Hodge type of projective varieties of low degree

Hélène Esnault ${ }^{1}$, M. V. Nori ${ }^{2}$, and V. Srinivas ${ }^{3}$
${ }^{1}$ Universität Essen, FB 6, Mathematik, W-4300 Essen-1, Federal Republic of Germany
${ }^{2}$ Department of Mathematics, University of Chicago, 5734 University Ave., Chicago, IL 60637, USA
${ }^{3}$ School of Mathematics, Tata Insitute of Fundamental Research, Homi Bhabha Road, Bombay-400 005, India

Received June 13, 1991
Mathematics Subject Classification (1991): 14C30

Let S be a complex projective variety embedded in \mathbf{P}^{n} with complement U, such that S is defined by r equations of homogeneous degrees $d_{1} \geqq d_{2} \geqq \cdots \geqq d_{r}$. One defines the Hodge type of S to be the largest integer a for which the Hodge-Deligne filtration F^{\bullet} on the de Rham cohomology of U with compact supports satisfies

$$
F^{a} H_{c}^{i}(U)=H_{c}^{i}(U) \quad \forall i
$$

If our equations are defined over the finite field F_{q}, then a theorem of $A x$ and Katz yields the congruence

$$
\# U\left(\mathbf{F}_{q}\right) \equiv 0\left(\bmod q^{\kappa}\right)
$$

where

$$
\kappa=\left[\frac{n-\sum_{i=2}^{r} d_{i}}{d_{1}}\right]
$$

(here $[a]$ denotes the integral part of a). This suggests that the motive associated to the cohomology of U should be the product of the Tate motive $\mathbb{Q}(-\kappa)$ with an effective motive (see [DD, Introduction]). If so, then
(D): the Hodge type of S should be $\geqq \kappa$,
as precisely formulated in [DD, Sect. 1].
This conjecture on the Hodge type is therefore directly inspired by the philosophy of motives.

When S is a smooth complete intersection, Deligne proved (D) in SGA 7 [D]. In [DD], the case $r=1$ is proven by comparing the Hodge filtration on the de Rham cohomology $H^{i}(U)$ to the filtration defined by the order of the poles along the divisor S. In higher codimension, the first author reduced the general problem of
computing the Hodge type of a variety to some vanishing theorem, true for complete intersections [E].

In this note, we explain two different geometric constructions, leading to situations where one may apply a variant of the reduction mentioned above, to prove (D) in general. The first one was used in the second author's work on cycles [N], and consists of considering S as a special fibre of the 'deformation' of S given by the universal family of varieties in \mathbf{P}^{n} defined by equations of the given degrees. The second one was inspired by Terasoma's work [T] and consists of considering the 'universal pencil' spanned by the equations of S and having S as the base locus.

Both ways allow one to prove:
Theorem. Let S be a complex projective variety defined in \mathbf{P}^{n} by r equations of homogeneous degrees $d_{1} \geqq d_{2} \geqq \cdots \geqq d_{r}$. Then the Hodge type of S is at least

$$
\kappa=\left[\frac{n-\sum_{i=2}^{r} d_{i}}{d_{1}}\right]
$$

1 Deformation

1.1

We consider the following diagram

$$
\begin{gathered}
X \rightarrow Y=\mathbf{P}^{n} \times V \\
p \searrow \downarrow_{p_{2}} \\
V
\end{gathered}
$$

where

$$
V=\operatorname{Spec} \operatorname{Sym}\left(H^{0}\left(\mathbf{P}^{n}, \mathscr{E}\right)^{\vee}\right) \quad \text { where } \mathscr{E}=\oplus_{i=1}^{r} \mathcal{O}_{\mathrm{P}}\left(d_{i}\right)
$$

