
K-Theory 6: 45-56, 1992. 
© 1992 Kluwer Academic Publishers. Printed in the Netherlands. 45 

Characteristic Classes of Flat Bundles, II 
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Abstract. On a smooth variety X defined over a field K of characteristic zero, one defines characteristic 
classes of bundles with an integrable K-connection in a group lifting the Chow group, which map, when 
K is the field of complex numbers and X is proper, to Cheeger--Simons' secondary analytic invariants, 
compatibly with the cycle map in the Deligne cohomology. 
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Let f = X -~ S be a smooth morphism of smooth varieties defined over a field k of 
characteristic zero. Let Y~ c S be a divisor with normal crossings whose inverse 
image Y:=f-~(E) is also a divisor with normal crossings. We consider a vector 
bundle E on X, together with a relative connection 

V: E ~ ~q~/s(log Y) ~ )  E. 
Ox 

In this note, we construct Chern classes cdE, V) (1.7) in a group Ci(X) (1.4) 
mapping to the kernel of the map from the Chow group CH~(X) to the relative 
cohomology H~(X, f~/s(log Y)). If V is integrable, then we construct classes in a 
group CI,t(X) mapping to the kernel of the map from the Chow group CHi(X) to 
the cohomology H 2i(X, f~]s(log Y)) of relative forms. Those classes are functorial 
and additive. 

If S = SpecK, where K is a field containing k, (and, of course, Z = ¢), then 
following S. Block one may just define C~,t(X) as the group of cycles with an 
integrable K connection (2.6). 

If S = Spec C, then the (algebraic) group C~nt(X) maps to the (analytic) coho- 
mology HZ~-l(Xan, C/Z(i)), compatibly with the cycle map from the Chow group 
to the Deligne-Beilinson cohomology (1.5). More precisely, c~(E, V) maps to the 
class 

cTn(E, V) e H 2~- ~(Xa., C/Z(i)) 
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constructed in [3], identified with the Cheeger-Simons secondary invariant [I, 2] 
(at least when X is proper and V is unitary) (1.7). 

It defines a similar invariant 

c~n(E, V) • H 2~- l ( X a n  , C/Z(i)) /F i+ 1 

if V is not integrable (1.9). 
If k = C and f is proper, Gritiiths [8] has defined an infinitesimal invariant of a 

normal function in H°(S , , ,  ~ )  (2.1), where jv:~ is the first cohomology sheaf of the 
complex of analytic sheaves 

: i  __~ fl~(log E) ® .~___~i- ~ _+ 1-12(log E) ® . ~ -  2, 

and where the .~J are the Hodge bundles. The groups C[,t(X) and C~(X) map in fact 
naturally to some lifting of H°(S, , ,  :v:~) (see (2.3), (2.5)). This fact partly explains the 
rigidity of the higher classes of fiat bundles in the Deligne cohomology (see [5]). 

1. Characteristic Classes 

1.1. Recall that on X there is a map 

from the (Zariski) sheaf of higher K-theory to the (Zariski) sheaf of absolute/-forms, 
which restricts to the higher exterior power of the map 

d log: oY(1 ~ t)}/z 

on the Milnor K-theory sheaves oug~ (see [7]). 

(a) For our construction of Ci(X) and Cl,t(X), we need that this map extends to 
a complex 

• ( ~ i + 1  
O > fl'XlS --* ~.XlS --*"" 

(b) For the compatibility with the analytic classes in H2i- I (X. . ,  C/Z(/)) when 
S = Spec C, we need that the periods of a section D(s), for s • ~ ,  are lying in 

i Z(i), that is Dc,Y;~ c fl~(0, where 

flz(o ker fla ~fa(c/z(i)).  a :-~- ( ~  Xan,d closed 

Here Z(i) denotes 71 . ( 2 ~ )  ~, ~: Xan ~ Xzar is the identity, and ~a(C/Z(i))  
denotes the sheaf associated to the (Zariski) presheaf 

U ~ H"(U, C/Z(i)). 

