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Abstract. On a smooth algebraic complex variety X, we show that the classes of a fiat bundle, which 
is trivialized on a finite cover of X, with values in the odd-dimensional cohomology of the underlying 
complex manifold with C/Z (i), are riving in the bottom part of Grothendieck's coniveau filtration. 
This answers positively when the basis is smooth complex a question of Bruno Kahn [K-Theory 
(1992), conjecture 2]. 
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1. Introduction 

Let (E ,  V) be an algebraic bundle with a flat connection on a smooth complex 
variety X.  (We know that the flatness condition implies that the bundle is algebraic 
[2].) Then (E ,  V) has functorial and additive Chern classes 

c (E, C/Z(i)) 
mapping to the Chern classes c~ (E)  of E in the subgroup H 2i- 1 (Xan, C/Z ( i ) ) / F  i 
of the Deligne-Beilinson cohomology group H~j(X, Z(i))  [4, (2.24)] and Theorem 
3.5. There are also classes in H2i-l(xan,  C/Z( i ) )  defined as the inverse image 
of the universal classes in H2i-I(GL,~(C), C/Z (i)) via locally constant transition 
functions (Notation 3.2). In fact, the two classes coincide (Theorem 3.4) and they 
are rigid if i >/2 (3.6). 

When (E ,  V) is trivialized on a finite covering 7r: Y -~ X,  then the class 
ci(E,  V) lies in the torsion subgroup H2i-I(Xan, Q(i) /Z( i ) )  of H2i-I(Xan, 
C/Z( i ) )  (Lemma 4.1). The groups H2i-l(Xan, Q( i ) /Z( i ) )  have a filtration L 
defined by the Leray spectral sequence associated to the continuous identity map 

a: Xan --4 Xzar. 

By [1, (6.2)] there is a surjection 

Hi-l(Xzar,  7-[ i (Q( i ) /Z( i ) ) )~  Li - lH2i- l (Xan,  Q( i ) / z ( i ) )  

and L i-  1 is the bottom part of the filtration, where ~ is the Zariski sheaf associated 
to the presheaf U ~ Hi(Uan). We prove that 

ci(E,  V) 6 Li- lH2i- l (Xan,  Q ( i ) / Z ( i ) )  



484 I-IELI~NE ESNAULT 

(Theorem 4.2). Comparing el(E, V) with Galois Chern classes 

c~(E) • H 2 i - l ( X a ,  Q /Z)  

when (E,  V) is associated to a finite representation of the fundamental group 
(Theorem 5.1), we obtain that 

r i - l H 2 i - l [  v c~al(E) e ~ ~ ~..',~t, Q(i)/Z(i)), 

where L is the filtration induced by the Leray spectral sequence associated to the 
continuous identity map 

¢~: X~t ~ X ~  

(Theorem 5.2). This answers positively in the case k = C and X smooth a question 
by B. Kahn [8, conjecture 2], without assuming, however, that Kato's generalized 
conjecture is true in degree ~< i, as formulated in loc. cir. It also gives another proof 
of [8, thdorSme t ] for F a complex function field (in which case [8, th6or~me 1 ] is 
straightforward). 

2. Class in the (2i - 1)th Cohomology of Xan with C(i)/Z(i) Values 

We keep the notations of the introduction. In [5, (1.7), (1.5)], we constructed for 
any bundle (E ,  V)  with a fiat connection functorial and additive classes 

c~g(E, V )  ~ ~][2i(Xzar, ]~¢? --+ a ~  "-+ aix +l "-+ "'*) 

mapping to 

ci(E, V ) •  H2i-l(Xan, C/Z(i)) 

defined in [4, (2.24)] (and also mapping to the Chem classes in the Chow group 
CHi(X)), where 

/C m = Im/C M -~ KiM(c(X)) 

is the sheaf of modified Milnor K-theory as introduced by O. Gabber [7] and M. 
Rost [13]. There is a factorization 

 i(Xz.r, tC? --, --, ' ' ' )  

* H2i-l(Xan, C/Z(i)) ..-+ 
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[5, (1.5) Proof], where 

ftiz(i) = Ker(a.f~ix~.)dclosed -+ 7-[i( C/Z(  i) ), 

(f~(i) = Ker(a*f~SC~)delosed-+ Hi(C/Q(i))) ,  

and a: Xan -+ Xzar is as in the introduction. The complex 

/)3c :=  f~z(0 

is an extension of 

0 ~ 0 -~ a.f~ a . i 2 ~ ,  ~ x~ 

by 7-( i (C)/H i (Z(i))[-  1] [5, (1.5). Proof]. We denote by 

(x,a~Xa n ---+ . . . )  

the image of 9zc/alg(E, V) in this group. 

