$$

By $[1,(6.2)]$ there is a surjection

$$
H^{i-1}\left(X_{\mathrm{zar}}, \mathcal{H}^{i}(\mathbb{Q}(i) / \mathbb{Z}(i))\right) \rightarrow L^{i-1} H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right)
$$

and L^{i-1} is the bottom part of the filtration, where \mathcal{H} is the Zariski sheaf associated to the presheaf $U \mapsto H^{i}\left(U_{\text {an }}\right)$. We prove that

$$
c_{i}(E, \nabla) \in L^{i-1} H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / Z(i)\right)
$$

(Theorem 4.2). Comparing $c_{i}(E, \nabla)$ with Galois Chern classes

$$
c_{i}^{\mathrm{gal}}(E) \in H^{2 i-1}\left(X_{\mathrm{et}}, \mathbb{Q} / \mathbb{Z}\right)
$$

when (E, ∇) is associated to a finite representation of the fundamental group (Theorem 5.1), we obtain that

$$
c_{i}^{\mathrm{gal}}(E) \in L^{i-1} H^{2 i-1}\left(X_{\mathrm{et}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right)
$$

where L is the filtration induced by the Leray spectral sequence associated to the continuous identity map

$$
\beta: X_{\text {ét }} \rightarrow X_{\mathrm{zar}}
$$

(Theorem 5.2). This answers positively in the case $k=\mathbb{C}$ and X smooth a question by B. Kahn [8, conjecture 2], without assuming, however, that Kato's generalized conjecture is true in degree $\leqslant i$, as formulated in loc. cit. It also gives another proof of [8, théorème 1] for F a complex function field (in which case [8, théorème 1$]$ is straightforward).

2. Class in the $(2 i-1)$ th Cohomology of $X_{\text {an }}$ with $\mathbb{C}(i) / \mathbb{Z}(i)$ Values

We keep the notations of the introduction. In $[5,(1.7),(1.5)]$, we constructed for any bundle (E, ∇) with a flat connection functorial and additive classes

$$
c_{i}^{\mathrm{alg}}(E, \nabla) \in \mathbb{H}^{2 i}\left(X_{\mathrm{zar}}, \mathcal{K}_{i}^{m} \rightarrow \Omega_{X}^{i} \rightarrow \Omega_{X}^{i+1} \rightarrow \cdots\right)
$$

mapping to

$$
c_{i}(E, \nabla) \in H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

defined in [4, (2.24)] (and also mapping to the Chern classes in the Chow group $C H^{i}(X)$), where

$$
\mathcal{K}_{i}^{m}=\operatorname{Im} \mathcal{K}_{i}^{M} \rightarrow K_{i}^{M}(\mathbb{C}(X))
$$

is the sheaf of modified Milnor K-theory as introduced by O . Gabber [7] and M. Rost [13]. There is a factorization

$$
\begin{aligned}
& \mathbb{H}^{2 i}\left(X_{\mathrm{zar}}, \mathcal{K}_{i}^{m} \rightarrow \Omega_{X}^{i} \rightarrow \Omega_{X}^{i+1} \rightarrow \cdots\right) \\
& \stackrel{\varphi}{\rightarrow} \mathbb{H}^{2 i}\left(X_{\mathrm{zar}}, \Omega_{\mathbb{Z}(i)}^{i} \rightarrow \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i} \rightarrow \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i+1} \rightarrow \cdots\right) \\
& \stackrel{\psi}{\rightarrow} H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
\end{aligned}
$$

[5, (1.5) Proof], where

$$
\begin{aligned}
& \Omega_{\mathbb{Z}(i)}^{i}=\operatorname{Ker}\left(\alpha_{*} \Omega_{X_{\mathrm{an}}}^{i}\right)_{d \text { closed }} \rightarrow \mathcal{H}^{i}(\mathbb{C} / \mathbb{Z}(i)), \\
& \left(\Omega_{\mathbb{Q}(i)}^{i}=\operatorname{Ker}\left(\alpha_{*} \Omega_{X_{\mathrm{an}}}^{i}\right)_{d c l o s e d} \rightarrow \mathcal{H}^{i}(\mathbb{C} / \mathbb{Q}(i))\right),
\end{aligned}
$$

and $\alpha: X_{\mathrm{an}} \rightarrow X_{\mathrm{zar}}$ is as in the introduction. The complex

$$
\mathcal{D}_{X}^{i}:=\Omega_{\mathbb{Z}(i)}^{i} \rightarrow \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i} \rightarrow \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i+1} \rightarrow \cdots
$$

is an extension of

$$
0 \rightarrow 0 \rightarrow \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i+1} / \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i} \rightarrow \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i+2} \rightarrow \cdots
$$

by $\mathcal{H}^{i}(\mathbb{C}) / \mathcal{H}^{i}(\mathbb{Z}(i))[-1][5,(1.5)$. Proof $]$. We denote by

$$
c_{i}^{\prime}(E, \nabla) \in \mathbb{H i}^{i-2}\left(X_{\text {zar }}, \alpha_{*} \Omega_{X_{\text {an }}}^{i+1} / \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i} \rightarrow \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i+2} \rightarrow \cdots\right)
$$

the image of $\varphi c_{i}^{\text {alg }}(E, \nabla)$ in this group.
PROPOSITION 2.1. If there is a smooth variety Y covering X via a finite map $\pi: Y \rightarrow X$ such that $\pi^{*}(E, \nabla)$ is trivial, then

$$
\operatorname{deg} \pi \cdot c_{i}(E, \nabla)=0
$$

Proof. The trace maps $\pi_{*} \alpha_{*}\left(\Omega_{Y_{\mathrm{an}}}^{i}\right)_{d \text { dlosed }}$ to $\left(\alpha_{*} \Omega_{X_{\mathrm{an}}}^{i}\right)_{d \text { closed }}$ and $\pi_{*} \mathcal{H}^{i}(Y, \mathbb{Z}(i))$ to $\mathcal{H}^{i}(X, \mathbb{Z}(i))$. Thus, it maps $\pi_{*} \Omega_{\mathbb{Z}(i)}^{i}$ to $\Omega_{\mathbb{Z}(i)}^{i}$. The composite map