$X=$ universal subvariety defined by equations of degrees d_{1}, \ldots, d_{r}.
In other words,

$$
X=\operatorname{Spec} \operatorname{Sym}\left(\mathscr{R}^{\vee}\right)
$$

where \mathscr{R} is the locally free sheaf defined by the exact sequence

$$
0 \rightarrow \mathscr{R} \rightarrow H^{0}\left(\mathbf{P}^{n}, \mathscr{E}\right) \otimes_{\mathbf{C}} \mathcal{O}_{\mathbf{p}^{n}} \rightarrow \mathscr{E} \rightarrow 0
$$

and the superscript ${ }^{2}$ denotes the dual of a locally free sheaf. For $f \in V$, one has $f=\left(f_{1}, \ldots, f_{r}\right), \quad f_{i} \in H^{0}\left(\mathbf{P}^{n}, \mathcal{O}\left(d_{i}\right)\right)$, and $X_{f}=p^{-1}(f)=\left\{x \in \mathbf{P}^{\boldsymbol{n}} \mid f_{i}(x)=0 \forall 1 \leqq\right.$ $i \leqq r\}$. We now mimic [$\mathrm{E},(1.1)$ and (1.2)] in this relative situation. We denote by $\left.\right|_{A}$ the topological restriction of sheaves to a subspace A.

Proposition 1.1.1. Let $\Omega_{Y, X}^{<{ }_{X}^{\alpha}} \xrightarrow{i} \Omega_{Y}^{<\kappa}$ be a map from a complex supported in degrees $<\kappa$ to the truncated holomorphic de Rham complex such that for some $f \in V$ one has
(i) $\left.i\right|_{\mathbf{P}^{n} \times\{f\}}$ is an isomorphism on $U_{f}=\mathbf{P}^{n} \times\{f\}-X_{f}$
(ii) let $\sigma: Z \rightarrow \mathbf{P}^{n} \times\{f\}$ be a desingularization of X_{f} such that $\tilde{X}_{f}:=\sigma^{-1} X_{f}$ is a normal crossing divisor. Then there is a factorization σ^{-1} :

$$
\begin{array}{cc}
\left.\Omega_{Y, X}^{j}\right|_{\mathbf{P}^{n} \times\{f\}} & \left.\xrightarrow{\sigma^{-\left.1_{o i}\right|_{\mathbf{P}^{n} \times\{f}}} \sigma^{-1} \Omega_{Y}^{j}\right|_{\mathbf{P}^{n} \times\{f\}} \\
\sigma^{-1} \downarrow & \downarrow \\
\frac{\sigma^{-1}}{}\left(\log \tilde{X}_{f}\right)\left(-\tilde{X}_{f}\right) & \rightarrow
\end{array}
$$

for any $0 \leqq j<\kappa$.
Then σ^{-1} defines a surjection (independent of the desingularization)

$$
\left.\left(\mathbf{R}^{i}\left(p_{2}\right)_{*} \Omega_{Y, X}^{<\kappa}\right)\right|_{\{f\}} \xrightarrow{\sigma^{-1}} H_{c}^{i}\left(U_{f}\right) / F^{\kappa} H_{c}^{i}\left(U_{f}\right)
$$

for any i.
Proof. Let \mathscr{I} be the ideal sheaf of X in Y. For $l \gg 0$, define

$$
\begin{aligned}
\Omega_{Y, X}^{\prime}:=0 \rightarrow \mathscr{I}^{l} & \rightarrow \mathscr{I}^{l-1} \otimes \Omega_{Y, X}^{1} \rightarrow \cdots \rightarrow \mathscr{I}^{l-\kappa+1} \otimes \Omega_{Y, X}^{\kappa-1} \\
& \rightarrow \mathscr{I}^{l-\kappa} \otimes \Omega_{Y}^{\kappa} \rightarrow \cdots \rightarrow \mathscr{I}^{l-\operatorname{dim} Y} \otimes \Omega_{Y}^{\operatorname{dim} Y} \rightarrow 0 .
\end{aligned}
$$

Then the natural map $\Omega_{Y, X}^{\cdot} \rightarrow \Omega_{Y}^{\cdot}$ fulfills (i) and (ii) for $\kappa=\operatorname{dim} Y+1$ and for the same f as before. Let $U=Y-X \stackrel{j}{G} Y$ and $j_{f}:=\left.j\right|_{\mathbf{P}^{n} \times\{f\}}: U_{f} \rightarrow \mathbf{P}^{n} \times\{f\}$. One has a natural map $j_{!} \mathbf{C} \rightarrow \Omega_{Y, X}^{\prime *}$, and hence maps

$$
\left.\left(j_{f}\right)_{!} \mathbf{C} \rightarrow \Omega_{Y, X}^{\prime \cdot}\right|_{\mathbf{P}^{n} \times\{f\}} \xrightarrow{\sigma^{-1}} \mathbf{R} \sigma_{*} \Omega_{Z}^{*}\left(\log \tilde{X}_{f}\right)\left(-\tilde{X}_{f}\right)
$$

which, as in [E, (1.1)] defines a surjection

$$
\left.\left(\mathbf{R}^{i}\left(p_{2}\right)_{*} \Omega_{Y, X}^{\prime \cdot}\right)\right|_{(f)} \xrightarrow{\sigma^{-1}} H_{c}^{i}\left(U_{f}\right)
$$

