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Background and Motivation

X is a smooth connected projective variety of dimension d ;
defined over an algebraically closed field k;
F is a semi-simple `-adic (i.e. Q̄`-valued) local system, ` prime to chark
(more generally a shifted semi-simple perverse sheaf but forget this generality for the lecture)

Conjecture

Hard Lefschetz holds: if η ∈ H2(X ,Q`) is the Chern class of an ample
line bundle, then the cup-product map ∪iη : Hd−i (X ,F)→ Hd+i (X ,F)
should be an isomorphism for all i ∈ N.
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Hodge Theory and Weights

Why? k = C: Harmonic theory ⇒ Hard Lefschetz. For F = C: Hodge’s
proof, in general semi-simplicity ⇔ existence of an harmonic metric
(Simpson).

Char. k = p > 0, may assume k = F̄p, so X = X0 ⊗k0 k where k0 = Fq.
Pure weights on H j(X ,F), different for different j ⇒ (ultimately) Hard
Lefschetz (a central theorem in Weil II).

If F is punctually pure, Deligne’s theory yields pure weights on H j(X ,F),
different for different j .
If F is defined over finite extension k0 ⊂ k ′0 ⊂ k , i.e. F is arithmetic, the
Langlands correspondence of Drinfeld-Lafforgue implies that F is
punctually pure.
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So what if we have no weights?

If F is not arithmetic, we do not have the theory of weights at disposal.

However, if F has rank 1, we could develop a strategy, inspired by
Drinfeld’s proof [de Jong conjecture ⇒ Kashiwara conjecture], resting on
the following theorem.
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Rank 1

G geometric fundamental group;
G ab,` its pro−` abelianization, assumed to be torsionfree;
F finite field of char. `, W (F) be the ring of Witt vectors; W (F) ↪→ Q̄`.

Then: Spf(W (F)[[G ab,`]]) is a formal torus;
W (F)[[G ab,`]]⊗W (F) Q̄` is noetherian and Jacobson;

S := Spm(W (F)[[G ab,`]])(Q̄`) noetherian topological space;
S =set of iso. classes of rank 1 F with trivial residual representation;

Frobenius Φ ∈ Gal(k/k ′0) acts on G ab,`, thus on S;
arithmetic points: = ∪n∈N>0SΦn

= (class field theory ) torsion points.
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The Theorem in Rank 1 (E-K)

Theorem

A Zariski closed subset Z ⊂ S which is stabilized by Φn for some integer
n > 0 is the Zariski closure of its torsion points.

Theorem ⇒ Hard-Lefschetz.

Z 0 = {bad points} ⊂ S is Zariski constructible (main point), Φ-invariant;
Theorem ⇒ if Z =Zariski closure 6= ∅ then Z 0 contains arithmetic points;
impossible by Deligne’s Hard Lefschetz.
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Higher rank: the set Sρ̄ generalizing S

Set Up: X0 smooth geometrically irreducible over k0 = Fq ↪→ k = F̄p;
F finite field of char. ` 6= p;
semi-simple residual representation ρ̄ : G → GLr (F).
Define Sρ̄ = set of iso. classes of rank r F with (semi-simple)
residual representation ρ̄ .

Remark

In rank 1, ρ̄ was chosen to be trivial, but if ρ̄ is any character
G → GL1(F) = F×, then Sρ̄ is isomorphic to S by translation with the
Teichmüller lift of ρ̄, so the theory is the same. In higher rank however
there is no Teichmüller lift and the Sρ̄ for various ρ̄ are different.
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Pseudo-deformations

Taylor-Wiles-. . . -Chenevier: C be the category of complete local
W (F)-algebras (A,mA) such that W (F)→ A/mA identifies F with the
residue field of A;
The functor of pseudo-deformations PDρ̄ : C → Sets of ρ̄ assigns to A the
set of continuous r -dimensional A-valued determinants D : A[G ]→ A such
that D ⊗A F : F[G ]→ F is the F-valued determinant induced by ρ̄.
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Pseudo-deformations II