$$
\mathcal{D}_{X}^{i} \xrightarrow{\pi^{*}} R \pi_{*} \mathcal{D}_{Y}^{i}=\left(\pi_{*} \Omega_{\mathbb{Z}(i)}^{i} \rightarrow \pi_{*} \alpha_{*} \Omega_{Y_{\mathrm{an}}}^{i} \rightarrow \pi_{*} \alpha_{*} \Omega_{Y_{\mathrm{an}}}^{i+1} \rightarrow \cdots\right) \xrightarrow{\text { trace }} \mathcal{D}_{X}^{i}
$$

is the multiplication by $\operatorname{deg} \pi$, and

$$
\pi^{*} \varphi c_{i}^{\mathrm{alg}}(E, \nabla)=\varphi \pi^{*} c_{i}^{\mathrm{alg}}(E, \nabla)=0 .
$$

THEOREM 2.2. Let (E, ∇) be a bundle with a flat connection on a smooth complex variety X such that (E, ∇) is trivialized on a variety Y covering X via a finite map $\pi: Y \rightarrow X$. Then

$$
c_{i}(E, \nabla) \in L^{i-1} H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

Proof. The complex

$$
\alpha_{*} \Omega_{X_{\mathrm{an}}}^{i+1} / \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i} \rightarrow \alpha_{*} \Omega_{X_{\mathrm{an}}}^{i+2} \rightarrow \cdots
$$

is quasi-isomorphic to $R \alpha_{*} \mathbb{C} / \tau_{\leqslant i} R \alpha_{*} \mathbb{C}[i+1]$, and by $[1,(6.2)]$

$$
H^{2 i-1}\left(X_{\text {an }}, \mathbb{C}\right)=H^{2 i-1}\left(X_{\text {zar }}, R \alpha_{*} \mathbb{C} / \tau_{\leqslant(i-1)} R \alpha_{*} \mathbb{C}\right)
$$

Therefore, the short exact sequence

$$
0 \rightarrow \mathcal{H}^{i}(\mathbb{C})[-i] \rightarrow R \alpha_{*} \mathbb{C} / \tau_{\leqslant(i-1)} R \alpha_{*} \mathbb{C} \rightarrow R \alpha_{*} \mathbb{C} / \tau_{\leqslant i} R \alpha_{*} \mathbb{C} \rightarrow 0
$$

gives a long exact sequence

$$
\begin{aligned}
\rightarrow H^{i-1}\left(X_{\mathrm{zar}}, \mathcal{H}^{i}(\mathbb{C})\right) & \rightarrow H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C}\right) \\
& \rightarrow H^{2 i-1}\left(X_{\text {zar }}, R \alpha_{*} \mathbb{C} / \tau_{\leqslant i} R \alpha_{*} \mathbb{C}\right) \\
& \rightarrow H^{i}\left(X_{\text {zar }}, \mathcal{H}^{i}(\mathbb{C})\right) .
\end{aligned}
$$

We first assume that Y is smooth. As the class of E in $H^{i}\left(X_{\text {zar }}, \mathcal{K}_{i}^{m}\right)$ is torsion, it is vanishing in $H^{i}\left(X_{\text {zar }}, \mathcal{H}^{i}(\mathbb{C})\right)$. Thus, $c_{i}^{\prime}(E, \nabla)$ is a torsion class in the torsion-free group $H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C}\right) / H^{i-1}\left(X_{\mathrm{zar}}, \mathcal{H}^{i}(\mathbb{C})\right)$, and $c_{i}^{\prime}(E, \nabla)=0$. So $\varphi c_{i}^{\text {alg }}(E, \nabla)$ lies in the image of

$$
H^{i-1}\left(X_{\mathrm{zar}}, \mathcal{H}^{i}(\mathbb{C}) / \mathcal{H}^{i}(\mathbb{Z}(i)) \subset \mathbb{H}^{2 i}\left(X_{\mathrm{an}}, \mathcal{D}_{X}^{i}\right)\right.
$$

and $\psi \varphi c_{i}^{\mathrm{alg}}(E, \nabla)=c_{i}(E, \nabla)$ lies in the image of

$$
H^{i-1}\left(X_{\mathrm{zar}}, \mathcal{H}^{i}(\mathbb{C}) / \mathcal{H}^{i}(\mathbb{Z}(i))\right) \subset H^{2 i-1}\left(X_{\mathrm{zar}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

That is,

$$
c_{i}(E, \nabla) \in L^{i-1} H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

[1, (6.2)].
Now if Y is no longer smooth, we can say the following. Let

be a commutative diagram, with X^{\prime}, Y^{\prime} smooth, π^{\prime} finite, σ birational, proper and τ generically finite [9, (19) Proof]. In fact, if σ is any desingularization of the discriminant of π such that it becomes a normal crossing divisor, there is such a π^{\prime}. Then $\sigma^{*} \varphi c_{i}^{\text {alg }}(E, \nabla)$ is torsion by Proposition 2.1 applied to $\sigma^{*}(E, \nabla)$ and
$\sigma^{*} c_{i}^{\prime}(E, \nabla)=0$. This implies that $\sigma^{*} c_{i}^{\text {alg }}(E, \nabla)=c_{i}^{\text {alg }}\left(\sigma^{*}(E, \nabla)\right)$ maps to the image of

$$
\mathbb{H}^{i}\left(X_{\mathrm{zar}}^{\prime}, \mathcal{K}_{i}^{m} \rightarrow\left(\alpha_{*} \Omega_{X_{\mathrm{an}}}^{i}\right)_{d \mathrm{closed}}\right)
$$

in

$$
\mathbb{H}^{i}\left(X_{\mathrm{zar}}^{\prime}, \mathcal{K}_{i}^{m} \rightarrow\left(\alpha_{*} \Omega_{X_{\text {an }}}^{i}\right) \rightarrow\left(\alpha_{*} \Omega_{X_{\text {an }}^{i+1}}^{i+1}\right) \rightarrow \cdots\right),
$$

and, therefore,

$$
\sigma^{*} c_{i}(E, \nabla) \in L^{i-1} H^{2 i-1}\left(X_{\text {an }}^{\prime}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

