Density of Arithmetic Representations of Function Fields

Hélène Esnault, joint with Moritz Kerz

IAS, Basic Notions Seminar, May 19, 2020

Background and Motivation

X is a smooth connected projective variety of dimension d; defined over an algebraically closed field k; \mathcal{F} is a *semi-simple* ℓ -adic (i.e. $\bar{\mathbb{Q}}_{\ell}$ -valued) local system, ℓ prime to $\mathrm{char} k$ (more generally a shifted semi-simple perverse sheaf but forget this generality for the lecture)

Background and Motivation

X is a smooth connected projective variety of dimension d; defined over an algebraically closed field k; \mathcal{F} is a *semi-simple* ℓ -adic (i.e. \mathbb{Q}_{ℓ} -valued) local system, ℓ prime to $\operatorname{char} k$ (more generally a shifted semi-simple perverse sheaf but forget this generality for the lecture)

Conjecture

<u>Hard Lefschetz</u> holds: if $\eta \in H^2(X, \mathbb{Q}_\ell)$ is the Chern class of an ample line bundle, then the cup-product map $\cup^i \eta : H^{d-i}(X, \mathcal{F}) \to H^{d+i}(X, \mathcal{F})$ should be an isomorphism for all $i \in \mathbb{N}$.

Hodge Theory and Weights

Why? $k = \mathbb{C}$: Harmonic theory \Rightarrow Hard Lefschetz. For $\mathcal{F} = \mathbb{C}$: Hodge's proof, in general semi-simplicity \Leftrightarrow existence of an harmonic metric (Simpson).

Hodge Theory and Weights

Why? $k = \mathbb{C}$: Harmonic theory \Rightarrow Hard Lefschetz. For $\mathcal{F} = \mathbb{C}$: Hodge's proof, in general semi-simplicity \Leftrightarrow existence of an harmonic metric (Simpson).

Char. k = p > 0, may assume $k = \overline{\mathbb{F}}_p$, so $X = X_0 \otimes_{k_0} k$ where $k_0 = \mathbb{F}_q$. Pure weights on $H^j(X, \mathcal{F})$, different for different $j \Rightarrow$ (ultimately) Hard Lefschetz (a central theorem in Weil II).

Hodge Theory and Weights

Why? $k = \mathbb{C}$: Harmonic theory \Rightarrow Hard Lefschetz. For $\mathcal{F} = \mathbb{C}$: Hodge's proof, in general semi-simplicity \Leftrightarrow existence of an harmonic metric (Simpson).

Char. k = p > 0, may assume $k = \overline{\mathbb{F}}_p$, so $X = X_0 \otimes_{k_0} k$ where $k_0 = \mathbb{F}_q$. Pure weights on $H^j(X, \mathcal{F})$, different for different $j \Rightarrow$ (ultimately) Hard Lefschetz (a central theorem in Weil II).

If \mathcal{F} is punctually pure, Deligne's theory yields pure weights on $H^{j}(X,\mathcal{F})$, different for different j.

If \mathcal{F} is defined over finite extension $k_0 \subset k_0' \subset k$, i.e. \mathcal{F} is arithmetic, the Langlands correspondence of Drinfeld-Lafforgue implies that \mathcal{F} is punctually pure.

So what if we have no weights?

If ${\mathcal F}$ is not arithmetic, we do not have the theory of weights at disposal.

So what if we have no weights?

If ${\mathcal F}$ is not arithmetic, we do not have the theory of weights at disposal.

However, if $\mathcal F$ has rank 1, we could develop a strategy, inspired by Drinfeld's proof [de Jong conjecture \Rightarrow Kashiwara conjecture], resting on the following theorem.

Rank 1

G geometric fundamental group;

 $G^{\mathrm{ab},\ell}$ its pro- ℓ abelianization, assumed to be torsionfree;

 \mathbb{F} finite field of char. ℓ , $W(\mathbb{F})$ be the ring of Witt vectors; $W(\mathbb{F}) \hookrightarrow \bar{\mathbb{Q}}_{\ell}$.