(c) Finally for the study of the Griffiths' invariant, we need that D extends to a 
complex 

• f-~i+ i o~ i D> fllXlk ~ ~'XIk --+"" 
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Of course, the properties (a), (b), (c) are trivially fulfilled on d¢~, in particular also 
on ~ for i ~< 2. In this article, we replace ~ by the sheaf a f t '  of modified Milnor 
K-theory as introduced by O. Gabber [6] and M. Rost, whose definition we are 
recalling now. We show that this sheaf fulfills the conditions (a), (b) and (c). 

1.2. They define oU~' as the kernel of the map 

KV(k(X)) a 0 K~dk(X)) ,  
x~X(~) 

where ~ is the residue map from K ~  from the function field of X to the function field 
of codimension 1 points. Of course 

for i ~< 2. They prove: 

(a) CHi(X) = Hi(X, JUT') 
(b) The natural map 

JY~ --} K~(k(X)) 

is surjective onto 2/{}" and has its kernel killed by (i - i)!. 
(c) The cohomology of J('~' satisfies the projective bundle formula: If E is a vector 

bundle on X, and P(E) q-~ X is the associated projective bundle, then one has 

HS(P(E), of'}") = (~ q*HJ-'(X, Ym_s) u (9(I) 5 

where (9(1)e HI(P(E), ~'~51) is the class of the tautological bundle. 

So by (b), the d log map 

factorizes through 

m i a~g'i ~ ~xt~ 

and extends to a complex 

m i ( ' i f +  1 
ff{'~ ---> ~ X l Z  ~ ~'~XlZ --+ " " ,  

so that (1.1) (a) and (c) are fulfilled, and (I.1) (b) is fulfilled as well, as it is true for 
i = 1 .  

1.3. From now on, f :  X ~ S is a smooth morphism of smooth varieties over a field 
k of characteristic zero, and E is a bundle on X with a relative connection 

v :  E ~ a}/s ® E 
~ x  

where E = S and Y = f -  l(Z) = X are normal crossing divisors. 
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1.4. One defines 

Di(X) = Hi(X, • 7  ~ fl~/s(log Y)), 

DI,t(X) = Hi(X, .)fire _~ a~/s(log Y) -~ i+1 ~x/s (log Y) -~...). 

Then Ci(X) (resp. Ci,t(X)) is the image of 

H i(x, ~7' -~ ~/~( log Y)/ f*~i/~(log z)) 

(resp. Hi(X, ~ .~  -~ ~2~/~(log Y)/f*~2~/~(log E) -~ ~2~( log  Y) -~...)) in Di(X) (resp. 

Dint(X)). 
Here fl~/k(lOg Y) denotes as usual the sheaf of regular/-forms on X, relative to k, 

with logarithmic poles along Y. One has obvious maps 

DI,,t(X) ~ Di(X) ~ CHi(X) = Hi(X, ~ ) .  

1.5. Lemma. I f  X is proper over S = Spec C, one has a commutative diagram 

DI,t(X) , Di(X) , CH'(X) 

H 2i- l ( X a n  , C/~/(i))  ) H 2i- l ( X a n  , C / Z ( i ) ) / F  i+ '  , H2'(X, i) 

where ~k is the cycle map in the Deligne cohomology. 
Proof To simplify the notations, we drop the subscript S in tYx/s which becomes 

simply fl~r, the sheaf of regular/-forms over X relative to C. 
The complex 

~c7, _~ n~  __, n~+l _, . . .  

maps to the complex 

( ~  ~ , X a  n ---)* • • • 

where the notations are as in (1.1) (b), and the complex 

maps to 
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One has an exact sequence 

0 

1 
' (c ) /~ ' (z( i ) ) [ -  1] 

I 
c~ f~i+ 1 

( ~ . )  --' ~ . f ~ o o  -~  , x~o - ' " ' )  

1 

t 
0 

The last complex of the exact sequence is quasi-isomorphic to 

Rc~, e/~<~Rc~, C[i - 1], 

and therefore via the map C -~ C/Z(i), the complex 

* X a ~  "~""" 

maps to 

R~.  C/~_(f)/T<.,_ , R ~ .  C/Z(i)[i - ~ ]. 