PROPOSITION 2.1. I f  there is a smooth variety Y covering X via a finite map 
r: Y ~ X such that 7r*(E, V) is trivial, then 

deg r -  ci(E,  V) = O, 

Proof The trace maps i rr.a.(ay~.)dctosed to (a.aSi=)&losed and rr.~i(Y,  Z(i)) 
i to 7-[i(X, Z(i)). Thus, it maps rr.f~(i) to f~z(i)" The composite map 

• 9 r *  • X  RTI'*~){ z i _+ 7 r . , . a ~ a  n _+ 7 r . ce . a~+ i  tm~ -+ = ( r r .~z(0  - - + " - )  Z)3( 

is the multiplication by deg rr, and 

v )  = V )  = 0. 

THEOREM 2.2. Let (E, V) be a bundle with a fiat connection on a smooth 
complex variety X such that ( E ,  V) is trivialized on a variety Y covering X via 
a finite map 7r: Y -+ X .  Then 

ci(E,  V) 6 Li- lH2i - l (Xan,  C/Z(i ) ) .  

Proof. The complex 

= - - +  - + . . .  
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is quasi-isomorphic to Ra.C/r<sRa.C[i + 1], and by [1, (6.2)] 

H2i-l(Xan, C) = H2i-l(Xzar, Rol.C/'r<~(i_I)ROl.C ), 

Therefore, the short exact sequence 

0 ~ ~ i ( C ) [ - i ]  ~ Ra.C/r~(i_~)Ra.C ~ Ra.C/r<.iRa.C ~ 0 

gives a long exact sequence 

- - +  gi-l(Xza~, w(c))  ~ H2~-~(X~n, c) 
--~ tI2i-l(Xzar, Ra.C/r<~iRa.C) 

H~(Xza~, w(c)) .  

We first assume that Y is smooth. As the class of E in Hi(X~ar, IE~) is torsion, it is 
vanishing in Hi(Xzar, ~I(C)) .  Thus, c~(E, V) is a torsion class in the torsion-free 
group tt2i-l(Xan, C)/tti-l(Xzar, h i ( c ) ) ,  and c~(E, V) = O. So Tc~g(E, V) 
lies in the image of 

m-~(Xz~, W(c)lW(z(i)) c H~(x~, z,'x), 

and ¢9~c~g(E, V) = ci(E, V) lies in the image of 

Ui-l(Xzar, 7-li(C)/7-li(X(i))) C H21-1(Xzar, C/Z(i)). 

That is, 

ci(E, V ) e  Li-lH2i-l(Xan, C/Z(i)) 

[1, (6.2)]. 
Now if Y is no longer smooth, we can say the following. Let 

y ,  "~ , Y 

X I ° ~ X 

be a commutative diagram, with X ~, Y~ smooth, 7r' finite, ~ birational, proper 
and r genetically finite [9, (19) Proof]. In fact, if a is any desingularization of the 
discriminant of  ~r such that it becomes a normal crossing divisor, there is such a 
7r'. Then a*9~c~g(E, V) is torsion by Proposition 2.1 applied to a*(E, V) and 
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~r*c~(E, V) = 0. This implies that cr*c/alg(E, V) = c~g(tr*(E, V)) maps to the 
image of 

" ! 

~(Xz~,  ~c? -+ (~.~:=)d~o~) 

in 

and, therefore, 

T,i-l H2i- l (  x t  ~*ci(E, V ) ~ _  _ , - - a . ,  C / Z ( i ) ) .  

In other words, there is a subscheme Z of X '  of dimension >/(i - 1) such that 

~*c~(E, V)l(x,-z) ~ H2i-~((X ' -  Z).., C/z(i))  

is zero. Thus, a-fortiori, 

o*c~(E, V)b-~(x-~.z) ~ H2~-~(o-~(X - ~.Z). . ,  C/Z(i)) 

is zero. Here a.Z is a subscheme of X of codimension >/(i - 1) as well. 
Take cr to be a succession of blow ups with smooth centers. Then one sees, 

successively on each blow up, that 

~r* : H 2 i - l ( ( x  - cr, Z)an, C / Z ( i ) )  ~ I]2 i - l ( (7-1(X - cr, Z)an, c / z ( i ) )  

is injective. This shows that the restriction of ci(E, V) to (X - a.Z) is zero. 

