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Abstract. On a smooth algebraic complex variety X, we show that the classes of a flat bundle, which
is trivialized on a finite cover of X, with values in the odd-dimensional cohomology of the underlying
complex manifold with C/Z (¢), are living in the bottom part of Grothendieck’s coniveau filtration.
This answers positively when the basis is smooth complex a question of Bruno Kahn [ K -Theory
(1992), conjecture 2].
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1. Introduction

Let (E,V) be an algebraic bundle with a flat connection on a smooth complex
variety X . (We know that the flatness condition implies that the bundle is algebraic
[2].) Then (F, V) has functorial and additive Chern classes

ci(E, V) € ¥ (X, T/Z(i))

mapping to the Chern classes ¢? ( E) of E in the subgroup H%~Y( X, C/Z(i))/ F*
of the Deligne-Beilinson cohomology group HZ( X, Z(1)) [4,(2.24)] and Theorem
3.5. There are also classes in H%~1(X,,, C/Z(i)) defined as the inverse image
of the universal classes in H*~1(GL,(C), C/Z(i)) via locally constant transition
functions (Notation 3.2). In fact, the two classes coincide (Theorem 3.4) and they
are rigid if ¢ > 2 (3.6).

When (E, V) is trivialized on a finite covering 7:Y — X, then the class
¢;(E, V) lies in the torsion subgroup H*~1(X,,, Q(:)/Z(7)) of H*~1(X,y,
C/Z(i)) (Lemma 4.1). The groups H*~!(X,,, Q()/Z(4)) have a filtration L
defined by the Leray spectral sequence associated to the continuous identity map

o Xan — Xoar
By [1, (6.2)] there is a surjection
H™ Y (Xpar, HH(Q()/Z(3))) — L™ H* (X an, Q(6)/2(3))

and L'~ is the bottom part of the filtration, where H is the Zariski sheaf associated
to the presheaf U — H*'(U,,). We prove that

¢i(E, V) € LT HY Y (Xon, Q(3) /2(3))
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(Theorem 4.2). Comparing c;(E, V) with Galois Chern classes
F(E) € H¥ (X, Q/2)

when (E, V) is associated to a finite representation of the fundamental group
(Theorem 5.1), we obtain that

FYE) € LI (Xa, Q)/Z()),

where L is the filtration induced by the Leray spectral sequence associated to the
continuous identity map

B: Xg — Xzar

(Theorem 5.2). This answers positively in the case £ = C and X smooth a question
by B. Kahn {8, conjecture 2], without assuming, however, that Kato’s generalized
conjecture is true in degree < ¢, as formulated in loc. ciz. It also gives another proof
of [8, théoréme 1] for F' a complex function field (in which case [8, théoréme 1] is
straightforward).

2. Class in the (2; — 1)th Cohomology of X, with C(¢)/Z (1) Values

We keep the notations of the introduction. In [5, (1.7), (1.5)], we constructed for
any bundle (E, V) with a flat connection functorial and additive classes

SE(E, V) € B (Xoar, K = U > Q' = --)
mapping to
ci(E, V) € H* ™Y (Xan, C/Z(3))

defined in [4, (2.24)] (and also mapping to the Chern classes in the Chow group
CHY(X)), where

K7 =Im KM — KM (X))

is the sheaf of modified Milnor K -theory as introduced by O. Gabber [7] and M.
Rost [13]. There is a factorization

B (X, K7 — O — 01 =)
L B (X gar, V) — iy, = Q%) =)

Y H% (X, C/Z(3))
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[5, (1.5) Proof], where

QIZ(z) = Ker(a*QiXm)dclosed - Hz((C/Z(Z)),
(0 = Ker(@uQy, Vactosea — H(T/Q(0))),

and a: X, — Xzar 18 as in the introduction. The complex
Dy 1= Q) — aully, — . Q) —
is an extension of
0—0— a0 /0, 0% — 0.2 —
by H'(C)/H' (Z(4))[~1] [, (1.5). Proof]. We denote by
G(E, V) € B (Xaar, Q¥ /0, — a2 — )
the image of c8(E, V) in this group.