• A Determinant D : A[G ]→ A is simply a compatible collection of
DB : B[G ]→ B, where B is an A-algebra;
• uniquely determined by the r -coefficients of the (monic) ’characteristic
polynomial’ charg = DA[t](t − g), g ∈ G ;
• any continuous ρ : G → GLr (O),O finite extension of W (F) in C, with
(semi-simple) residual representation isomorphic to ρ̄ defines D(ρ) determined
by D(ρ)A[t](t − g) = det(t − ρ(g)), g ∈ G ;
• if r ! ∈W (F)×, then standard definition: D determined by D|G and (a)
invariance by conjugation (b)

∑
σ∈Σr+1

(−1)signσD(gσ(1) · · · gσ(r+1)) = 0;
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Sρ̄ as a noetherian topological space

Chenevier: PDρ̄ is representable by (C 3 RP
ρ̄ ,D

RP
ρ̄ : RP

ρ̄ [G ]→ RP
ρ̄ ), RP

ρ̄

noetherian algebra topologically spanned by the coefficients of the
chargi , gi ∈ G . If ρ̄ is absolutely irreducible, then RP

ρ̄ is Mazur’s

deformation space of ρ̄ and DRP
ρ̄ is the determinant determined by the

characteristic polynomial of the universal representation.

We deduce: (i) RP
ρ̄ ⊗W (F) Q̄` noetherian and Jacobson;

(ii) Sρ̄ = Spm(RP
ρ̄ ⊗W (F) Q̄`) noetherian topological space;

(iii) there are closed embeddings: charg : Sρ̄ ↪→ (Arm)̂p where

p = (p1, . . . , pm) are the characteristic polynomials of ρ̄ on well chosen
g1, . . . gm ∈ G .
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The arithmetic points of Sρ̄

(arithmetic) Frobenius Φ ∈ Gal(k/k0) lifts to πét
1 (X0);

thus acts by conjugation on G (modulo conjugation by G ).
Assume ρ̄ is Φ-invariant.
So Φ induces a well-defined action on Sρ̄, and is an homeomorphism for
the Zariski topology.

This defines the arithmetic points A = ∪n∈N>0SΦn

ρ̄ ⊂ Sρ̄.
So an arithmetic point is a semi-simple `-adic local system with (semi-simple)
residue local system ρ̄ which is defined over X0 ⊗k0 k

′
0 where k0 ⊂ k ′0 ⊂ k

is a finite extension.
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The conjecture (E-K)

Conjecture

Strong form: A Zariski closed subset Z ⊂ Sρ̄ invariant under Φn for some
integer n > 0 is the Zariski closure of its arithmetic points A ∩ Z ⊂ Z .
Weak form: Sρ̄ is the Zariski closure of its arithmetic points A.
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The theorems (E-K)

Theorem

1) Strong form true for r = 1, X0 projective (mentioned in the motivation)
or more generally when Φ is pure on H1(X ,Q`) of weight 6= 0.
2) Weak form true for X0 curve, ρ̄ absolutely irreducible and ` > 2.
3) Strong form true for X0 = P1 \ {0, 1,∞}, r = 2 and ρ̄ tame.

Proposition (as a further motivation)

1) Strong form on X0 = P1 \ {0, 1,∞}, r ≥ 2 and ρ̄ tame ⇒ strong form
in any dimension and rank.
2) Strong form in any dimension and rank ⇒ Hard Lefschetz.
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Comments on the theorems

1) Thm 1) is on the arXiv (last fall). Geometric proof, uses weights and
Class Field Theory.
2) Thm 2) (weak form on curves) proved using the Langlands program
over function fields, de Jong’s method and de Jong’s conjecture, proven by
Gaitsgory for ` > 2 using the geometric Langlands program.
3) Thm 3) (strong form in rank 2 on P1 \ {0, 1,∞} for a tame ρ̄) has a
geometric proof, using weights, and ultimately Thm 1). It does not use
the Langlands program.

