Hodge type of subvarieties of \mathbb{IP}^n of small degrees

Hélène Esnault

FB 6, Mathematik, Universität Essen, W-4300 Essen 1, Federal Republic of Germany

Received March 14, 1990

Let S be a subvariety of a proper complex manifold X and $j: U \to X$ be the embedding of its complement. One says that the *Hodge type* of S (Ht(S)) is $\geq a$ if a is a natural number such that $F^aH_c^t(U) = H_c^t(U)$ for all $t \geq 0$, where F is the Hodge-Deligne (decreasing) filtration [D II].

Deligne and Dimca conjecture in [DD] that if $X = \mathbb{P}^n$, the projective space, and if S is defined by r equations of degrees $d_i, d_1 \ge \sup \{d_i\}$, then $Ht(S) \ge \kappa := \left[n - \sum_{2}^{r} d_i/d_1\right]$, where [] denotes the integral part of a number. This

bound κ is coming from a theorem of Katz [K], improving a former one of Ax: if S is defined over the finite field \mathbb{F}_q , then card $U(\mathbb{F}_q)=0$ modulo q^{κ} . If S is a smooth (complex) complete intersection, P. Deligne had already proved in [D] that $Ht(S) \ge \kappa$. In [DD] it is proved that $Ht(S) \ge \kappa$ if r=1, that is if S is an hypersurface.

In this article we reduce the question to a vanishing theorem (1.3), which we are able to prove if S is a complete intersection (2.1) to obtain

Theorem 0. Let S be a complete intersection of multidegree $(d_1, ..., d_r), d_1 \ge \sup \{d_i\},$ in \mathbb{P}^n over \mathbb{C} . Then $Ht(S) \ge \kappa$.

1. Cohomology with compact supports of an open complex manifold U

1.1. Let X be an analytic manifold, S be a subvariety of X, and $j: U \rightarrow X$ be the embedding of its complement.

Let $\Omega_{X,S}^{\perp}$ be any complex mapping to the de Rham complex Ω_X^{\perp} with the following properties:

i) $\Omega_{X,S}^{j} \rightarrow \Omega_{X}^{j}$ is an isomorphism over U for all j.

ii) Let $f: \tilde{X} \to X$ be an embedded desingularization of S such that $\tilde{S}:=f^{-1}(S)$

is a normal crossing divisor. Then the map

 $f^*\Omega^j_{X,S} \to \Omega^j_{\tilde{X}}$ factorizes through

 $f^*\Omega^j_{X,S} \to \Omega^j_X(\log \tilde{S})(-\tilde{S})$, where $\mathscr{O}_{\tilde{X}}(-\tilde{S})$ has the reduced structure.

Actually, ii) does not depend on the desingularization f choosen. If $f_1: X_1 \rightarrow X$ is another one, with $S_1: = f_1^{-1}(S)$, choose a third one Y:

with $T := g^{-1}S$. Then one has maps

$$f_1^* \Omega_{X,S}^{\prime} \rightarrow \sigma_1 \sigma_1^* f_1^* \Omega_{X,S}^{\prime} \rightarrow \sigma_1 \Omega_Y^{\prime}(\log T) \ (-T) = \Omega_{X_1}^{\prime}(\log S_1) \ (-S_1)$$

Denote by $i:j_{!}\mathbb{C}\to\Omega_{X,S}^{\circ}$ the natural map coming from $j_{!}\mathbb{C}\to\Omega_{X,S}^{\circ}$, and by $D^{b}(X)$ the derived category of bounded complexes on X. In [E, (3-2)] we proved the following.

Lemma. There is a map $f^{-1}: \Omega_{X,S}^{\cdot} \to j_! \mathbb{C}$ in $D^b(X)$ such that $f^{-1} \circ i$ is a quasi-isomorphism.

Proof. Let $\tilde{j}: U \hookrightarrow \tilde{X}$ be the embedding with $f \circ \tilde{j} = j$. Then ii) defines a map $f^{-1}: \Omega_{X,S} \to Rf_*\Omega_{\tilde{X}}(\log \tilde{S})(-\tilde{S}) = Rf_*\tilde{j}_!\mathbb{C} = j_!\mathbb{C}$ in $D^b(X)$, and $f^{-1} \circ i$ is coming from $j_!\mathbb{C} \to \Omega_{X,S}^0 \to f_*\mathcal{O}_{\tilde{X}}(-\tilde{S})$.