which is an extension of 

R a ,  C/Z( i ) /z<iRa,  C/Z(i)[i  - I] 

by J/t~'(C/Z(i))[ - 1]. As 

Hi(X~a~, Ro~,C/Z(i)/~<(i_ 1)Rc%C/Z(i)[i - 13) = H 2i- l(Xa. , C/Z(/)), 

one obtains the left vertical arrow ¢~.t. 
As for the definition of the middle vertical arrow ¢, one similarly writes the 

complex 

as an extension of 

,~,~i+ 1 R~,C/'v<iRo~,C[i - 1] + ~ , ~ z x . .  

by £F~(C)/~(7/(i))[ - 1], and one argues as above. 
Altogether this defines a commutative diagram as in (1.5) where ~ is replaced by 

the map 

CH' (X)  = H'(..,T~7 ') ~ Hi(fl~(i)), 



50 HflL~NE ESNAULT 

which is shown in [4] to factorize the cycle map. (In fact there, we wrote 'projective' 
in (1.3) (2), but proved the property for 'proper' in (1.5).) []  

1.6. Remark. We see in fact that the image of Dint(X) in 

H 2,- 1 (X,,~, Rot. C/Z(i)/z<~R~, C/Z(i)) 

(resp. o~ D~(X) in 

H 2'- ~ (X~a~, Ro~,C/Z(i)/z~iRct,C/Z(i))/F ~+ ~) 

lifts naturally to 

H 2i- l(Xzar, R~,C/z<~iR~,C) 

(resp. 

n2i - l(Xza~, R~,C/z<iR~,C)/Fi+ 1). 

In particular, (1.7) will imply that the Betti class of a complex bundle E which carries 
a connection lies in the image of H ~- l(X~,r, ~ ( C ) / ~ ( Z ( i ) ) )  in H2~(X~., Z(i)) (which 
embeds into the image of H~-I(X~a~, ~¢F~(C/Z(i)) in H2i(X.~, Z(i))). 

1.7. THEOREM.  Let (E,V) be 
el(E, V) ~ Ci(X) lifting the classes 
morphism 

X'  '¢..~X 

l 1 
S'-2--,S 

as in (1.3). Then there are Chern classes 
cCX~(E) e CHi(X). They are jbnctorial for any 

such that tT-1(][]) and &- l ( y )  are normal crossino divisors. They are additive in exact 
sequences of bundles with connection. 

I f  V is integrable, then there are Chern classes ci(E, V)~ Cint(X) with the same 
properties. 

I f  S = Spec C, then q~int maps ci(E, V) to the secondary analytic class c~(E, V) 
defined in [3]. 

Proof. (a) For i = 1 one has CI(X) = DI(X), C~.t(X) = Dilnt(X), and CI(X)is the 
group of bundles with connection (E, V) of rank 1 modulo isomorphisms, and 
contains C1nt(X) as the subgroup of those (E, V) for which V: = 0. 

Let g" G ~ X be the flag bundle of E, such that g*E has a filtration by subbundles 
Ei whose successive quotients L~ have rank 1. In [3] we showed that V defines a 
splitting 

z: f~/s(log Z) ~ g*~}/s(log Y), 

where Z = 9-1(y), such that zV stabilizes the subbundles E~, and defines thereby 
(Li, zV) as a class in 
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IHI(G, ~g~ ~ g*~}/s(log Y)). 

If V z = 0, then ~ defines a splitting 

1:: ~ / s ( l o g  Z) ~ g*tl'x/sOog Y) 

of the de Rham complex, where the differential in 9*gl~-/s(log Y) is the composite 
map 

9*fYx/s(log Y) ~ f~/s(log Z) d ~  f~s~(log Z) _L~ g,f~-~s~(log y). 