In other words, there is a subscheme Z of X^{\prime} of dimension $\geqslant(i-1)$ such that

$$
\left.\sigma^{*} c_{i}(E, \nabla)\right|_{\left(X^{\prime}-Z\right)} \in H^{2 i-1}\left(\left(X^{\prime}-Z\right)_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

is zero. Thus, a-fortiori,

$$
\left.\sigma^{*} c_{i}(E, \nabla)\right|_{\sigma^{-1}\left(X-\sigma_{*} Z\right)} \in H^{2 i-1}\left(\sigma^{-1}\left(X-\sigma_{*} Z\right)_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

is zero. Here $\sigma_{*} Z$ is a subscheme of X of codimension $\geqslant(i-1)$ as well.
Take σ to be a succession of blow ups with smooth centers. Then one sees, successively on each blow up, that

$$
\sigma^{*}: H^{2 i-1}\left(\left(X-\sigma_{*} Z\right)_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right) \rightarrow H^{2 i-1}\left(\sigma^{-1}\left(X-\sigma_{*} Z\right)_{\mathrm{an}}, \mathbb{C} / Z(i)\right)
$$

is injective. This shows that the restriction of $c_{i}(E, \nabla)$ to $\left(X-\sigma_{*} Z\right)$ is zero.
Remark 2.3. In fact, this cumbersome detour comes from the fact that if Y is singular, one can define $\Omega_{\mathbb{Z}(i)}^{i}$ thanks to [3, (9.3.1) (c), (d)]: there is a splitting

$$
\mathcal{H}^{i}(\mathbb{C}) \rightarrow \mathcal{H}^{i}\left(\Omega_{Y_{\text {an }}}^{*}\right) \rightarrow \mathcal{H}^{i}(\mathbb{C})
$$

and, therefore, a surjection

$$
\left(\alpha_{*} \Omega_{Y_{\text {an }}}^{i}\right)_{d \text { closed }} \rightarrow \mathcal{H}^{i}(\mathbb{C})
$$

One defines

$$
\Omega_{\mathbb{Z}(i)}^{i}:=\operatorname{Ker}\left(\alpha_{\star} \Omega_{Y_{\text {an }}}^{i}\right)_{d c l o s e d} \rightarrow \mathcal{H}^{i}(\mathbb{C} / \mathbb{Z}(i)) .
$$

However, I don't know whether $\pi^{*} \varphi c_{i}^{\text {alg }}(E, \nabla)=0$, as it is not clear whether Gabber's projective bundle formula $[5,(1.2)$ (c)] holds true when Y is singular, a necessary assumption to 'descent' the class $c_{i}^{\text {alg }}(E, \nabla)$ from the flag bundle of E to Y.

3. Identification of Classes in the $(2 i-1)$ th Cohomology of $X_{\text {an }}$ with $\mathbb{C}(i) / \mathbb{Z}(i)$ Coefficients

Let (E, ∇) be a bundle with a flat connection on a smooth complex variety X. One considers algebraic transition functions $g_{\alpha \beta} \in \Gamma\left(U_{\alpha \beta}, \mathrm{GL}_{n}(\mathcal{O})\right)$ on a trivializing Zariski Cech cover $\left\{U_{\alpha}\right\}$, and locally constant transition functions $\lambda_{\alpha \beta} \in \Gamma\left(V_{\alpha \beta}, \mathrm{GL}_{n}(\mathbb{C})\right)$ on an analytic refinement $\left(V_{\beta}\right)_{\beta \in J}$ of $\left(U_{\alpha}\right)_{\alpha \in I}$, with refinement map $\varphi: J \rightarrow I$. One has the following diagram

where $B G_{\boldsymbol{\bullet}}$ is the simplicial scheme

$$
\left(G^{\Delta_{l}} / G\right) \xrightarrow[\longrightarrow]{\longrightarrow}\left(G^{\left.\Delta_{l-1} / G\right) \rightrightarrows} G^{\Delta_{l}} / G \longrightarrow\{1\}\right.
$$

[3,(6.1.3)], $\left(B G_{\bullet}\right)_{\text {an }}$ is the simplicial analytic manifold where $\left(G^{\Delta_{l}} / G\right)$ is viewed in the analytic topology, $\left(B G_{\bullet}\right)_{d}$ is the simplicial set where $\left(G^{\Delta_{l}} / G\right)$ is viewed in the discrete topology, and $G=\mathrm{GL}_{n}$. The maps are defined by

$$
\begin{aligned}
g: U_{i_{00} \ldots i_{l}} & \rightarrow G^{\Delta_{l}} / G \\
x & \mapsto\left(g_{i_{0} i_{l}(x)}, \ldots, g_{i_{l-1} i_{l}}(x)\right) \\
\left.g\right|_{(X)_{a_{n}}:}: V_{j_{0} \ldots j_{l}} & \rightarrow G^{\Delta_{l}} / G \\
x & \mapsto\left(g_{\varphi\left(j_{0}\right) \varphi\left(j_{l}\right)}(x), \ldots, g_{\varphi\left(j_{l-1}\right) \varphi\left(j_{l}\right)}(x)\right) \\
\lambda: V_{j_{0} \ldots j_{l}} & \rightarrow G^{\Delta_{l}} / G \\
x & \mapsto\left(\lambda_{j_{0} j_{l}}, \ldots, \lambda_{j_{l-1} j_{l}}\right)
\end{aligned}
$$

We set $e=e_{d} \circ e_{a}$. We denote by $H_{\mathcal{D}}^{j}\left(\left(Y_{\bullet}\right)_{\text {an }}, \mathbb{Z}(i)\right)$ the 'analytic' Deligne cohomology of the (simplicial) analytic manifold

$$
H_{\mathcal{D}}^{j}\left(\left(Y_{\bullet}\right)_{\mathrm{an}}, \mathbb{Z}(i)\right):=\mathbb{H}^{j}\left(\left(Y_{\bullet}\right)_{\mathrm{an}}, \mathbb{Z}(i) \rightarrow \mathcal{O}_{\left(Y_{\bullet}\right)_{\mathrm{an}}} \rightarrow \cdots \rightarrow \Omega_{\left(Y_{\bullet}\right) \mathrm{an}^{i-1}}^{i-1}\right) .
$$

PROPOSITION 3.1.