Rank 1

```
G geometric fundamental group; G^{\mathrm{ab},\ell} its pro-\ell abelianization, assumed to be torsionfree; \mathbb F finite field of char. \ell, W(\mathbb F) be the ring of Witt vectors; W(\mathbb F)\hookrightarrow \bar{\mathbb Q}_\ell.
```

```
Then: \operatorname{Spf}(W(\mathbb{F})[[G^{\operatorname{ab},\ell}]]) is a formal torus; W(\mathbb{F})[[G^{\operatorname{ab},\ell}]] \otimes_{W(\mathbb{F})} \bar{\mathbb{Q}}_{\ell} is noetherian and Jacobson; \mathcal{S} := \operatorname{Spm}(W(\mathbb{F})[[G^{\operatorname{ab},\ell}]])(\bar{\mathbb{Q}}_{\ell}) noetherian topological space; \mathcal{S} = \underline{\operatorname{set}} of iso. classes of rank 1 \mathcal{F} with trivial residual representation; Frobenius \Phi \in \operatorname{Gal}(k/k'_0) acts on G^{\operatorname{ab},\ell}, thus on \mathcal{S}; arithmetic points: = \bigcup_{n \in \mathbb{N}_{>0}} \mathcal{S}^{\Phi^n} = (\operatorname{class} \text{ field theory }) torsion points.
```

The Theorem in Rank 1 (E-K)

Theorem

A Zariski closed subset $Z \subset S$ which is stabilized by Φ^n for some integer n > 0 is the Zariski closure of its torsion points.

The Theorem in Rank 1 (E-K)

Theorem

A Zariski closed subset $Z \subset S$ which is stabilized by Φ^n for some integer n > 0 is the Zariski closure of its torsion points.

Theorem \Rightarrow Hard-Lefschetz.

 $Z^0 = \{ \text{bad points} \} \subset \mathcal{S} \text{ is Zariski constructible } (\text{\tiny main point}), \Phi \text{-invariant};$ Theorem \Rightarrow if $Z = \text{Zariski closure} \neq \emptyset$ then Z^0 contains arithmetic points; impossible by Deligne's Hard Lefschetz.

Higher rank: the set $\mathcal{S}_{ar{ ho}}$ generalizing \mathcal{S}

Set Up: X_0 smooth geometrically irreducible over $k_0 = \mathbb{F}_q \hookrightarrow k = \overline{\mathbb{F}}_p$; \mathbb{F} finite field of char. $\ell \neq p$; semi-simple residual representation $\bar{\rho}: G \to GL_r(\mathbb{F})$. Define $S_{\bar{\rho}} = \text{set of iso. classes of rank } r \ \mathcal{F} \ \underline{\text{with }} \ (\text{semi-simple})$ residual representation $\bar{\rho}$.

Higher rank: the set $\mathcal{S}_{ar{ ho}}$ generalizing \mathcal{S}

Set Up: X_0 smooth geometrically irreducible over $k_0 = \mathbb{F}_q \hookrightarrow k = \overline{\mathbb{F}}_p$; \mathbb{F} finite field of char. $\ell \neq p$; semi-simple residual representation $\bar{\rho}: G \to GL_r(\mathbb{F})$. Define $S_{\bar{\rho}} = \text{set of iso. classes of rank } r \ \mathcal{F} \ \underline{\text{with}} \ (\text{semi-simple})$ residual representation $\bar{\rho}$.

Remark

In rank 1, $\bar{\rho}$ was chosen to be trivial, but if $\bar{\rho}$ is any character $G \to GL_1(\mathbb{F}) = \mathbb{F}^{\times}$, then $\mathcal{S}_{\bar{\rho}}$ is isomorphic to \mathcal{S} by translation with the Teichmüller lift of $\bar{\rho}$, so the theory is the same. In higher rank however there is no Teichmüller lift and the $\mathcal{S}_{\bar{\rho}}$ for various $\bar{\rho}$ are different.

Pseudo-deformations

Taylor-Wiles-...-Chenevier: $\mathcal C$ be the category of complete local $W(\mathbb F)$ -algebras $(A,\mathfrak m_A)$ such that $W(\mathbb F)\to A/\mathfrak m_A$ identifies $\mathbb F$ with the residue field of A;

The functor of pseudo-deformations $\operatorname{PD}_{\bar{\rho}}:\mathcal{C}\to\operatorname{Sets}$ of $\bar{\rho}$ assigns to A the set of continuous r-dimensional A-valued determinants $D:A[G]\to A$ such that $D\otimes_A\mathbb{F}\colon\mathbb{F}[G]\to\mathbb{F}$ is the \mathbb{F} -valued determinant induced by $\bar{\rho}$.