Thereby zV is integrable and, therefore, (Li, zV) are classes in the hypercohomology 
group 

H l(G, 3((~ ~d....1.og_~ g*f~}/s(log Y) ~ g*~2/s(log Y) ~. . . ) .  

Write 

( ¢~a, ~o~) e (cgl(~,Ui ) x cg°(g*~}/s(log r)))~a-~ 

for a Cech cocycte of (Li, rV): 

d ~  ~ 
- & o ~ = 0  and ~ d ~ = 0  if V 2 = 0 .  

Then one defines 

q(g*(E, V)) z H~(G, X 7  ~ g*F~ix/s(log Y)) 

(or in 

H~(G, S~ '  ~ g*~/s ( log  Y) ~ £ t ~  (log Y) ~ ...) 

if V 2 = 0), as the class of the (~ech cocycle 

q = (c i, ci- 2) e (~i(.~F) x ~ i -  l(g,~x/s(log y)))~,+(_ 1),z 

by 

Cl 2 fl ~lr = ~ o ~ ,  w . . .  u ~ _ ~ ,  
lt <'"<li  

c ' - '  - - - ( - 1 )  i - '  S, ~o=o ..- ,, ( , ~ )  . . . .  A A 
ll <'"<li  

r d c i - l = O  ifVe = 0. 

By definition, Q(g*(E, V)) maps to cCU(g*E) = 9*cCn(E) in 

g*CH'(X) ~ CHi(G). 

From (1.2) (c), one obtains that 

H I-~(G,SUF)=~ t , ~ Rest, 
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where 

Rest c ~ H i- 2(G,  ff{'~n_ 1) tj (Ll), 

and where (Lz) is the class of Lz in Hi(G,  )K1). 
As (L~) maps to zero in H l(G, g*f~}/s(log Y)) (resp. 

.H l(G, g*f~}/s(log Y)  ~ g*~: /s ( log  Y) ~ ...) 

if V 2 = 0), the image I of H i - l ( G ,  J~?)  in 

H i- I(G, g*f~:/s(log Y)) = H i- l(X, f~)/s(log Y)) 

(resp. in 

H i- l(G, g*f~)/s(log Y) -~ g*f~)~sl (log Y) ~ . . . )  

_ H~-i(x,f~ix/s(log y )  _~ ~-*i - flx/s (log Y) ~ . . . ) )  

is the same as the image of H i- I(X, )gT') in it. This shows, via the exact sequences 

0 ~ H ' -  l(X, f~/s(log Y))/I  ~ Hi(G, 3(F7' ~ g*f~ix/s(log Y)) ~ H'(G, Jff']') 

(resp. 

0 -~ H i .  l(X, f~/s(log Y) ~ f~)st (log Y) ~ . . . ) / I  ---, 

Hi(G, Jff}" -~ g*f~)/s(log Y) ~ g*f~x-~s~ (tog Y) ~ ...) ~ Hi(G, Jl'l')) 

and 

_..1. i m 0 --) H i-  i (x ,  f~)/s(log Y))/I  -* Hi(X, JffT' -~ n~/s(log Y)) H (X, ~ i  ) 

(resp. 

0 ~ H i- i (x ,  f~:/s(log Y) ~ f ~ s t  (log Y) -~ . . . ) / I  

~ H i ( X ,  ~ 7 '  ~ f~/s(log Y)-~ i+1 f~x/s (log Y) --,...) ~ HI(X,  J~VT')) 

that 

(resp. 

H'(X,  ~ 7 '  ~ O~/s(log Y)) 

Hi(X, gfT' ~ f~/s(log Y) -~ f ~ s l  (log Y) ~ . . . ) )  

injects into 

Hi(G, ~u{-~- ~ g * ~ / s ( l o g  Y)) 

(resp. 

H'(G, ,ygm ~ g*f~/s(1Og Y) ~ g*f~'~s~(1og Y) ~ ' " ) ) ,  

with cokernel lying in 

Hi(G, ~.'[')/g* H ' (X ,  JffT') = CHi(G) /g*CUi(X) .  