(1) $\quad e_{a}^{*}: H_{\mathcal{D}}^{2 i}\left(B G_{\bullet}, \mathbb{Z}(j)\right) \rightarrow H_{\mathcal{D}}^{2 i}\left(\left(B G_{\bullet}\right)_{\mathrm{an}}, \mathbb{Z}(j)\right)$
is split for $j \leqslant i$.
(2) $\quad H_{\mathcal{D}}^{j}\left(\left(B G_{\bullet}\right)_{d}, i\right)=H^{j-1}(G, \mathbb{C} / \mathbb{Z}(i)), \quad i \geqslant 1$,

$$
=H^{j}(G, \mathbb{Z}), \quad i=0
$$

(3) One has a factorization

$$
\begin{gathered}
\left.(\mathbb{Z}(i)) \rightarrow \mathcal{O}_{\left(B G_{\bullet}\right)_{\mathrm{an}}} \rightarrow \cdots \rightarrow \Omega_{\left(B G_{\bullet}\right)_{\mathrm{an}}}^{i-1}\right) \xrightarrow{\left(e_{d} \circ \lambda\right)^{*}} R \lambda_{*}(\mathbb{Z}(i) \rightarrow \mathbb{C}) \\
\left(e_{d} \circ \lambda\right)^{*} \\
\left.R \lambda_{*}(\mathbb{Z}(i)) \rightarrow \mathcal{O}_{\left(X_{\bullet}\right) \mathrm{an}} \rightarrow \cdots \rightarrow \Omega_{\left.\left(X_{\bullet}\right)_{\mathrm{an}}\right)}^{i-1}\right)
\end{gathered}
$$

defining the commutative diagram

for $i \geqslant 1$.
Proof.
(1) The cohomology of $B G_{\bullet}$ is pure of type (i, i) [3, (9.2)]. Therefore

$$
H_{\mathcal{D}}^{2 i}\left(B G_{\bullet}, \mathbb{Z}(j)\right)=0
$$

if $j>i$, and if $j \leqslant i$

$$
H_{\mathcal{D}}^{2 i}\left(B G_{\bullet}, \mathbb{Z}(j)\right)=H^{2 i}\left(\left(B G_{\bullet}\right), \mathbb{Z}(j)\right)
$$

is split in

$$
\begin{aligned}
& H_{\mathcal{D}}^{2 i}\left(\left(B G_{\bullet}\right)_{\mathrm{an}}, \mathbb{Z}(j)\right) \\
& =\left\{(\varphi, z) \in \mathbb{H}^{2 i}\left(\left(B G_{\bullet}\right)_{\mathrm{an}}, \Omega_{\left(B G_{\bullet}\right)_{\mathrm{an}}}^{\geqslant j}\right) \times H^{2 i}\left(\left(B G_{\bullet}\right), \mathbb{Z}(j)\right)\right. \\
& \left.\quad \text { such that } \operatorname{Im} \varphi=\operatorname{Im} z \in H^{2 i}\left(\left(B G_{\bullet}\right)_{\mathrm{an}}, \mathbb{C}\right)\right\} .
\end{aligned}
$$

(2) As the topology is discrete

$$
\begin{array}{rlrl}
\mathbb{Z}(i) & \rightarrow \mathcal{O}_{\left(B G_{\bullet}\right)_{d}} \rightarrow \cdots \rightarrow \Omega_{\left(B G_{\bullet}\right)_{d}}^{i-1} \\
& =\mathbb{Z}, & & i=0, \\
& =\mathbb{Z}(i) \rightarrow \mathbb{C}, & & i>1 .
\end{array}
$$

(3) The transition functions $g_{\alpha \beta}$ and $\lambda_{\alpha \beta}$ describe the same bundle $\left.E\right|_{X_{\text {an }}}$. So there are some $P_{\alpha} \in \Gamma\left(V_{\alpha}, \mathrm{GL}_{n}\left(\mathcal{O}_{X_{\mathrm{an}}}\right)\right)$ such that $\lambda_{\alpha \beta}=P_{\beta}^{-1} g_{\alpha \beta} P_{\alpha}$. For any complexes of analytic sheaves \mathcal{K}^{\bullet} on $\left(B G_{\bullet}\right)_{\text {an }}$ and \mathcal{L}^{\bullet} on $\left(X_{\bullet}\right)_{\text {an }}$, such that

$$
\begin{aligned}
& \left(e_{d} \circ \lambda\right)^{*}: \mathcal{K}^{\bullet} \rightarrow R\left(e_{d} \circ \lambda\right)_{*} \mathcal{L}^{\bullet}, \\
& \left.g\right|_{\left(X_{\bullet}\right)_{\mathrm{an}}:}: \mathcal{K}^{\bullet} \rightarrow R g_{*} \mathcal{L}^{\bullet},
\end{aligned}
$$

one has

$$
\left(e_{d} \circ \lambda\right)^{*}=\left.g\right|_{\left(X_{\bullet}\right)_{\mathrm{an}}} ^{*} \mathbb{H}^{j}\left(\left(B G_{\bullet}\right)_{\mathrm{an}}, \mathcal{K}^{\bullet}\right) \rightarrow \mathbb{H}^{j}\left(\left(X_{\bullet}\right)_{\mathrm{an}}, \mathcal{L}^{\bullet}\right)
$$