PROPOSITION 2.1. If there is a smooth variety Y covering X via a finite map
1:Y — X such that v*(E, V) is trivial, then

degm-¢;(E,V)=0

Proof. The trace maps F*a*(Qym)ddosed to (. Xm)dc;(,sed and T, H'(Y, Z(3))
to H*(X, Z(3)). Thus, it maps 7,0}, (i) 10 Qz(z) The composite map

Dy & Rm Dy = (M) — manly, — man 0! — ) 2% piy
is the multiplication by deg 7, and

m*oct8(E, V) = on*c®(E, V) =

THEOREM 2.2. Let (E, V) be a bundle with a flat connection on a smooth
complex variety X such that (E, V) is trivialized on a variety Y covering X via
a finite map v:Y — X. Then
¢i(E, V) e I VHP Y (X, C/Z(3)).
Proof. The complex

o, V! [, Oy — o, V2 —
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is quasi-isomorphic to Ra,C/r¢; Ro, C[i 4 1], and by [1, (6.2)]
H* (X, €©) = H* Y Xpar, RouC/7¢(i—1) R C).
Therefore, the short exact sequence
0 — H(C)[-i] —» RanC/7¢(i—1)Ra.C — Ro,C/7¢i Ra,C — 0
gives a long exact sequence

— Y Xar, 'Hi((C)) — H2i°](Xan, 0)
— H* (X, Ro,.C/r¢i R, C)
— H{( Xy, H(T)).

We first assume that Y is smooth. As the class of E in H( X, KI*) is torsion, it is
vanishing in H( X zar, H(C)). Thus, ¢i( E, V) is a torsion class in the torsion-free
group H¥~1( X, C)/H'™!(Xzar, H'(C)), and ¢}( E, V) = 0. So ci¥(E, V)
lies in the image of

H™Y (X par, H(O)/H (Z(3)) C BH*(Xan, D),
and z,ba,oc?lg(E, V) = ¢;( E, V) lies in the image of

H* =Y Xgar, HY(C) /M (2(3))) € H*(Xoar, T/Z()).-
That is,

¢i(E, V) € L' H* (X, C/Z(3))

[1, (6.2)].
Now if Y is no longer smooth, we can say the following. Let
Y —2 Y
7! T
X’ = X

be a commutative diagram, with X', Y’ smooth, =’ finite, o birational, proper
and 7 generically finite [9, (19) Proof]. In fact, if o is any desingularization of the
discriminant of m such that it becomes a normal crossing divisor, there is such a
7’. Then a*cpc?]g(E , V) is torsion by Proposition 2.1 applied to o*(E, V) and
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o*ci(E, V) = 0. This implies that 0*c¢(E, V) = ¢¥&(0*(E, V)) maps to the
image of

H (X Loy KT — (0, Vdclosed)
in
B (X KT* = (00 Q) — () = ),
and, therefore,
o*c;(E, V) e LTV H-Y( X!, C/Z(3)).
In other words, there is a subscheme Z of X’ of dimension 3 (i — 1) such that
o*ci( B, V|(x'-z) € H¥ (X' = Z)an, C/Z(3))
is zero. Thus, a-fortiori,
0*ci(E, Vlo-1(x-0.2) € H* N (07'(X = 022)mn, C/Z(3))

is zero. Here 0, Z is a subscheme of X of codimension > (¢ — 1) as well.
Take o to be a succession of blow ups with smooth centers. Then one sees,
successively on each blow up, that

o H¥ V(X - 04 Z)an, C/Z(1)) = H* Yo (X = 042)an, C/Z(3))

is injective. This shows that the restriction of ¢;(E, V) to (X — ¢.7) is zero.

Remark 2.3. In fact, this cumbersome detour comes from the fact that if Y is
singular, one can define Q‘Z( ) thanks to [3, (9.3.1) (¢), (d)]: there is a splitting

H(C) — H(0,) — H(O),
and, therefore, a surjection
(0% Vaciosea — H'(C).
One defines
Q% ) == Ker(a, Q¥ )actosea — H'(C/Z(3)).

However, I don’t know whether w*goc?lg(E, V) = 0, as it is not clear whether
Gabber’s projective bundle formula [5, (1.2) (c)] holds true when Y is singular, a

necessary assumption to ‘descent’ the class cz‘ig(E, V) from the flag bundle of &
toY.
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3. Identification of Classes in the (2: — 1)th Cohomology of X,, with
C(2)/Z(7) Coefficients

Let (E, V) be a bundle with a flat connection on a smooth complex variety
X. One considers algebraic transition functions gog € I'(Uss, GL,(O)) on a
trivializing Zariski Cech cover {U,}, and locally constant transition functions
Ao € T(Vag, GLR(C)) on an analytic refinement (Vg)acs of (Uy)aer, With
refinement map ¢: J — I. One has the following diagram