HI~LI~NE E S N A U L T  
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This proves the existence of the classes in Di(X) (resp. Dint(X)). 
(b) Consider the Atiyah class 

Atx (E)eHl (X , f~ / k ( logY) (~  E n d E )  
(gx 

of E. Then its image in Hl(X,f~:/s(tog Y)®oxEnd E) is vanishing, which implies 
that Atx(E) lies in fact in the image of Hl(X, f* f~ /k ( lOgE)®~EndE)  in 
Hl(X,f~X/k(lOg Y)®ox End E) and therefore the exterior power AiAtxE lies in the 
image of Hi(X, f*f~/k(lOg E) ®~x End E) in 

Hi(x, f]~C/k(1Og Y) ®~x End E). 

In other words A i Atx(E) is vanishing in 

HI(X, f~/k(1Og Y)/f*f~/k(log Z) ® End E), 

as well as its trace in Hi(X, fl~/k(tog Y)/f*f]is/,OogZ)). As the Chern class of E 
in Hi(X, f~c/k(log Y)) is a linear combination with Q-coefficients of the traces of 
A2 AtxE, for j  ~< i, one obtains that the class lies in Ci(X), or in Cint(X) if V 2 = 0. 

(c) Additivity and functoriality are proven as in [3]. 
(d) We now compare with can(E, V) if V is integrable and defined over 

S = Spec C. 

By [3], (2.24), one has just to see that 

(Li, zV) e Hi(G, J¢~1 ~ g*tl}/c ~ g*fflzx/c ~ ...) 

maps to the class of 

(L, ~V) e H ~(G,n, (gL~ ~ "*tl ~ x ~  ~ a*~x~o --~'"). 

This is just by definition. [] 

1.8. Remark. Lemma (1.5) together with Theorem (1.7) define functorial and additive 
secondary analytic classes 

c~"(E, V) e H 2i- i(X~,, C/Z(i))/F i+ 1 

for a bundle E with a connection V on X proper smooth over C. 

2. Griffiths' Invariant 

2.1. Let f be as in (1.3). We assume in the sequel that f is proper. 
We drop the subscript k in the differential forms, and we define as usual the Hodge 

bundles 

~.~j  . _  2 i -  1 ~ j  • - R f ,  f~x/s(log Y). 

We recall now the definition of Griffiths' infinitesimal invariant. 
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Let ¢ ~ CHi(X) be a codimension i cycle on X which is homologically torsion 
on the fibers f - l ( s ) , s ~ S - E ,  by which we mean that its Hodge class in 

2i >-i (X, fl~ (log Y)) vanishes in 

HO(s 2i >~i - E, R f,f~x/s(log Y)). 

In fact, as the sheaf R U f ,  f~s ( log  Y) is torsion free, the Hodge class vanishes in 

Ho(s, 2i >-i R f,f~c/s(log Y)) 

as well. Therefore, the class 

v'(~) e H°(S, 2i ~ R f , f~x  (log Y)) 

induces a class 

v(~) e H°(S, f~sl(log Z) ® if*- 1/~,) 

via the exact sequence 

0 ~ fl~(log E) ® ~ i - 1 / f f i  -~ R2~f , (~ i ( log  r)/(O2(log E))) ~ R 2if,~f:/s(log>.~ y), 

where (~2(log Y.)) denotes the subcomplex of ~ s ( l o g  Y) whose degree j sheaf is 
f*~2(log Z) A l)Jx-2(log Y). 

As v(~) comes from v'(~), it is Gauss-Manin flat and, therefore, 

v(~) e H°(S, ~l), 

where W~ is the first homology sheaf of the complex 

ff~ ~ ~qs~ (log E) ® ~ ' - 1  ~ f~(log E) ® if,-2. 

In fact, Griffiths' invafiant is the image of v(~) in H°((S - Z)~,,  ~/f l  ), if k = C.  
Griffiths defines it more generally for a normal function on (S - Y.). 

2.2. We assume that the connection V is integrable. Then 

= cCn(e) e CHI(X) 

fulfills the conditions of (2.1). This defines 

v(cCH(E)) e n°(s,  ~(fl). 