1.2. We assume now that X is proper. Let $\Omega_{X,S}^{\prime,j}$ be another sheaf as in (1.1) i), ii), defined for $j \leq a-1$, where a is a given positive natural number, such that $\Omega_{X,S}^{j} \rightarrow \Omega_{X}^{j}$ factorizes through $\Omega_{X,S}^{j} \rightarrow \Omega_{X,S}^{\prime,j}$.

Proposition. For any $t \ge 0$, there is a commutative diagramm

where the two maps denoted by $(f^{-1})^{\leq a-1}$ are surjective.

Proof. By (1.1), f^{-1} is surjective, whereas by Hodge theory [DII] one has:

$$H_c^t(U)/F^aH_c^t(U) = H^t(\tilde{X}, \Omega_{\tilde{X}}^{\leq a-1}(\log \tilde{S})(-\tilde{S})).$$

1.3. Conclusion of this section.

In order to prove that $F^a H_c^t(U) = H_c^t(U)$ for any *t*, it is enough to find $\Omega_{X,S}^{\prime \leq a-1}$ as in (1.2) such that $H'(X, \Omega_{X,S}^{\prime \leq a-1}) = 0$, or, if one is not able to compute precisely this hypercohomology, such that $H'(X, \Omega_{X,S}^{\prime j}) = 0$ for any *t* and $j \leq a-1$.

2. Vanishing theorems for complete intersections in \mathbb{P}^n

2.1. Let $S \subset \mathbb{P}^n$ be a scheme theoretic complete intersection of multidegree $(d_1, \ldots, d_r), d_1 \ge \sup \{d_i\}$, and let \mathscr{I} be the corresponding ideal sheaf of S.

Proposition. One has $H^{t}(\mathbb{P}^{n}, \mathcal{J}^{a}(-k)) = 0$ for any t if a and k are natural numbers such that $0 \le k \le n - (ad_1 + d_2 + ... + d_r)$.

Proof. If r=1, then $H'(\mathscr{O}(-ad_1-k))=0$ for $0 \leq ad_1+k \leq n$, and if a=0, $H^{t}(\mathscr{O}(-k)) = 0$ for $0 \leq k \leq n - \sum_{i=1}^{r} d_{i}$. Otherwise, denote by \mathscr{I}_{r-1} the ideal defined

by the (r-1) first equations, and by f_r the last equation. One has an exact sequence if $a \ge 1$:

$$0 \to \mathscr{J}_{r-1}^{a}(-k) \cap f_{r} \mathscr{J}^{a-1}(-k) \to \mathscr{J}_{r-1}^{a}(-k)$$

$$\oplus \mathscr{J}^{a-1}(-k-d_{r}) \xrightarrow[\text{inclusion}]{} \mathscr{I}^{a}(-k) \to 0$$

$$\bigoplus_{g \neq f_{r}}$$

where the left term is $\mathcal{J}_{r-1}^{a}(-k-d_r)$ is \mathcal{J} is a complete intersection. One argues by induction on a+r.

2.2. Proof of theorem 0.

With the notation of (1.3) and (2.1), we take $\Omega_{X,S}^{ij} := \mathscr{I}^{\kappa-j} \oplus \Omega_{\mathbb{P}^n}^j$ for $j \leq \kappa - 1$. As $\Omega_{\mathbb{I}^n}^j$ has a resolution by the sheaves $\mathscr{O}(-k)$, $0 \leq k \leq j$, we have just to see by (1.3) that $H^i(\mathscr{I}^{\kappa-j}(-k)) = 0$ for $0 \leq k \leq j \leq \kappa - 1$.

By (2.1), it is enough to verify that $\overline{j \leq n} - ((\kappa - j)d_1 + d_2 + ... + d_r)$.

References

- Deligne, P.: Cohomologie des intersections complètes, in SGA 7 XI (Lect. Notes Math. [D] vol. 340, pp. 39-61). Berlin Heidelberg New York: Springer 1973
- [DII] Deligne, P.: Théorie de-Hodge, II. Publ. Math. IHES 40, 5-58 (1971)
- [DD] Deligne, P., Dimca, A.: Filtrations de Hodge et par l'ordre du pôle pour les hypersurfaces singulières, Preprint (1989), 16 pages
- Esnault, H.: On the Loday symbol in the Deligne-Beilinson cohomology. K-Theory 3, [E] 1-28 (1989)
- [K] Katz, N.: On a theorem of J. Ax. Am. J. Math. 93, 485-499 (1971)