In particular for

$$
\begin{aligned}
\mathcal{K}^{\bullet} & =\mathbb{Z}(i) \rightarrow \mathcal{O}_{\left(B G_{\bullet}\right)_{\mathrm{an}}} \rightarrow \cdots \rightarrow \Omega_{\left(B G_{\bullet}\right)_{\mathrm{an}}}^{i-1} \\
\mathcal{L}^{\bullet} & =\mathbb{Z}(i) \rightarrow \mathcal{O}_{\left(X_{\bullet}\right)_{\mathrm{an}}} \rightarrow \cdots \rightarrow \Omega_{\left(X_{\bullet}\right)_{\mathrm{an}}}^{i-1}
\end{aligned}
$$

As λ is constant, $\left(e_{d} \circ \lambda\right)^{-1}$ maps $\mathcal{O}_{\left(B G_{\bullet}\right)_{\text {an }}}$ to \mathbb{C} and $\Omega_{\left(B G_{*}\right)_{\text {an }}}^{j}$ to zero for $j>0$. This shows the factorization, and thereby the commutative diagram.
NOTATION 3.2. We denote by

$$
c_{i} \in H_{\mathcal{D}}^{2 i}\left(B G_{\bullet}, \mathbb{Z}(i)\right)=H^{2 i}\left(B G_{\bullet}, \mathbb{Z}(i)\right)
$$

the Chern class of the universal bundle $\left(G^{\Delta_{l}} \times_{G} \mathbb{C}^{n}\right)$. over $\left(G^{\Delta_{l}} / G\right)_{\bullet}=B G_{\bullet}$, by $b_{i}=e^{*} c_{i} \in H^{2 i-1}(G, \mathbb{C} / \mathbb{Z}(i))(i \geqslant 1)$ the inverse image, by $c_{i}^{\mathcal{D}}(E) \in$ $H_{\mathcal{D}}^{2 i}(X, \mathbb{Z}(i))$ the Chern classes of E in the Deligne-Beilinson cohomology, by

$$
\lambda^{*} b_{i} \in H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

the inverse image of b_{i} on $X_{\text {an }}$, which we can also view as the inverse image via $\left(e_{d} \circ \lambda\right)^{*}$ of $e_{d}^{*} c_{i} \in H_{\mathcal{D}}^{2 i}\left(\left(B G_{\bullet}\right)_{\mathrm{an}}, \mathbb{Z}(i)\right.$ through the factorization 3.1(3). Again λ^{*} and $\left(e_{d} \circ \lambda\right)^{*}$ do not depend on the locally constant transition functions chosen.

COROLLARY 3.3.

(1) The image of $\lambda^{*} b_{i}$ in $H_{\mathcal{D}}^{2 i}\left(\left(X_{\bullet}\right)_{\text {an }}, \mathbb{Z}(i)\right)$ coincides with the image of $c_{i}^{\mathcal{D}}(E)$ in $H_{\mathcal{D}}^{2 i}\left(\left(X_{\bullet}\right)_{\text {an }}, \mathbb{Z}(i)\right)$.
(2) In particular, if X is proper, $\lambda^{*} b_{i}$ lifts $c_{i}^{\mathcal{D}}(E)$.

Proof. (1) follows from Proposition 3.1, (3) and (2), from the fact that if X is proper,

$$
\varphi^{*}: H_{\mathcal{D}}^{2 i}\left(X_{\bullet}, \mathbb{Z}(i)\right) \rightarrow H_{\mathcal{D}}^{2 i}\left(\left(X_{\bullet}\right)_{\text {an }}, \mathbb{Z}(i)\right)
$$

is an isomorphism.
THEOREM 3.4. One has $c_{i}(E, \nabla)=\lambda^{*} b_{i}$.
Proof. Let $\pi: Y \rightarrow X$ be the flag bundle of E, endowed with a splitting $\tau: \Omega_{Y}^{1} \rightarrow \pi^{*} \Omega_{X}^{1}$ of $i: \pi^{*} \Omega_{X}^{1} \hookrightarrow \Omega_{Y}^{1}$, such that τ extends to a map of complexes

$$
\tau:\left(\Omega_{Y}^{*}, d\right) \rightarrow\left(\pi^{*} \Omega_{X}^{*} . \tau \circ d \circ i\right)
$$

and such that E has a $\tau \circ \nabla$ stable filtration $E_{i-1} \subset E_{i}$, with E_{i} / E_{i-1} of rank $1[4$, (2.7)]. One considers a Cech cover of Y obtained by taking the standard (Zariski) Cech cover F^{α} of $F=$ flag bundle of \mathbb{C}^{n}, a trivialization $Y \mid V_{j} \simeq F \times V_{j}$:

$$
Y_{a}=Y_{j}^{\alpha}=F^{\alpha} \times V_{j}, \quad a=\binom{\alpha}{j} .
$$

Set $\pi(a)=j$. This defines $\pi:\left(Y_{\bullet}\right)_{\mathrm{an}} \rightarrow\left(X_{\bullet}\right)_{\mathrm{an}}=\left(V_{\bullet}\right)$. On Y one defines the analytic sheaf $L=\operatorname{Ker} \tau \circ d: \mathcal{O}_{Y_{\mathrm{an}}} \rightarrow \pi^{*} \Omega_{X_{\mathrm{an}}}^{1}$ containing \mathbb{C}. Then there are

$$
Q_{a} \in \Gamma\left(Y_{a}, \mathrm{GL}_{n}(L)\right), \mu_{\alpha \beta} \in \Gamma\left(Y_{a b}, B(L)\right)
$$

with

$$
\left(\left.\lambda\right|_{\left(Y_{\bullet}\right)_{\mathrm{an}}}\right)_{a b}=Q_{b}^{-1} \mu_{a b} Q_{a},
$$

where

$$
\left(\left.\lambda\right|_{\left(\mathrm{Y}_{\bullet}\right)_{\mathrm{an}}}\right)_{a b}=\lambda_{\pi(a) \pi(b)},
$$

and $B \subset \mathrm{GL}_{n}$ is the Borel subgroup of upper triangular matrices. This defines the diagram

where ν is the natural embedding, and

$$
\begin{gathered}
\mu: Y_{a_{0} \ldots a_{l}} \rightarrow B^{\Delta_{l}} / B \\
y \mapsto\left(\mu_{a_{0} a_{l}}(y), \ldots, \mu_{a_{l-1} a_{l}}(y)\right) .
\end{gathered}
$$