X,:=U, g BG,

) €a
gl(Xo)an
(Xo)an =V, eqoX (BGo)an
€d
A
(BG.)d

where BG, is the simplicial scheme
(GA/G) 3 (6%-1/G) == G™/G = {1}

[3,(6.1.3)], (BG4 )an is the simplicial analytic manifold where (G2/G) is viewed
in the analytic topology, (BG4 is the simplicial set where (G#!/G) is viewed in
the discrete topology, and G' = GL,,. The maps are defined by

g: Uiy — GG
T > (gim'g(x)a cee 7giz~1il(w))
9 (X' Viois = GG
T = (gtp(jo)q?(jz)(z)’ <. 79<P(J'1—1)<P(J't)(x))
A Vigusy = GG
& = (Aojis - Mjiiie)

We set e = e 0 e,. We denote by H %((Y. )an, Z(2)) the ‘analytic’ Deligne coho-
mology of the (simplicial) analytic manifold

H)(Yo)ans Z(3) := B ((Ya)an, Z(5) = Opyay = -+ = QUph.)-
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PROPOSITION 3.1.
(D) €5 HY(BG., 2(35)) = HF((BGe)an, Z(3))
is splitforj <t

Q) HLH((BGW)4, i) = HI7\(G, C/Z(i)), > 1,
= Hi(G, 7), =0.
(3) One has a factorization
. oA)* .
(20)) ~ O — -+ — Aipls ) S By (25) — ©
(ed s/ }\)*
RA(Z(1)) = O(xsyan = - Q;X{)m)

defining the commutative diagram

(ed o )\)* = g|?X,)an s HJD((X ) Z)

H((BG4)an, %)

*
€4

A*

H7Y(G, ¢/Z(i)) HI™ (Xan, C/Z(3))
fori =1
Proof.
(1) The cohomology of BG, is pure of type (¢, ¢) [3, (9.2)]. Therefore
HE(BG., Z(§)) =0
ifj > i,and if j < i
HE(BG.,, Z(j)) = H*((BG,), Z(j))
is splitin
HE((BGe)ans Z(5))
— {(¢, 2) € B ((BG)an, Wiesy,) X HE((BGL), (7))
such that Im ¢ = Im z € H*((BG4)m, C)}.
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(2) As the topology is discrete

2(i) = Owaay, — - = Usa),

=z, i=0,
=Z(i)—C, i>1.

(3) The transition functions g,s and A,g describe the same bundle E|x,,. So
there are some P, € I'(V,, GL,(Ox,,)) such that A,g = Pﬂ_lgaﬁPa. For
any complexes of analytic sheaves K*® on (BG4 )an and L* on (X, )an, such
that

(eq0A)*: K* — R(eqo A).L®,

gl’fx,)an i K*— Rg.L*,
one has

(ca©A)* = glixuyu B (BGa)an, K*) = B ((Xo)uns £°).
In particular for

K* =Z(i) = OBGg)m = "~ QEIG.)M’
L =Z() = Oxyw — = Qg{{)w.

As ) is constant, (eg o A)~! maps Oa,)., to C and Q{BG')“ to zero for
7 > 0. This shows the factorization, and thereby the commutative diagram.

NOTATION 3.2. We denote by
¢; € H¥(BG,, Z(3)) = H¥(BG,, Z(3))

the Chern class of the universal bundle (G2 x g C*), over (GA/G)s = BG,,
by b; = e*c¢; € H¥ G, C/Z(:)) (¢ > 1) the inverse image, by cP(E) €
H%(X, Z(3)) the Chern classes of E in the Deligne-Beilinson cohomology, by

Xb; € H* Y X, C/Z(i))

the inverse image of b,; on X,n, which we can also view as the inverse image via
(eqo N)*of ec; € HE((BG4)an, Z(i)) through the factorization 3.1(3). Again A*
and (eg o A)* do not depend on the locally constant transition functions chosen.

COROLLARY 3.3.

(1) The image of A*b; in HZ((Xs)an, Z(1)) coincides with the image of cP(E)
in HE((X)an, Z(3)).
(2) In particular, if X is proper, \*b; lifts cP (E).
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Proof. (1) follows from Proposition 3.1, (3) and (2), from the fact that if X is
proper,

¢*: HE(Xo, Z(i)) —» HB((Xo)an, Z(i))

is an isomorphism.