Remark 2.3. In fact, this cumbersome detour comes from the fact that if Y is 
i singular, one can define ~ ( i )  thanks to [3, (9.3.1) (c), (d)]: there is a splitting 

w ( c )  " " -+ ~ (uy=) ~ w(c ) ,  

and, therefore, a surjection 

(,~,~o)~o~o~ ~ w(c) .  

One defines 

ce i ~/~(i) := Ker( ,~yan)dclose d "--+ ~-{i(c/Z(i)). 

However, I don't know whether r*~c~g(E, 2 7) = 0, as it is not clear whether 
Gabber's projective bundle formula [5, (1.2) (c)] holds true when Y is singular, a 
necessary assumption to 'descent' the class c~g(E, V) from the flag bundle of E 
toY.  



488 I~L~NE ESNAULT 

3. Identification of Classes in the (2i - 1)th Cohomology of )fan with 
C(i) / Z (i) Coefficients 

Let (E,  V) be a bundle with a fiat connection on a smooth complex variety 
X. One considers algebraic transition functions ga~ E r(Ua/~, GLn(O)) on a 
trivializing Zariski Cech cover {U~}, and locally constant transition functions 
A ~  E P(V~,  GL~(C)) on an analytic refinement (V~)~ej of (U~)~eI, with 
refinement map ~: J --+ I. One has the following diagram 

X.  := Uo g ...... , BG° 

gl(x.)~ 
(BG°)an (X.)~n := U. ~.o~ 

(Ba.)d 

where BG° is the simplicial scheme 

) (GA'- ' /G)  ~ GA' /G  ~ {1} ( a A ' / C )  . . ;  

[3, (6.1.3)], (BG.)an is the simplicial analytic manifold where (G A~/G) is viewed 
in the analytic topology, (BG.)d is the simplicial set where (G '%/G) is viewed in 
the discrete topology, and G = GLn. The maps are defined by 

g: Uioo...i~ --~ G~t /G 

x ~ (g~o~,(~), . . . ,gi~_~,(x)) 

gl(x.)~: Vjo...j~ -+ GA' /G 

X ~ ( g ~ ( j O ) ~ ( j l ) ( X ) , . . . , g q o ( J l _ i ) 9 9 ( j l ) ( X ) )  

A: Vjo...j, ~ GA' /G 

z ~ (Ajoj~,...,Aj~_lj~) 

We set e = ed o ea. We denote by H~((Yo)an, Z(i)) the 'analytic' Deligne coho- 
mology of the (simplicial) analytic manifold 

i - 1  H~((Y.)~,, z ( i ) ) : =  ~((Y.)an, S ( i )~  00,.) ~ -~ . . . - ,  a(y.),,). 
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PROPOSITION 3.1. 

(1) e*: H~)i(BG,, Z ( j ) ) ~  H~i((BG,)an, Z(j ) )  

is split for j <<. i. 

(2) H~((BG.)d, i )= HJ-'(G, C/Z(i)), i >1 1, 
=HJ(G,Z) ,  i = 0 .  

(3) One has a factorization 

(Z( i ) ) -+  O(BG.)~, -+ ' " -+  ft(BG.)~) RA.(Z( i ) -+  C) 

i - 1  R ~ . ( z ( i ) ) - +  O(x.)= --+ . . .  ~ a(x . )  ~) 

defining the commutative diagram 

HJp((BG.)an, i) 

HJ-I(G, C/Z(i)) 

(edo ~)* = gl~x.)= , H ~ ( ( x . ) = ,  i) 

A. 
. HJ-~(X~., C/z(O)  

for i ~ 1. 

Proof. 