Here, to simplify the notations, we dropped e_{d}.
For any complexes of analytic sheaves \mathcal{K}^{\bullet} on $\left(B G_{\bullet}\right)_{\text {an }}$ and \mathcal{L}^{\bullet} on $\left(Y_{\bullet}\right)_{\text {an }}$ such that

$$
\begin{aligned}
& \left.\left.\lambda\right|_{\left(Y_{\bullet}\right)_{\mathrm{a}}:} \quad \mathcal{K}^{\bullet} \rightarrow R \lambda\right|_{\left(Y_{\bullet}\right)_{\mathrm{an}}^{*} \mathcal{L}^{\bullet},}, \\
& (\nu \circ \mu)^{*}: \mathcal{K}^{\bullet} \rightarrow R(\nu \circ \mu)_{*} \mathcal{L}^{\bullet},
\end{aligned}
$$

one has

$$
\left.\left.\lambda\right|_{\left(Y_{\bullet}\right)_{\mathrm{an}}} ^{*}=(\nu \circ \mu)^{*}=\mathbb{H}^{j}\left(B G_{\bullet}\right)_{\mathrm{an}}, \mathcal{K}^{\bullet}\right) \rightarrow \mathbb{H}^{\dot{j}}\left(\left(Y_{\bullet}\right)_{\mathrm{an}}, \mathcal{C}^{\bullet}\right)
$$

in particular for

$$
\mathcal{K}^{\bullet}=\mathbb{Z}(i) \rightarrow \mathcal{O}_{\left(B G_{\bullet}\right)_{\mathrm{an}}} \rightarrow \cdots \rightarrow \Omega_{\left(B G_{\bullet}\right)_{\mathrm{an}}}^{i-1}
$$

and

$$
\mathcal{L}^{\bullet}=\mathbb{Z}(i) \rightarrow L
$$

From the factorization of $\left.\lambda\right|_{\left(Y_{\bullet}\right)_{\text {an }}} ^{*}$ through $\pi^{*} \mathbb{H}^{j}\left(\left(X_{\bullet}\right)_{\mathrm{an}}, \mathbb{Z}(i) \rightarrow \mathbb{C}\right)$, one obtains

$$
(\nu \circ \mu)^{*} e_{a}^{*} c_{i}=\text { Image of } \pi^{*} \lambda^{*} b_{i} \quad \text { in } \quad \mathbb{H}^{2 i}\left(\left(Y_{\bullet}\right)_{\mathrm{an}}, \mathbb{Z}(i) \rightarrow L\right)
$$

Now, one just has to identify $(\nu \circ \mu)^{*} e_{a}^{*} c_{i}$ with

$$
c_{i}\left(\pi^{*}(E, \nabla)\right)=\text { Image of } \pi^{*} c_{i}(E, \nabla) \text { in } \mathbb{H}^{2 i}\left(Y_{\mathrm{an}}, Z(i) \rightarrow L\right)
$$

$[4,(2.10)]$ as $\mathbb{H}^{2 i}\left(X_{\mathrm{an}}, \mathbb{Z}(i) \rightarrow L\right)$ injects into $\mathbb{H}^{2 i}\left(Y_{\mathrm{an}}, \mathbb{Z}(i) \rightarrow L\right)[4,(2.14)]$ and [$5,(1.7)]$ for a more precise proof).

The class $(\nu \circ \mu)^{*} e_{a}^{*} c_{i}$ is given by the i th symmetric product of the classes of E_{j} / E_{j-1} in $\mathbb{H}^{2}(Y, \mathbb{Z}(1) \rightarrow L)$, where the product is just the Deligne product on the complexes

$$
\mathbb{Z}(i) \rightarrow \mathcal{O}_{Y_{\mathrm{an}}} \rightarrow \pi^{*} \Omega_{Y_{\mathrm{an}}}^{1} \rightarrow \cdots \rightarrow \pi^{*} \Omega_{Y_{\mathrm{an}}}^{i-1}
$$

restricted to the subcomplexes

$$
\mathbb{Z}(i) \rightarrow L
$$

But the restriction of the Deligne product is just the multiplication by the $\mathbb{Z}(i)$ term, that is the multiplication by the Betti class of E_{j} / E_{j-1} in $H^{2}\left(Y_{\mathrm{an}}, \mathbb{Z}(1)\right)$. This is exactly the definition of $\left(c_{i} \pi^{*}(E, \nabla)\right)[4,(2.9)]$.
THEOREM 3.5. The image of $c_{i}(E, \nabla)=\lambda^{*} b_{i} 3.4$ in $H_{\mathcal{D}}^{2 i}(X, \mathbb{Z}(i))$ is $c_{i}^{D}(E)$.
Proof. In [4] we constructed $c_{i}(E, \nabla)$ as a lifting of the image of $c_{i}^{\mathcal{D}}(E)$ in $H_{\mathcal{D}}^{2 i}\left(X_{\mathrm{an}}, \mathbb{Z}(i)\right)$. In particular, if X is proper, Theorem 3.5 is just be construction, and in fact for $\lambda^{*} b_{i}, 3.5$ is just Proposition 3.1, (3). If X is not proper, one considers a smooth compactification \bar{X} such that $D=\bar{X}-X$ is a normal crossing divisor, and an extension $(\bar{E}, \bar{\nabla})$ of (E, ∇) as a bundle with an integrable connection with logarithmic poles along D. Then the classes $c_{i}(\bar{E}, \bar{\nabla})$ in

$$
\begin{aligned}
\mathbb{H}^{2 i}\left(\bar{X}_{\mathrm{an}}, \mathbb{Z}(i)\right. & \rightarrow \mathcal{O}_{\bar{X}_{\mathrm{an}}} \rightarrow \cdots \rightarrow \Omega_{\bar{X}_{a n}}^{i-1} \rightarrow \Omega_{\bar{X}_{a n}}^{i}(\log D) \\
& \left.\rightarrow \cdots \rightarrow \Omega_{\bar{X}_{\mathrm{an}} X}^{\operatorname{dim} X}(\log D)\right)
\end{aligned}
$$

constructed in $[4,(3.6)]$ lift $c_{i}^{\mathcal{D}}(\bar{E}) \in H_{\mathcal{D}}^{2 i}(\bar{X}, \mathbb{Z}(i))$. Therefore the restriction $c_{i}(E, \nabla)$ of $c_{i}(\bar{E}, \bar{\nabla})$ to X lifts the restriction $c_{i}^{\mathcal{D}}(E)$ of $c_{i}^{\mathcal{D}}(\bar{E})$ to X.