THEOREM 3.4. One has ¢;(E, V) = A*b;.
Proof. Let m:Y — X be the flag bundle of E, endowed with a splitting
Q) — Q% of i: 7*Q% — O}, such that 7 extends to a map of complexes

T (Y, d) —» (7"Q%.Todo i),
and such that £ has a 7 o V stable filtration £,y C E;, with E;/ E;_; of rank 1 [4,

(2.7)]. One considers a Cech cover of Y obtained by taking the standard (Zariski)
Cech cover F® of F = flag bundle of C*, a trivialization Y |y, ~ F x V;:

84 [e 4 24
Yo=Y =F*xV, a:(].>.

Set m(a) = j. This defines 7: (Yy)an — (Xeo)an = (Vo). On Y one defines the
analytic sheaf L = Ker 7 o d: Oy,, — 7*Q_ containing C. Then there are

Qo € T'(Y,, GLA(L)), pap € T'(Yas, B(L))
with

(M), Jab = Q3 ' 1abQa,
where

(’\‘(Y.)m)ab = ’\ﬂ'(a)r(b)v

and B C GL,, is the Borel subgroup of upper triangular matrices. This defines the
diagram

(Yo)an ——— (BBu)an
s M(¥e)an v
(X¢)an (BG4)an
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where v is the natural embedding, and
w Yoo 0 = BAI/Bv
Y = (Haga (¥)s -+ Hayoyar ()

Here, to simplify the notations, we dropped e,.
For any complexes of analytic sheaves K*® on (BG, )an and £* on (Y, )an such
that

'\l(Yo}an: }C. - RA}(y.);nﬁ.,
(vou)*: K*— R(vopu)L®,

one has
Miyay = (v 0 p)* = B (BG)an, K*) — B (Yo )an, £°),
in particular for
K* =2() = OB6an = = UBG)
and
L* =7Z(i)— L.
From the factorization of ’\le-)m through 7*B¥ (( X4 )an, Z(i) — C), one obtains
(v o p)*ete; = Image of 7*X*b; in H*((Ya)an, Z(i) — L).
Now, one just has to identify (v o u)*e}¢; with
es(n*(E, V)) = Image of 7°¢;(E, V) in B (Yam, Z(i) - L),
[4, (2.10)] as B2 (X, Z(i) — L) injects into B (Yo, Z(i) — L) [4, (2.14)] and
[3, (1.7)] for a more precise proof).
The class (v o u)*e¢; is given by the ith symmetric product of the classes of

E;/E;_; in B2(Y, Z(1) — L), where the product is just the Deligne product on
the complexes

Z(z) — @ym — E*Q;,an N %;;nl’
restricted to the subcomplexes

Z(i) — L.
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But the restriction of the Deligne product is just the multiplication by the Z(¢) term,
that is the multiplication by the Betti class of E;/E;_1 in H*(Yan, Z(1)). This is
exactly the definition of (¢;7*(E, V)) [4, (2.9)].

THEOREM 3.5. The image of ¢;(E, V) = A\*b; 3.4 in HE(X, Z(3)) is P (E).
Proof In [4] we constructed ¢;(E, V) as a lifting of the image of ¢P(E) in
H%(Xan, Z(1)). In particular, if X is proper, Theorem 3.5 is just be construction,

and in fact for A*b;, 3.5 is just Proposition 3.1, (3). If X is not proper, one considers

a smooth compactification X such that D = X — X is a normal crossing divisor,

and an extension ( E, V) of (E, V) as a bundle with an integrable connection with

logarithmic poles along D. Then the classes ¢;(E, V) in

B (Xan, Z(3) — Og, — -+ — Q’XT&: — Q“X,M(log D)
== Q%77 (log D))
constructed in [4, (3.6)] lift cP(E) € HE(X, Z(3)). Therefore the restriction
ci(E, V) of ¢;(E, V) to X lifts the restriction ¢?(E) of ¢P(E) to X.

We write down a corollary which we do not use in the sequel, but which is
related to Reznikov’s work {11, 12]. One can compare it to the same statement in
which X is proper but V is not integrable [6].

COROLLARY 3.6. Let S be a complex variety, and let (€, V) be a bundle on
X X S with an integrable connection with values in Q}(X s/s° Then the map

S — H¥ Y Xau, C/Z(3)),
s (€, V)|xx{s))
is constant.