Pseudo-deformations II

- A Determinant $D: A[G] \to A$ is simply a compatible collection of $D_B: B[G] \to B$, where B is an A-algebra;
- uniquely determined by the *r*-coefficients of the (monic) 'characteristic polynomial' $\operatorname{char}_g = D_{A[t]}(t-g), g \in G$;
- any continuous $\rho: G \to GL_r(\mathcal{O}), \mathcal{O}$ finite extension of $W(\mathbb{F})$ in \mathcal{C} , with (semi-simple) residual representation isomorphic to $\bar{\rho}$ defines $D(\rho)$ determined by $D(\rho)_{A[t]}(t-g) = \det(t-\rho(g)), g \in G$;
- if $r! \in W(\mathbb{F})^{\times}$, then standard definition: D determined by $D|_{G}$ and (a) invariance by conjugation (b) $\sum_{\sigma \in \Sigma_{+,1}} (-1)^{\operatorname{sign}\sigma} D(g_{\sigma(1)} \cdots g_{\sigma(r+1)}) = 0$;

$\mathcal{S}_{\bar{ ho}}$ as a noetherian topological space

<u>Chenevier</u>: $\mathrm{PD}_{\bar{\rho}}$ is representable by $(\mathcal{C} \ni R_{\bar{\rho}}^P, D^{R_{\bar{\rho}}^P}: R_{\bar{\rho}}^P[G] \to R_{\bar{\rho}}^P)$, $R_{\bar{\rho}}^P$ noetherian algebra topologically spanned by the coefficients of the $\mathrm{char}_{g_i},\ g_i \in G$. If $\bar{\rho}$ is absolutely irreducible, then $R_{\bar{\rho}}^P$ is <u>Mazur</u>'s deformation space of $\bar{\rho}$ and $D^{R_{\bar{\rho}}^P}$ is the determinant determined by the characteristic polynomial of the universal representation.

$\mathcal{S}_{ar{ ho}}$ as a noetherian topological space

<u>Chenevier</u>: $\mathrm{PD}_{\bar{\rho}}$ is representable by $(\mathcal{C} \ni R_{\bar{\rho}}^P, D^{R_{\bar{\rho}}^P}: R_{\bar{\rho}}^P[G] \to R_{\bar{\rho}}^P)$, $R_{\bar{\rho}}^P$ noetherian algebra topologically spanned by the coefficients of the $\mathrm{char}_{g_i},\ g_i \in G$. If $\bar{\rho}$ is absolutely irreducible, then $R_{\bar{\rho}}^P$ is <u>Mazur</u>'s deformation space of $\bar{\rho}$ and $D^{R_{\bar{\rho}}^P}$ is the determinant determined by the characteristic polynomial of the universal representation.

We deduce: (i) $R^P_{\bar{\rho}} \otimes_{W(\mathbb{F})} \bar{\mathbb{Q}}_{\ell}$ noetherian and Jacobson; (ii) $\mathcal{S}_{\bar{\rho}} = \mathrm{Spm}(R^P_{\bar{\rho}} \otimes_{W(\mathbb{F})} \bar{\mathbb{Q}}_{\ell})$ noetherian topological space; (iii) there are closed embeddings: $\mathrm{char}_{\underline{g}} : \mathcal{S}_{\bar{\rho}} \hookrightarrow (\mathbb{A}^{rm})_{\underline{p}}$ where $\underline{p} = (p_1, \ldots, p_m)$ are the characteristic polynomials of $\bar{\rho}$ on well chosen $\underline{g}_1, \ldots, \underline{g}_m \in G$.

The arithmetic points of $\mathcal{S}_{ar{ ho}}$

```
(arithmetic) Frobenius \Phi \in \operatorname{Gal}(k/k_0) lifts to \pi_1^{\text{\'et}}(X_0); thus acts by conjugation on G (modulo conjugation by G). Assume \bar{\rho} is \Phi-invariant.
```

So Φ induces a <u>well-defined action</u> on $S_{\bar{\rho}}$, and is an homeomorphism for the Zariski topology.

The arithmetic points of $\mathcal{S}_{ar{ ho}}$

(arithmetic) Frobenius $\Phi \in \operatorname{Gal}(k/k_0)$ lifts to $\pi_1^{\text{\'et}}(X_0)$; thus acts by conjugation on G (modulo conjugation by G). Assume $\bar{\rho}$ is Φ -invariant.

So Φ induces a <u>well-defined action</u> on $S_{\bar{\rho}}$, and is an homeomorphism for the Zariski topology.