We write down a corollary which we do not use in the sequel, but which is related to Reznikov's work [11, 12]. One can compare it to the same statement in which X is proper but ∇ is not integrable [6].

COROLLARY 3.6. Let S be a complex variety, and let (\mathcal{E}, ∇) be a bundle on $X \times S$ with an integrable connection with values in $\Omega_{X \times S / S}^{1}$. Then the map

$$
\begin{aligned}
& S \rightarrow H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right) \\
& s \mapsto c_{i}\left(\left.(\mathcal{E}, \nabla)\right|_{X \times\{s\}}\right)
\end{aligned}
$$

is constant.
Proof. One may assume that S is an affine smooth curve. Let $\pi: X \times S \rightarrow S$ be the projection. There is an analytic product Cech cover $V_{i} \times S_{j}$ of $X \times S$, trivializing \mathcal{E} such that the transition functions $\lambda_{\alpha \beta} \in \Gamma\left(V_{i i^{\prime}} \times S_{j j^{\prime}}, \mathrm{GL}_{n}\left(\pi^{-1} \mathcal{O}_{S_{\text {an }}}\right)\right.$, where $\alpha=(i, j), \beta=\left(i^{\prime}, j^{\prime}\right)$. The map $a \mapsto j$ defines the map $\pi:(X \times S)_{\bullet \text { an }} \rightarrow\left(S_{\bullet}\right)_{\text {an }}$, and

$$
\begin{aligned}
& \lambda: U_{\alpha_{0} \ldots \alpha_{l}}=V_{i_{0} \ldots i_{l}} \times S_{j_{0} \ldots j_{l}} \rightarrow G^{\Delta_{l}} / G \\
& (x, s) \mapsto\left(\lambda_{\alpha_{0} \alpha_{l}}(s), \ldots, \lambda_{\alpha_{l-1} \alpha_{l}}(s)\right)
\end{aligned}
$$

defines a map $\lambda:(X \times S)_{\bullet a n} \rightarrow\left(B G_{\bullet}\right)_{\text {an }}$ with a factorization

for

$$
\begin{aligned}
\mathcal{K}^{\bullet}=\mathbb{Z}(i) \rightarrow \mathcal{O}_{\left(B G_{\bullet}\right)_{\mathrm{an}}} \rightarrow \cdots \rightarrow \Omega_{\left(B G_{\bullet}\right)_{\mathrm{an}}}^{i-1} \\
\mathcal{L}^{\bullet}=\mathbb{Z}(i) \rightarrow \mathcal{O}_{(X \times S)_{\bullet a n}} \rightarrow \cdots \rightarrow \Omega_{(X \times S)_{\bullet a n}}^{i-1}
\end{aligned}
$$

and $i \geqslant 2$, such that

$$
\left.\lambda^{*} e_{a}^{*} c_{i}\right|_{(X \times\{s\})_{\bullet \text { an }}} \in H^{2 i-1}\left((X \times\{s\})_{\bullet \text { an }}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

is the class $c_{i}(E, \nabla)$, where $(E, \nabla)=\left.(\mathcal{E}, \nabla)\right|_{X \times\{s\}}$ (Notation 3.2, and Theorem 3.4). But

$$
\mathbb{Z}(i) \rightarrow \pi^{-1} \mathcal{O}_{S_{\mathrm{an}}} \rightarrow \pi^{-1} \Omega_{S_{\mathrm{an}}}^{1}
$$

is quasi-isomorphic to $\mathbb{Z}(i) \rightarrow \mathbb{C}$. Therefore,

$$
\lambda^{*} e_{a}^{*} c_{i} \in H^{2 i-1}\left((X \times S)_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

This shows that $c_{i}\left(\left.(\mathcal{E}, \nabla)\right|_{X \times\{s\}}\right)$ does not depend on s.

4. Classes in the $(2 i-1)$ th Cohomology of $X_{\text {an }}$ with $\mathbb{Q}(i) / \mathbb{Z}(i)$ Coefficients

LEMMA 4.1.
(1) The natural map

$$
H^{j}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right) \rightarrow H^{j}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

is injective and identifies the left group with the torsion of the right group.
(2)

$$
L^{a} H^{j}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right)=H^{j}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right) \cap L^{a} H^{j}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(i)\right)
$$

Proof.
(1) For all $j, H^{j}\left(X_{\mathrm{an}}, \mathbb{C}\right)$ surjects onto the torsion free group $H^{j}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Q}(i)\right)$, factorizing through $H^{j}\left(X_{\mathrm{an}}, \mathbb{C} / \mathbb{Z}(j)\right)$.
(2) Moreover by $[1,(6.4)], L^{a}$ is the coniveau filtration.