Proof. One may assume that S is an affine smooth curve. Let 7: X X § — S be
the projection. There is an analytic product Cech cover V; X §; of X x §, trivializing
£ such that the transition functions A, € (Vi X 8,51, GL,(7710g,,)), where
a=(i,7), 8= (, j). Themap a — j defines the map 7: (X X S)ean — (56 )an,
and

A . Uao...al = V;()...i[ X SJO]Z - GAL/G7
(z, 8) = (Ao (8)s -5 Aay_ e (8))
defines amap A : (X X S)ean — (BG, )an With a factorization

A*
KO

RAM(Z(3) — 77105, — 771Q% )

RML*
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for

—

K* =2(i) ~ O, = UBGw

Lo =21 = Oxxs)em =~ AX xSy

Jan

and ¢ > 2, such that

N“€zel x5} € HEH(X % {5} )oans C/Z(0))

is the class ¢;( £, V), where (£, V) = (£, V)| xx{s} (Notation 3.2, and Theorem
3.4). But

7(3) —» 1710g,, — W‘IQ}gm
is quasi-isomorphic to Z(7) — C. Therefore,
Nete; € HE (X x 8)an, C/Z(3)).

This shows that ¢;((£, V)|x x{s}) does not depend on s.

4. Classes in the (2¢ — 1)th Cohomology of X,, with Q(i)/Z(z) Coefficients

LEMMA 4.1.
(1) The natural map

HY(Xan, Q(0)/2Z(1)) = H(Xan, C/2(3))
is injective and identifies the left group with the torsion of the right group.
2

L HY (Xan, Q(1)/Z(3)) = H (Xan, Q(3)/Z(3)) N L* H(Xan, C/Z(3)).
Proof.

(1) Forall j, H?(Xan, C) surjects onto the torsion free group H?(Xan, C/Q(3)),
factorizing through H?(X,n, C/Z(J)).
(2) Moreover by [1, (6.4)], L is the coniveau filtration.

THEOREM 4.2. Under the assumptions of Theorem 2.2 one has

ci(E, V) € L HP Y Xan, Q(0)/Z(5)).
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5. Classes in the (2i — 1)th Cohomology of X with Q/Z Coefficients

Let (E, V) be a bundle with an integrable connection associated to a finite repre-
sentation

m(X)— 7 C GL(n, C)
of the fundamental group of a smooth complex variety. Then F has Chern classes
(E) € H¥™' (X4, Q/2)

defined as follows [8, § 1]
One considers an étale Cech cover of X trivializing F, and the corresponding
map

(Xo)ét ﬁ’ Br, C (BGo)d

with the notations as in Section 2. On B, one considers the bundle (72! %z C*),,
restriction of the bundle (G®' xg C*), over (BG4)a = (G2/G),. It has Chern
classes 7; € H*(#, Z), restriction of the Chern classes v; € H*(G, Z) of
(GA xg C™),. One has

czgal(E) = M%) € H*(Xa, Z)= H% Y Xg, Q/z)

: 1
= lim H*~! (Xét, W—z/z)
N

= lim H*! (Xa,,, iZ/Z)
N

= H% (X, Q/Z)(z—wrrf;iHZi_l(Xa“’ Q(2)/Z(2)),

where the first equality of cohomology groups comes from [1, (4.2.2)], [10, (111, 2.22)]
and the third one from [10, (II1, 3.12)].

THEOREM 5.1. One has, via the identifications above
(2rV=1)'FYE) = ci(E, V).
Proof. One has v; = (—2?}—_—1—),.6*@, viewing
¢ € HE(BG,, 2(i)) = H*(BGo, Z(1))
as a Betti class, and therefore v; = (Z—W—\}:—T);é b;, where & is the Bockstein map

H*"Y(G, C/z(1)) —» H*(G, Z(1))
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(the notations are as in Section 2). So one applies the commutative diagram

H*Y(G, ©/2(3))

U
O (X, Q) Z(E)) — e BEN (X, Q(0)/2(0))
) =27/ 1)t

i L)1
(6, iy —

THEOREM 5.2.

HZi(Xé;, Z) HZi_l(Xét, Q/Z).

HFUE) e ITTHY Xy, Q/2)

Proof. As L® is the coniveau spectral sequence both on HY(X¢) and HY(Xa),
one has an isomorphism

LU (X, Q/2) oz B Y K, O00)/2(0)

One applies (5.1) and (2.2).
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