Then, as in [$E,(1.2)]$, one has a commutative diagram

Corollary 1.1.2. To prove the theorem, it suffices to find $\Omega_{Y, X}^{<x}$ as in Proposition 1.1.1 such that $\mathbf{R}^{i}\left(p_{2}\right)_{*} \Omega_{Y, X}^{<\kappa}=0$ for all i. In fact it suffices to find such a complex with $R^{i}\left(p_{2}\right)_{*} \Omega_{Y, X}^{j}=0$ for all $0 \leqq j<\kappa$ and all i.

1.2

Choose as in [E, (2.2)]

$$
\Omega_{Y, X}^{j}:=\mathscr{I}^{\kappa-j} \otimes \Omega_{Y}^{j}, \quad 0 \leqq j<\kappa .
$$

Then Ω_{Y}^{j} has a resolution by direct sums of sheaves $p_{1}^{*} \mathcal{O}_{\mathrm{P}^{n}}(-m), 0 \leqq m \leqq j$, and as X is a smooth complete intersection in Y defined by a section of $\mathscr{E}, \mathscr{J}^{\boldsymbol{\kappa}-j}$ has a resolution by direct sums of sheaves $p_{1}^{*} \mathcal{O}_{\mathbf{p}^{n}}(-l)$, $0 \leqq l \leqq(\kappa-j) d_{1}+d_{2}+\cdots+d_{r}$. Therefore $\Omega_{Y, X}^{j}$ has a resolution by sheaves $p_{1}^{*} \mathcal{O}_{\mathbf{P r}}(-s), 0 \leqq s \leqq \kappa d_{1}+d_{2}+\cdots+d_{r}-j d_{1}+j$. Since

$$
H^{i}\left(Y, \Omega_{Y, X}^{j}\right)=H^{0}\left(V, R^{i}\left(p_{2}\right)_{*} \Omega_{Y, X}^{j}\right)=0 \Leftrightarrow R^{i}\left(p_{2}\right)_{*} \Omega_{Y, X}^{j}=0
$$

the desired vanishing statement holds if

$$
0 \leqq \kappa d_{1}+d_{2}+\cdots+d_{r}-j d_{1}+j \leqq n \quad \text { for } 0 \leqq j<\kappa
$$

that is for

$$
\kappa=\left[\frac{n-\sum_{i=2}^{r} d_{i}}{d_{1}}\right]
$$

1.3

Another way of obtaining the theorem from the above geometric construction is motivated by the arguments in [N]. This is the way in which the theorem was initially proved.

Define

$$
\Omega_{(Y, X)}^{\bullet}:=\operatorname{ker}\left(\Omega_{Y}^{\dot{P}} \rightarrow \Omega_{X}^{\dot{\prime}}\right)
$$

As X is smooth, $\Omega_{Y, X}$ is quasi-isomorphic to $j_{!} \mathbf{C}$.
Proposition 1.3.1. Suppose $\mathbf{R}^{i}\left(p_{2}\right)_{*} \Omega_{(Y, X)}^{<\kappa}=0$ for all i. Then the theorem holds.
Proof. For any embedded desingularization $\sigma: Z \rightarrow \mathbf{P}^{n} \times\{f\}$ of X_{f} such that $\tilde{X}_{f}=f^{-1}\left(X_{f}\right)$ is a normal crossing divisor, we have a commutative diagram

$$
\begin{array}{cc}
j_{1} \mathbf{C} \simeq \Omega_{(Y, X)}^{\cdot} \rightarrow & \left.\rightarrow \Omega_{(Y, X)}^{\bullet}\right|_{\mathbf{P}^{n} \times\{f\}} \simeq\left(j_{f}\right) \mathbf{C} \simeq \mathbf{R} \sigma_{*}\left(\Omega_{\dot{Z}}^{*}\left(\log \tilde{X}_{f}\right)\left(-\tilde{X}_{f}\right)\right) \\
\downarrow & \downarrow \\
\Omega_{(Y, X)}^{<\kappa} & \left.\rightarrow \Omega_{(Y, X)}^{<\kappa}\right|_{\mathbf{p}^{n} \times\{f\}}
\end{array} \rightarrow \quad \rightarrow \quad \mathbf{R} \sigma_{*}\left(\Omega_{Z}^{<\kappa}\left(\log \tilde{X}_{f}\right)\left(-\tilde{X}_{f}\right)\right) .
$$