This defines the arithmetic points $A = \bigcup_{n \in \mathbb{N}_{>0}} S_{\bar{\rho}}^{\Phi^n} \subset S_{\bar{\rho}}$. So an arithmetic point is a semi-simple ℓ -adic local system with (semi-simple) residue local system $\bar{\rho}$ which is defined over $X_0 \otimes_{k_0} k'_0$ where $k_0 \subset k'_0 \subset k$ is a finite extension.

The conjecture (E-K)

Conjecture

Strong form: A Zariski closed subset $Z \subset S_{\bar{\rho}}$ invariant under Φ^n for some integer n > 0 is the Zariski closure of its arithmetic points $A \cap Z \subset Z$.

<u>Weak form</u>: $S_{\bar{\rho}}$ is the Zariski closure of its arithmetic points A.

The theorems (E-K)

Theorem

- 1) Strong form true for r=1, X_0 projective (mentioned in the motivation) or more generally when Φ is pure on $H^1(X,\mathbb{Q}_\ell)$ of weight $\neq 0$.
- 2) Weak form true for X_0 curve, $\bar{\rho}$ absolutely irreducible and $\ell > 2$.
- 3) Strong form true for $X_0 = \mathbb{P}^1 \setminus \{0, 1, \infty\}$, r = 2 and $\bar{\rho}$ tame.

The theorems (E-K)

Theorem

- 1) Strong form true for r=1, X_0 projective (mentioned in the motivation) or more generally when Φ is pure on $H^1(X,\mathbb{Q}_\ell)$ of weight $\neq 0$.
- 2) Weak form true for X_0 curve, $\bar{\rho}$ absolutely irreducible and $\ell > 2$.
- 3) Strong form true for $X_0 = \mathbb{P}^1 \setminus \{0, 1, \infty\}$, r = 2 and $\bar{\rho}$ tame.

Proposition (as a further motivation)

- 1) Strong form on $X_0 = \mathbb{P}^1 \setminus \{0, 1, \infty\}$, $r \geq 2$ and $\bar{\rho}$ tame \Rightarrow strong form in any dimension and rank.
- 2) Strong form in any dimension and rank \Rightarrow Hard Lefschetz.

Comments on the theorems

- 1) Thm 1) is on the arXiv (last fall). Geometric proof, uses weights and Class Field Theory.
- 2) Thm 2) (weak form on curves) proved using the Langlands program over function fields, de Jong's method and de Jong's conjecture, proven by Gaitsgory for $\ell > 2$ using the geometric Langlands program.
- 3) Thm 3) (strong form in rank 2 on $\mathbb{P}^1\setminus\{0,1,\infty\}$ for a tame $\bar{\rho}$) has a geometric proof, using weights, and ultimately Thm 1). It does not use the Langlands program.

Comments on the theorems

- 1) Thm 1) is on the arXiv (last fall). Geometric proof, uses weights and Class Field Theory.
- 2) Thm 2) (weak form on curves) proved using the Langlands program over function fields, de Jong's method and de Jong's conjecture, proven by Gaitsgory for $\ell > 2$ using the geometric Langlands program.
- 3) Thm 3) (strong form in rank 2 on $\mathbb{P}^1 \setminus \{0,1,\infty\}$ for a tame $\bar{\rho}$) has a geometric proof, using weights, and ultimately Thm 1). It does not use the Langlands program.

Remark

Our proof of Thm 3) yields also a geometric proof of de Jong's conjecture in rank 2 on $\mathbb{P}^1\setminus\{0,1,\infty\}$ for a tame $\bar{\rho}$ and any ℓ , thus without Langlands program.

Leitfaden of Proof of Thm 3)

1-st step: Grothendieck's specialization's theory: the tame quotient G^t of G is a topological quotient of the profinite completion \hat{F}_2 of the free group in 2 letters; it is topologically spanned by g_0, g_1 the images (after choosing étale paths from 0, resp. 1 to the base point of G) of the generators of the tame local inertia at 0, resp. 1. Similarly one has g_{∞} with, for appropriate choices, the relation $g_0 \cdot g_1 \cdot g_{\infty} = 1$. Set $g = (g_0, g_1, g_{\infty})$.