(1) The cohomology of BG° is pure of type (i, i) [3, (9.2)]. Therefore 

H2i(BG., Z( j ) )= 0 

i f j  > i, and i f j  <~ i 

H2i(BG., Z(j))  = H2i((BG.), Z(j))  

is split in 

H2i((BGo)an, 75(j)) 
= {(90, z) E IE2i((BG') an, ~(,c.)~J°~J ~ × Hai((BG.), Z(j)) 

such that Im qo = Im z E H2i((BG.)an, C)}. 
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(2) As the topology is discrete 
i - 1  

Z(i) --+ O(Bao)d --> "'" ~ ft(BG.)a 

-- Z, i=O,  
- - Z ( i ) ~ C ,  i >  1. 

(3) The transition functions 9~f~ and A ~  describe the same bundle Elxa,. So 
there are some P~ E F(V~, GLn(Ox,,)) such that A~;~ = p~lg,~;~p,~. For 
any complexes of analytic sheaves/~° on (BG.)an and £° on (Xo)an, such 
that 

(ed o : R(ed o A ) . C ,  

gl(*X.)a. : ~ °  ~ Rg *£° '  

one has 

(ed o A)* = gl~x.), : ~ ( ( B G , ) a , ,  I(. °) --+ ~J((Xo)~,  £ ' ) .  

In particular for 

~"  = Z(i) -+ 

~" = z( i )  -+ 

i - 1  
O(BG,)a. --+ " ' ' - - +  ~ ( B G . ) a n '  

• • • --+ ~ i - 1  
O(x.)~ --+ (x.)~," 

As A is constant, (ed o )0 -1 maps O(Ba.)~, to C and ~BC.)~, to zero for 
j > 0. This shows the factorization, and thereby the commutative diagram. 

NOTATION 3.2. We denote by 

ci E H~i(BGo, Z(i)) = H2i(BG., Z(i)) 

the Chern class of the universal bundle (G h~ × a C~). over (GA~/G)o = BGo, 
by bl = e*c~ E H2i-~(G, C/Z(i)) (i /> 1) the inverse image, by cPi(E) E 
H~i(x, Z(i)) the Chem classes of E in the Deligne-Beilinson cohomology, by 

A*bi E H2i-l(Xan, C/2~(i)) 

the inverse image of bi on Xan, which we can also view as the inverse image via 
(ed o A)* of e~ci E H2i((BG.)an, Z(i)) through the factorization 3.1(3). Again A* 
and (ed o A)* do not depend on the locally constant transition functions chosen. 

COROLLARY 3.3. 

(1) The image of A'hi in H~i((X.)an, Z(i)) coincides with the image of c~(E) 
in H2i((X.)an, Z(i)). 

(2) In particular, if X is proper, A *bi lifts cT~ ( E). 
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Proof (1) follows from Proposition 3.1, (3) and (2), from the fact that if X is 
proper, 

~ * : H ~ ( X . ,  Z(i))  ~ H~((X.)an, Z(i)) 

is an isomorphism. 

THEOREM 3.4. One has ci(E, V) = A*b;. 
Proof Let 7r: Y ~ X be the flag bundle of E,  endowed with a splitting 

7-: ft~- --+ 7r%2~ of i: 7r*ft I ~ f/~,  such that 7- extends to a map of complexes 

v: (9t~, d) ~ (Tr*ft~. ~- o d o i), 

and such that E has a v o V stable filtration Ei-1 C Ei, with Ei/Ei-1 of rank 1 [4, 
(2.7)]. One considers a Cech cover of  Y obtained by taking the standard (Zariski) 
Cech cover F ~ of  F = flag bundle of C a , a trivialization YIv~ ~- F × Vj: 

(°) Ya=Yf f  = F ~ × V j ,  a= j . 

Set 7r(a) = j .  This defines 7r: (](.)an --+ (Z.)an = (Y.) .  On Y one defines the 
analytic sheaf L = Ker r o d: Oy~. --+ 7r'f/1 containing C. Then there are X~ 

Oa • r(Ya, GL~(L)),  #~p • r(r~b, B(L)) 

with 

(),[(Y.),,)ab = Q~I#abQ~, 

where 

and B C GL~ is the Borel subgroup of upper triangular matrices. This defines the 
diagram 

(Y.)an # , ( B B o ) =  

(X. )a .  . ( B a . ) a .  
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where u is the natural embedding, and 

#: Y~o...~l ~ B a ~ / B ,  

y ~ ( m 0 o , ( y ) , . . . ,  m,_~o, (y) ) .  
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and 

c" = ~ ( i ) - +  L. 