THEOREM 4.2. Under the assumptions of Theorem 2.2 one has

$$
c_{i}(E, \nabla) \in L^{i-1} H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right)
$$

5. Classes in the $(2 i-1)$ th Cohomology of $X_{\text {et }}$ with \mathbb{Q} / \mathbb{Z} Coefficients

Let (E, ∇) be a bundle with an integrable connection associated to a finite representation

$$
\pi_{1}(X) \rightarrow \bar{\pi} \subset \mathrm{GL}(n, \mathbb{C})
$$

of the fundamental group of a smooth complex variety. Then E has Chern classes

$$
c_{i}^{\mathrm{gal}}(E) \in H^{2 i-1}\left(X_{\text {ét }}, \mathbb{Q} / \mathbb{Z}\right)
$$

defined as follows [8, §1]
One considers an étale Cech cover of X trivializing E, and the corresponding map

$$
\left(X_{\bullet}\right)_{\mathrm{ett}} \xrightarrow{\lambda_{\mathrm{et}}} B \bar{\pi}_{\bullet} \subset\left(B G_{\bullet}\right)_{d}
$$

with the notations as in Section 2 . On $B \bar{\pi}_{\bullet}$, one considers the bundle ($\left.\bar{\pi}^{\Delta_{l}} \times_{\bar{\pi}} \mathbb{C}^{n}\right)_{\bullet}$, restriction of the bundle $\left(G^{\Delta_{l}} \times_{G} \mathbb{C}^{n}\right)$. over $\left(B G_{\bullet}\right)_{d}=\left(G^{\Delta_{l}} / G\right)_{\bullet}$. It has Chern classes $\bar{\gamma}_{i} \in H^{2 i}(\bar{\pi}, \mathbb{Z})$, restriction of the Chern classes $\gamma_{i} \in H^{2 i}(G, \mathbb{Z})$ of $\left(G^{\Delta_{l}} \times \times_{G} \mathbb{C}^{n}\right)$. One has

$$
\begin{aligned}
c_{i}^{\mathrm{gat}}(E) & =\lambda_{\text {et }}^{*}\left(\bar{\gamma}_{i}\right) \in H^{2 i}\left(X_{\text {ett }}, \mathbb{Z}\right)=H^{2 i-1}\left(X_{\text {êt }}, \mathbb{Q} / \mathbb{Z}\right) \\
& =\underset{\mathrm{N}}{\lim } H^{2 i-1}\left(X_{\text {ét }}, \frac{1}{N} \mathbb{Z} / \mathbb{Z}\right) \\
& =\underset{\mathrm{N}}{\lim } H^{2 i-1}\left(X_{\text {an }}, \frac{1}{N} \mathbb{Z} / \mathbb{Z}\right) \\
& =H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{Q} / \mathbb{Z}\right) \underset{(2 \pi \sqrt{-1})^{i}}{\sim} H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right)
\end{aligned}
$$

where the first equality of cohomology groups comes from [1, (4.2.2)], [10,(III, 2.22)] and the third one from [10, (III, 3.12)].
THEOREM 5.1. One has, via the identifications above

$$
(2 \pi \sqrt{-1})^{i} c_{i}^{\mathrm{gal}}(E)=c_{i}(E, \nabla)
$$

Proof. One has $\gamma_{i}=\frac{1}{(2 \pi \sqrt{-1})^{i}} e^{*} c_{i}$, viewing

$$
c_{i} \in H_{\mathcal{D}}^{2 i}\left(B G_{\bullet}, \mathbb{Z}(i)\right)=H^{2 i}\left(B G_{\bullet}, \mathbb{Z}(i)\right)
$$

as a Betti class, and therefore $\gamma_{i}=\frac{1}{(2 \pi \sqrt{-1})^{i}} \delta b_{i}$, where δ is the Bockstein map

$$
H^{2 i-1}(G, \mathbb{C} / \mathbb{Z}(i)) \rightarrow H^{2 i}(G, \mathbb{Z}(i))
$$

(the notations are as in Section 2). So one applies the commutative diagram

THEOREM 5.2.

$$
c_{i}^{\mathrm{gal}}(E) \in L^{i-1} H^{2 i-1}\left(X_{\text {et }}, \mathbb{Q} / \mathbb{Z}\right)
$$

Proof. As L^{a} is the coniveau spectral sequence both on $H^{j}\left(X_{\text {ét }}\right)$ and $H^{j}\left(X_{\mathrm{an}}\right)$, one has an isomorphism

$$
L^{i-1} H^{2 i-1}\left(X_{\hat{\mathrm{e}}}, \mathbb{Q} / \mathbb{Z}\right) \frac{\sim}{(2 \pi \sqrt{-1})^{i}} L^{i-1} H^{2 i-1}\left(X_{\mathrm{an}}, \mathbb{Q}(i) / \mathbb{Z}(i)\right) .
$$

One applies (5.1) and (2.2).

Acknowledgement

I thank Bruno Kahn for his repeated tries to bring me closer to Galois cohomology and Eckart Viehweg for help and encouragement. I thank Spencer Bloch for his constructive comments allowing to improve a first version of this article.

References

1. Bloch, S. and Ogus, A.: Gersten's conjecture and the homology of schemes, Ann. Sci. Ecole Norm. Sup. (4) 7 (1974), 181-202.
2. Deligne, P.: Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer-Verlag, New York, 1970.
3. Deligne, P.: Théorie de Hodge, III, Publ. Math. IHES 44 (1974), 5-78.
4. Esnault, H.: Characteristic classes of flat bundles, Topology 27 (3) (1988), 323-352.
5. Esnault, H.: Characteristic classes of flat bundles, II, K-Theory 6 (1992) 45-56.
6. Esnault, H. and Srinivas, V.: Chern classes of vector bundles with holomorphic connections on a complete smooth complex variety, J. Differential Geom. 36 (1992), 257-267.
7. Gabber, O.: talk at the university Paris VII, Feb. 1992.
8. Kahn, B.: Les classes de Chem des représentations Galoisiennes complexes, K-Theory 5 (1992), 555-566.
9. Kawamata, Y.: Characterization of abelian varieties, Comp. Math. 43 (1981), 253-276.
10. Milne, J. S.: Etale Cohomology, Princeton Math. Ser. 33, Princeton Univ. Press, Princeton, 1980.
11. Reznikov, A.: Rationality of secondary classes, Preprint (1993).
12. Reznikov, A.: All regulators are rational, Preprint (1993).
13. Rost, M.: Durch Normengruppen definierte birationale Invarianten, C.R. Acad. Sci. Paris Ser. I Math 310 (1990), 189-192.