Leitfaden of Proof of Thm 3)

1-st step: Grothendieck's specialization's theory: the tame quotient G^t of G is a topological quotient of the profinite completion \hat{F}_2 of the free group in 2 letters; it is topologically spanned by g_0, g_1 the images (after choosing étale paths from 0, resp. 1 to the base point of G) of the generators of the tame local inertia at 0, resp. 1. Similarly one has g_∞ with, for appropriate choices, the relation $g_0 \cdot g_1 \cdot g_\infty = 1$. Set $g = (g_0, g_1, g_\infty)$.

2nd step: Elementary invariant theory: for $p_a = \operatorname{char}(\bar{\rho}(g_a))$, $a = 0, 1, \infty$, one has $\operatorname{char}_{\underline{g}} : \mathcal{S}_{\bar{\rho}} \to (\mathbb{A}^{2 \cdot 3 = 6})_p$ closed embedding.

Leitfaden of Proof of Thm 3) II

3rd step: Arithmetic Frobenius Φ : $\Phi(g_a)$ conjugate to g_a^q , thus can make $\operatorname{char}_{\underline{g}}$ equivariant. It reduces the strong form of the conjecture to $(\mathbb{A}^{2\cdot 3=6})_{\mathfrak{g}}$.

Leitfaden of Proof of Thm 3) II

3rd step: Arithmetic Frobenius Φ : $\Phi(g_a)$ conjugate to g_a^q , thus can make $\operatorname{char}_{\underline{g}}$ equivariant. It reduces the strong form of the conjecture to $(\mathbb{A}^{2\cdot 3}=6)_p$.

4th and last step: $\pi: (\mathbb{G}_m^{2\cdot 3}) \to (\mathbb{A}^{2\cdot 3=6})_p$ formal torus which separates the roots of the 3 degree 2 polynomials, translated by the Teichmüller lifts of those, on which Φ acts by raising to the q-th power. There one applies Thm 1).

Leitfaden of Proof of Thm 3) II

3rd step: Arithmetic Frobenius Φ : $\Phi(g_a)$ conjugate to g_a^q , thus can make $\operatorname{char}_{\underline{g}}$ equivariant. It reduces the strong form of the conjecture to $(\mathbb{A}^{2\cdot 3}=6)_p$.

4th and last step: $\pi: (\mathbb{G}_m^{2\cdot3}) \to (\mathbb{A}^{2\cdot3=6})_p$ formal torus which separates the roots of the 3 degree 2 polynomials, translated by the Teichmüller lifts of those, on which Φ acts by raising to the q-th power. There one applies Thm 1).

Comment: Still for $\bar{\rho}$ tame, which in view of Prop 1) is the most important case, our proof shows that it is enough to find suitable words in the g_a which embed $\mathcal{S}_{\bar{\rho}}$ and on which we control the eigenvalues of Φ . Even for r=3 this is difficult.

Leitfaden of Proof of Prop 1)

1st step: Reduction to X_0 a curve: 'Lefschetz theory à la Wiesend' but for pseudo-characters yields a closed embedding of $S_{\bar{\rho}}$ on X to $S_{\bar{\rho}}$ on a good curve.

Leitfaden of Proof of Prop 1)

1st step: Reduction to X_0 a curve: 'Lefschetz theory à la Wiesend' but for pseudo-characters yields a closed embedding of $S_{\bar{\rho}}$ on X to $S_{\bar{\rho}}$ on a good curve.

2nd step: Reduction to X_0 a curve and $\bar{\rho}$ trivial: taking the Galois cover associated to $\bar{\rho}$, one has to show that the density property is true downstairs if it is upstairs.

Leitfaden of Proof of Prop 1)

1st step: Reduction to X_0 a curve: 'Lefschetz theory à la Wiesend' but for pseudo-characters yields a closed embedding of $S_{\bar{\rho}}$ on X to $S_{\bar{\rho}}$ on a good curve.

2nd step: Reduction to X_0 a curve and $\bar{\rho}$ trivial: taking the Galois cover associated to $\bar{\rho}$, one has to show that the density property is true downstairs if it is upstairs.

3nd step: Choose a tame 'Belyi' map: $h: \bar{X}_0 \to \mathbb{P}^1$, where $X_0 \hookrightarrow \bar{X}_0$ is the normal compactification (possible by Saïdi-Sugiyama-Yasuda), so $h_*\bar{\rho}$, (which has higher rank), is tame. One has to show that the density property is true upstairs if it is downstairs. (Annoyance: no induction of pseudo-representations documented in the literature, so one has to do it by hand).