Hence there is a commutative diagram

$$
\begin{array}{ccc}
\left.\left(\mathbf{R}^{i}\left(p_{2}\right)_{*} \Omega_{(Y, X)}\right)\right|_{\{f\}} & \stackrel{\cong}{\rightrightarrows} & H_{c}^{i}\left(U_{f}\right) \\
\downarrow & \downarrow \\
\left.\left(\mathbf{R}^{i}\left(p_{2}\right)_{*} \Omega_{(Y, X)}^{<\kappa}\right)\right|_{\{f\}} & \rightarrow H_{c}^{i}\left(U_{f}\right) / F^{\kappa} H_{c}^{i}\left(U_{f}\right)
\end{array}
$$

Now in order to prove the theorem, we want to show that $R^{i}\left(p_{2}\right)_{*} \Omega_{(Y, X)}^{j}=0$ for all $i \geqq 0,0 \leqq j<\kappa$. $\Omega_{(Y, X)}^{i}$ is filtered by $\Omega_{(Y, X) / \mathbf{P}^{n}}^{j} \otimes p_{1}^{*} \Omega_{\mathbf{p}^{n}}^{i-j}$. Since $X=$ Spec $\operatorname{Sym}(\mathscr{R})$, we have an exact sequence

$$
0 \rightarrow \Omega_{(Y, X) / \mathbf{P}^{\bullet}}^{s} \rightarrow \bigwedge^{s} H^{0}\left(\mathbf{P}^{n}, \mathscr{E}\right)^{\vee} \otimes \mathcal{O}_{Y} \rightarrow p_{1}^{*} \mathscr{R}^{\vee} \otimes \mathcal{O}_{X} \rightarrow 0
$$

Using the Koszul resolution for \mathscr{I}, the ideal sheaf of X, and the exact sequence

$$
0 \rightarrow \mathscr{R} \rightarrow H^{0}\left(\mathbf{P}^{n}, \mathscr{E}\right) \otimes \mathcal{O}_{\mathbf{P}^{n}} \rightarrow \mathscr{E} \rightarrow 0,
$$

one again reduces (as in [N, Sect. 3]) the desired vanishing statement to that for suitable direct sums of suitable $\mathcal{O}_{\mathbf{P}^{(}}(k)$.

2 Pencil

2.1

We consider the following commutative diagram, inspired by [T]:
where Q is the projective bundle $\left.\mathbf{P}_{\mathrm{P}^{(}} \mathscr{E}^{\mathscr{E}}\right), \mathscr{E}=\oplus_{i=1}^{r} \mathcal{O}_{\mathbf{P}^{\mathbf{r}}}\left(d_{i}\right), S$ is the subvariety of \mathbf{P}^{n} defined by the $f_{i} \in H^{0}\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{r}}\left(d_{i}\right)\right), U=\mathbf{P}^{n}-S, Y$ is the hypersurface in Q defined by the section $f=\left(f_{1}, \ldots, f_{r}\right) \in H^{0}\left(\mathbf{P}^{n}, \mathscr{E}\right)=H^{0}\left(\mathbf{P}^{n}, \pi_{*} \mathcal{O}_{Q}(1)\right)=H^{0}\left(Q, \mathcal{O}_{Q}(1)\right)$, and finally $V=Q-Y$. Clearly $\pi^{-1}(S)=\mathbf{P}_{S}\left(\left.\mathscr{E}_{\mid c}\right|_{s}\right) \subset Y$.