From the factorization of )~l~y.)= through 7r*IH~ / ((X.)an, Z(i) -+ C), one obtains 

(u olt)*e*~c i = Image of Tr*k*bi in ~2i((Y.)an, Z( i ) -+  L). 

"~*e*C Now, one just has to identify (u o/~) ~ ~ with 

ci(Tr*(E, V ) ) =  Image of Tr*ci(E, V) in E2i(Yan, Z( i )  --+ L), 

[4, (2.10)] as ~ i (Xan ,  Z(i) --+ L) injects into H2i(Yan, Z(i) --+ L) [4, (2.14)] and 
[5, (1.7)] for a more precise proof). 

"~* e* c The class (u o #) ~ i is given by the ith symmetric product of the classes of 
E j / E j - t  in IE2(Y, Z(1) ~ L), where the product is just the Deligne product on 
the complexes 

7r,¢-~ 1 . .  ~ , ~ i - 1  ~ ( i ) - +  o y =  -+ ooy= - ~  -~ y= ,  

restricted to the subcomplexes 

Z( i ) -+  L. 

Here, to simplify the notations, we dropped ed. 
For any complexes of analytic sheaves K~ ° on (BGo)an and £° on (~])an such 

that 

)%-.)..: /¢" --+ R;~I(y.)~.£', 

one has 

~l(*v.)= = (~ o ~,)* = ~ ( B a . ) , . ,  tC')  -~ ~ 4 ( ( Y . ) , , ,  L ' ) ,  

in particular for 

i - 1  
I~" = Z( i )  ~ O(BG.)= ~ "'" -* ~ (Ba . )~  
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But the restriction of the Deligne product is just the multiplication by the Z(i)  term, 
that is the multiplication by the Betti class of Ej /E j_ I  in HZ(l'an, Z(1)).  This is 
exactly the definition of (ei~r*(E, V)) [4, (2.9)]. 

THEOREM 3.5. The image of ei(E, V) = A*bi 3.4 in HZi(x ,  Z(i ) ) i s  e~(E). 
Proof. In [4] we constructed ci(E, V) as a lifting of the image of c~(E) in 

Hzi(Xan, Z(/)). In particular, if X is proper, Theorem 3.5 is just be construction, 
and in fact for A* bi, 3.5 is just Proposition 3.1, (3). If X is not proper, one considers 
a smooth compactification 2{ such that D = 2{ - X is a normal crossing divisor, 
and an extension (E,  V)  of (E,  V)  as a bundle with an integrable connection with 
logarithmic poles along D. Then the classes e~(E, V) in 

---+...--+ 9, i:l  -+ ft~,, (log D) 

dim X --+ "'"--+ f12~, (log D)) 

constructed in [4, (3.6)] lift c~(/~) E H2i(X,  Z(i)) .  Therefore the restriction 
ci(E, V) of ei(E,  V) to X lifts the restriction c~ (E)  of c~ (/~) to X.  

We write down a corollary which we do not use in the sequel, but which is 
related to Reznikov's work [11, 12]. One can compare it to the same statement in 
which X is proper but V is not integrable [6]. 

COROLLARY 3.6. Let S be a complex variety, and let (g, V) be a bundle on 
1 X x S with an integrable connection with values in f t x  x sis" Then the map 

S -~ H2i-l(Xa.,  C/Z( i ) ) ,  

is constant. 
Proof One may assume that S is an affine smooth curve. Let 7r: X x S --+ S be 

the projection. There is an analytic product Cech cover ~ x Sj of X x S, trivializing 
g such that the transition functions , k~  E r (v . ,  x sjj,, GL,~(Tr-lO&.)), where 
a = (i, j ) , / 3  = (i', j ' ) .  The map a ~ j defines the map 7r: (X x S).an ~ (S.)a, ,  
and 

: = x G / G ,  

defines a map ), : (X × S).an ~ (BG.)an with a factorization 

Ko A* - - . -  R)~.(Z(i) - , .  7 r - ' O s ~  ~ 7r-Ial  ) 

RA,£." 
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for 

~ "  = z ( i )  --+ O(Bc. ) . .  