2.3. PROPOSITION. Griffhhs' invariant 

v(cCH(E)) e H°(S, .~ffl ) 

lifts to a welt defined functorial class 

7(ci(E, V)) e n°(s ,  f~(tog E) ® ff~ ~ f~g(log E) Q f f i -  ~). 

Proof. We consider the complex 

~7 '  -~ fYx(log Y)/(~E(log E)) ~ f~+ 1(log r)/(fl,~(log E)) ~ . . .  



CHARACTERISTIC CLASSES OF FLAT BUNDLES, II 55 

as a Gauss-Manin like extension of the complex 

~ i + l q o -  Y) ~ ... ~ 7 '  ~ f~/s(log Y) ~ x/s ~ 

by 

(f*f~s~(log E) ® x/s (log Y) ~ f * f ~ ( l o g  2) ® f~/s(log Y) -~ . - - ) [ -  1]. 

This defines a class in 

H°(S, f~}(log E) ® ~ i -  1) 

from which one knows that it is Gauss-Manin closed. As this class vanishes in 
H°(S, ~q~(log 2;) ® Ri f ,  f~Ts~(log Y)) by definition of C~nt(X), it is lying in 

H°(S, f~(log 2;) ® ~-~ --) f~s2(log 2;) ® @~- 1). []  

2.4. We assume now that the connection is not necessarily integrable, that k = C, 
and that S is proper and one-dimensional. 

2.5. PROPOSITION. Griffiths' invariant v(cCn(E)) ~ H°(S, ~fl ) lifts to a well defined 
functorial class in the image of H°(S, ~ ( l o g  E)® ~i)  in 

H 1(S, ~-i ~ ta~(log E) ® ~ -  1 ). 

Proof. The Betti Chern class of ~ = cCin(E) lies in Hi(San,  j ,  R2i - l f ,  Q(i)), where 
j: S - 2 ~ S is the inclusion. In 

H 1(S~, j ,R  2'- i f ,  C) = H I(Sa~, j,(Ft)_z ® R 2~- l f ,  f~[x_ r~/ts-z~)), 

it lies in the subgroup 

H ~(San, ~ -~ f2~(log 2;) ® Y~- ~) 

which equals 

H ~(S, ff~ -* f~(log ~) ® ~-~- x) 

by the GAGA theorems ([9]). 
Again considering ~4"7' ~ f]/x(log Y)/(~q2(log 2;)) as a Gauss-Manin-like exten- 

sion of 3f7  ~ ~:/s(log Y) by 

(f*f~s~(log ~) ® f~c~s~(log r ) ) [ -  1], 

one sees that Di(X) maps to 

H°(S, f~s~(log IE) ® (~- '-  ~/~-')) 

which itself maps to 

H l(S, ff~ ~ f~l(log 2;) ® (o ~ -  ~/W" ~)). 

In particular, the class in H 1(S, ~ ~ f]s~(log 2;) ® ~-i- ~) maps to zero in H 1(S, ~-i) 
and, therefore, lies in 

H°(S, f~}(log 2;) ® i f ' -  1)/H°(S, ~-'). 
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As it comes from Ci(X), it vanishes in H°(S, f~( log  Z ) ®  ( ~ i - 1 / ~ i ) ) .  []  

2.6. Remark. The rigidity property (2.2) could invite us - following S. Bloch - to 
define the group C~,t(X) as the group of cycles with an integrable K connection, if 
S = Spec K, where K is a field of characteristic zero. In this case, 

Hi(s, 5 i  _~ f ~  ® y -  1 _., ~ ® ~-i-2) = (f~, ® ~ -  1)v/v,~ 

and the class is well defined in (ff2k ® ~ i ) v  

2:7. Remark. The existence of the lifting of Grit~ths' invariant in (2.5) wilt be used 
by H. Dunio to prove that the Deligne-Beilinson classes of (E, V) are locally 
constant, generalizing the result of [5] to the case where the morphism f is not 
constant. 
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