Since $\mathcal{O}_{Q}(Y)=\mathcal{O}_{Q}(1), \pi: V \rightarrow U$ is an affine bundle with fibres \mathbf{A}^{r-1} and one has

$$
F^{a} H_{c}^{i}(U)=F^{r-1+a} H_{c}^{2(r-1)+i}(V) \forall i, a .
$$

So one has to prove that the Hodge type of Y is $\geqq \kappa^{\prime}=\kappa+r-1$.
2.2

According to [$\mathrm{E},(1.2$) and (1.3)], it is enough to compute the following.
Lemma 2.2.1. $H^{i}\left(Q, \mathcal{O}_{Q}\left(-\left(\kappa^{\prime}-j\right)\right) \otimes \Omega_{Q}^{j}\right)=0 \forall i, \forall 0 \leqq j \leqq \kappa^{\prime}-1$.
Proof. Ω_{Q}^{j} is resolved by sheaves $\pi^{*} \Omega_{\mathrm{P}}^{k} \otimes \Omega_{Q / \mathrm{P}^{\mathrm{p}}}^{j-k}, 0 \leqq k \leqq j$, and $\pi^{*} \Omega_{\mathrm{P}^{k}}^{k}$ is resolved by direct sums of $\pi^{*} \mathcal{O}_{\mathrm{P} \cdot}(-l), 0 \leqq l \leqq k$. Finally $\Omega_{Q / P^{*}}^{j-k^{2}}$ is resolved by sheaves $\left(\pi^{*} \wedge \mathscr{E}^{m}\right) \otimes \mathscr{O}_{Q}(-m), 0 \leqq m \leqq j-k$. Hence one has to compute

$$
H^{i}\left(\mathbf{P}^{n},\left(\bigwedge^{m} \mathscr{E}(-l)\right) \otimes R \pi_{*} \mathcal{O}_{Q}\left(-\left(\kappa^{\prime}-j+m\right)\right)\right.
$$

for

$$
0 \leqq l \leqq k \leqq \kappa^{\prime}-1, \quad 0 \leqq m \leqq j-k .
$$

One has a priori contributions only for $\kappa^{\prime}-j+m \geqq r$, and in this case, duality reduces the computation to the vanishing of

$$
H^{i}\left(\mathbf{P}^{n},\left(\bigwedge^{m} \mathscr{E}(-l)\right) \otimes\left(S^{m+\kappa^{\prime}-j-r} \mathscr{E}\right)^{v} \otimes(\operatorname{det} \mathscr{E})^{-1}\right),
$$

which is true if for any

$$
j_{1}>j_{2}>\cdots>j_{l}, \quad i_{1} \geqq i_{2} \geqq \cdots \geqq i_{m+\kappa^{\prime}-j-r}
$$

one has

$$
1 \leqq l-\left(d_{j_{1}}+\cdots+d_{j_{m}}\right)+\left(d_{i_{1}}+\cdots+d_{i_{m+k^{\prime}-j-r}}\right)+\left(d_{1}+\cdots+d_{r}\right) \leqq n
$$

The left inequality is obviously valid, whereas the right one reads

$$
l+\left(d_{1}+\cdots+d_{r-m}\right)+(m-\kappa-1-j) d_{1} \leqq n
$$

or

$$
\kappa d_{1}+(m-j) d-1+d_{2}+\cdots+d_{r-m}+l \leqq n
$$

which, from the extreme case $m=j=l=0$ gives

$$
\kappa=\left[\frac{n-\sum_{i=2}^{r} d_{i}}{d_{1}}\right]
$$

Acknowledgements. We thank P. Deligne and E. Viehweg for their encouragement.

References

[D] Deligne, P: Cohomologie des intersections complètes. In: Deligne, P., Katz, N. (eds.) SGA 7 XI. (Lect. Notes Math., vol. 340) Berlin Heidelberg New York: Springer 1973
[DD] Deligne, P., Dimca, A: Filtrations de Hodge et par l'ordre du pôle pour les hypersurfaces singulières, Ann. Sci. Éc. Norm. Supér. 23, 645-665 (1990)
[E] Esnault, H: Hodge type of subvarieties of \mathbf{P}^{n} of small degrees. Math. Ann. 288, 549-551 (1990)
[N] Nori, M.V: Algebraic cycles and Hodge theoretic connectivity results. (Preprint)
[T] Terasoma, T: Infinitesimal variation of Hodge structures and the weak global Torelli theorem for complete intersections. Ann. Math. 132, 213-235 (1990)