£" = ~ ( i ) - ~  O(x×s) .a .  

and i/> 2, such that 

i -1  
"'" ~ f~'BC.~,,, 

i - I  
--* "'" -+ ft'XxS',~.'t ) 
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A*<¢~l(x×{~}).~ e H2~-I((x x {~}).a., C/Z(i)) 

is the class c~(E, V), where (E, V) = (£, V)lxx{s } (Notation 3.2, and Theorem 
3.4). But 

is quasi-isomorphic to Z(/) ~ C. Therefore, 

A*e*~ci E t t2i- l ((X x S)a., C/Z(/)) .  

This shows that c/((E, V)]x×{s}) does not depend on s. 

4. Classes in the (2i - 1)th Cohomology of Xa, with Q(i)/z(i) Coefficients 

LEMMA 4.1. 

(1) The naturalmap 

HS(X~n, ¢~(i)/~(i))-~ HqX, . ,  C/Z(i))  

is injective and identifies the lefi group with the torsion of the right group. 
(2) 

L~HJ(Xan, Q( i ) / z ( i ) ) :  HJ(Xan, Q(i)/Z(i))f3 L~Hd(Xan, C/Z(i)). 

Proof. 

(1) For all j ,  HJ(Xan, C)surjects onto the torsion free group HJ(Xan, C/Q(i)) ,  
factorizing through H j ( Xan, C/ Z ( j ) ). 

(2) Moreover by [1, (6.4)], L a is the coniveau filtration. 

THEOREM 4.2. Under the assumptions of Theorem 2.2 one has 

el(F,, V) E Li-llt2i-l(Xan, Q(i)/Z(i)). 
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5. Classes in the (2i - 1)th Cohomology of X~t with Q / Z  Coefficients 

Let (E,  V) be a bundle with an integrable connection associated to a finite repre- 
sentation 

~rl(X)--+ ~ C GL(n, C) 

of the fundamental group of a smooth complex variety. Then E has Chern classes 

cgal(E) e H2i-I(Xet, Q / z )  

defined as follows [8, § 1] 
One considers an 6tale Cech cover of X trivializing E,  and the corresponding 

map 

(X.)6t)~et) B'~. C (Ba . )d  

with the notations as in Section 2. On B#°,  one considers the bundle (~r,~ ~ C ~ )°, 
restriction of the bundle (G a~ ×G CRY)° over (BG°)d = (G A•/G)°. It has Chern 
classes ~/i E H2i(~, Z), restriction of the Chem classes 7i E H2i(G, Z) of 
(G A~ ×a Cn)°. One has 

cgal(E) : "~et('~i) • H2i( X6t, Z ) :  HZi-I(x&, Q/Z)  

= li___m H 2i-1 (X,t ,  1 Z / Z )  
N 

= l i m H  2i-1 (Xan, 1 Z / Z )  
N 

"Z" ~ H 2 i - I I x  = H2i-l(Xan' Q~ )(2,~,/-2T)' ~ an, Q(i)/g(i)), 

where the first equality of cohomology groups comes from [1, (4.2.2)], [10, (III, 2.22)] 
and the third one from [10, (HI, 3.12)], 

THEOREM 5.1. One has, via the identifications above 

(27rvFL-T)i cgal(E) = ci(E, V). 

1 * Proof One has "Yi - (2~,72-r)~ e ci, viewing 

ci • H21(BG°, %(i ) )=  H2i(BG°,Z(i)) 

1 6bi, where 6 is the Bockstein map as a Betti class, and therefore 7i - (z~,/~)~ 

H2i-I(G, C / Z ( i ) ) ~  H2i(a, Z(i)) 
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(the notations are as in Section 2). So one applies the commutative diagram 

H 2 i - I ( G ,  c l z ( i ) )  

(A*)-lH2i-l(Xa~, Q(i)/z(i)) 

,1 
H2i(G, Z(i))  

X* 

~A~t  

, H2i-l(Xan, Q(i)/Z(i)) 

H2i(X~t, m) +-- H2i- l (x~t ,  Q / m ) .  

THEOREM 5.2. 

c~al(E) E L i - l I I2 i - l ( x~ t ,  Q / Z )  

Proof As L a is the coniveau spectral sequence both on IlJ(Xa) and//J(Xan), 
one has an isomorphism 

Z ~ Li-lH2i-l(Xan, Q(i)/Z(i)). Li - lH2 i - l ( x~ t ,  Q /  )(2,/r~7-)i 
One applies (5.1) and (2.2). 
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