Remark

Our proof of Thm 3) yields also a geometric proof of de Jong’s conjecture
in rank 2 on P1 \ {0, 1,∞} for a tame ρ̄ and any `, thus without
Langlands program.

Hélène Esnault, joint with Moritz Kerz Density IAS, Basic Notions Seminar, May 19, 2020 14 / 17



Comments on the theorems

1) Thm 1) is on the arXiv (last fall). Geometric proof, uses weights and
Class Field Theory.
2) Thm 2) (weak form on curves) proved using the Langlands program
over function fields, de Jong’s method and de Jong’s conjecture, proven by
Gaitsgory for ` > 2 using the geometric Langlands program.
3) Thm 3) (strong form in rank 2 on P1 \ {0, 1,∞} for a tame ρ̄) has a
geometric proof, using weights, and ultimately Thm 1). It does not use
the Langlands program.

Remark

Our proof of Thm 3) yields also a geometric proof of de Jong’s conjecture
in rank 2 on P1 \ {0, 1,∞} for a tame ρ̄ and any `, thus without
Langlands program.

Hélène Esnault, joint with Moritz Kerz Density IAS, Basic Notions Seminar, May 19, 2020 14 / 17



Leitfaden of Proof of Thm 3)

1-st step: Grothendieck’s specialization’s theory: the tame quotient G t of
G is a topological quotient of the profinite completion F̂2 of the free group
in 2 letters; it is topologically spanned by g0, g1 the images (after choosing
étale paths from 0, resp. 1 to the base point of G ) of the generators of the
tame local inertia at 0, resp. 1. Similarly one has g∞ with, for appropriate
choices, the relation g0 · g1 · g∞ = 1. Set g = (g0, g1, g∞).

2nd step: Elementary invariant theory: for pa = char(ρ̄(ga)), a = 0, 1,∞,
one has charg : Sρ̄ → (A2·3=6)̂p closed embedding.
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Leitfaden of Proof of Thm 3) II

3rd step: Arithmetic Frobenius Φ: Φ(ga) conjugate to gq
a , thus can make

charg equivariant. It reduces the strong form of the conjecture to

(A2·3=6)̂p.

4th and last step: π : (G2·3
m )̂ → (A2·3=6)̂p formal torus which separates

the roots of the 3 degree 2 polynomials, translated by the Teichmüller lifts
of those, on which Φ acts by raising to the q-th power. There one applies
Thm 1).

Comment: Still for ρ̄ tame, which in view of Prop 1) is the most
important case, our proof shows that it is enough to find suitable words in
the ga which embed Sρ̄ and on which we control the eigenvalues of Φ.
Even for r = 3 this is difficult.
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Leitfaden of Proof of Prop 1)

1st step: Reduction to X0 a curve: ’Lefschetz theory à la Wiesend’ but
for pseudo-characters yields a closed embedding of Sρ̄ on X to Sρ̄ on a
good curve.

2nd step: Reduction to X0 a curve and ρ̄ trivial: taking the Galois cover
associated to ρ̄, one has to show that the density property is true
downstairs if it is upstairs.

3nd step: Choose a tame ’Belyi’ map: h : X̄0 → P1, where X0 ↪→ X̄0 is
the normal compactification (possible by Säıdi-Sugiyama-Yasuda), so h∗ρ̄,
(which has higher rank), is tame. One has to show that the density
property is true upstairs if it is downstairs. (Annoyance: no induction of
pseudo-representations documented in the literature, so one has to do it
by hand).

Hélène Esnault, joint with Moritz Kerz Density IAS, Basic Notions Seminar, May 19, 2020 17 / 17



Leitfaden of Proof of Prop 1)

1st step: Reduction to X0 a curve: ’Lefschetz theory à la Wiesend’ but
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