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Introduction 

Let X be an algebraic variety over r the field of complex numbers. I fX is smooth, 
there is a regulator map r from Y/'~, the Zariski sheaf of Milnor K-theory, to ~g'~(n), 
the Zariski sheaf of Deligne-Beilinson cohomology. The aim of this article is to 
construct a similar functorial regulator map Q (2.2) from , , ~  to a Zariski sheaf 
called ~t~*(n) (1.4) if X is not necessarily smooth. For  this we assume that 
d: = dimension of the singular locus S verifies d < n -  1 with n > 2. 

If X is smooth, then ~" (n )=~3(n )  and Q=r. If not, let n: Y ~ X  be a 
desingularization. Then Q factorizes n , r  via the natural map ~ r~  ~t,o,~,ru and a 
map ~"(n)--,,n,.,~(n) which we construct (1.4)7). 

Taking the cohomology of Q, one obtains maps H~(o):Ha(X,~Mx) 
~Ha(X,~'(n)). The cohomology group Ha(X, ~en(n)) is independent of the 
desingularization choosen as ~'~n(n) is. Unfortunately one may only approximate 
this group by a map t from Hq(X,~*(n)) to some cohomology group 
Hq§ ZCn)~o) on Y (2.7). 

Srinivas I'S] considered a cone X of vertex 0 over a smooth projective curve C. 
He constructed a map s from 

HI( X, .~/'2x) ( = H~ X, n,..'~2r/ K 2( ~) x. o))/ H~ Y,, .~2r) 

to H~ o~c(1)) , where w, is the dualizing sheaf of C, and n: Y--*X is the blowing up 
of 0, whose non triviality shows that the image of K2(~x. o) in K2(IF-,(X)) differs from 

~/_/o(n - 1 U, ~c~ r). 
Actually s comes from Hi(#) (2.10), Example 2. This fact is the main motivation 

for this article. I take this opportunity to thank V. Srinivas for getting me 
acquainted with this topic. 

Collino [C] compaetified the cone X to a smooth variety ,~ (more exactly he 
considered a normal proper surface 2? with an isolated cone like singularity) and 
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lifted s to 
: H ' - ,  H3(Y, j,Z(2)--, r 2C)--, 12~{log C) ( -  2C)), 

where Y ~ X  is the blowing up of 0,H'  is a subgroup of H~(X, ~r a n d j  is the 
embedding Y-C--*Y. In fact Hi(Q) factorizes g and one has g=toHl(Q) (2.8), 
Example 1. 

In this spirit we work out several examples of the cohomology of Q (2.7), (2.8), 
(2.9), (2.10), (2.11), (2.12). However it is not always possible to give a nice answer 
(2.13). 

The construction of ,g"(n) is as follows. Take a desingularisation ~r such that 
E:  = n -  1S is a divisor with normal crossings and such that ~ r  : = n ' f ix/ torsion is 
a locally free sheaf (0.1). We observe that ~ embedds in f2"r(logE)(-k. E), for 

~,~ , where ~-2 n = 0 for some positive integer k (0.3), and therefore the complex >" 
i < rg ~% = ~ r ,  ar~+l = f~r+ Z(logE) ( _  k. E) for l > 1 maps toj~C/Z(n), wberej is the 
embedding from X -  S = Y -  E to Y (0.4). On each Zariski open set of Ywe take those 
sections of ~.~" which have logarithmic growth at infinity (0.5). This defines a 
"subcomplex" ~" ~- ~ (0.6), with a "map" ~oj from ~" -~ ~ to jx~E/7.(n) (0.7). Taking the 
n-th cohomology on n -  ~ U, where U is a Zariski open subset of X, of cone c#~[- 1] 
defines a Zariski sheaf on X (1.4). If d < n -  2, this is ~"(n). In general, ~r is a 
subquotient of it. 

It  is easy to prove the independency of ~"(n) of the desingularization choosen 
(1.4) 1), and not hard to prove the functoriality (1.4) 7). Then it is straightforward to 
construct a by lifting the universal situation (2.2). 

In order to construct t, one has first to forget the growth condition at infinity 
(1.5)2), (1.8), (2.9), a technique used in [E2]  to describe the cycle map from the 
Chow group to the Deligne-Beilinson cohomology as the cohomology of a 
forgetful functor. 

This paper is organized as follows. In Sect. 0 we construct the complexes on Y 
and X, whose cohomologies will define the Zariski sheaves wanted in Sect. 1. In 
Sect. 2 we construct Q and compute some examples. 

O. Notations and def'mition of the complexes 

(0.1) Let X be a reduced algebraic variety over ~ .  Let S be its singular locus. We 
assume that d ims  = d. We fix in this article an integer n with n > d + 1 and n ~ 2. Let 
S~: = S and define by induction Sa-,, the singular locus of Sd- ~ + 1 for 1 < s < d. So 
consists of finitely many points. 

Let 7t: Y ~ X  be a desingularization of X such that Ed: = (~- ~S)~ca is a normal 
crossing divisor and such that 3ran : = n*f~x/torsion is locally free, where f~x is the 
analytic sheaf of K~hler differentials of degree n. 

Define E~_,: = ( n -  1Sd-s),,a. 

(0.2) In this section, we consider a special desingularization Y to give an upper 
bound on ~'~. We will use it just to prove (0.3). 

Let J a - ,  be th�9 ideal sheaf of Sd_, with the reduced structure. This means that 
~s,_:=Ox/Jj_,  is a smooth ring away from Sd-s-~. We will assume that 
(n*Jd - ,/torsion) is an invertible sheaf d~ r( - Fa -  ~), where Fj_  s is an effective normal 
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crossing divisor (with multiplicities). We also assume that ~ ,  is locally free. 
Define F~_,: = Fa_ :components  above Sa-~-1 

d 
F:= E (,-d+s).F'~_,. 

I_emma. One has an embedding 

~ n ~ t ~ r ( l o g F )  ( -  F).  

Proof As both sheaves are locally free, it is enough to prove the injection at the 
generic point of each component  of F. 

Let q be a generic point in F~_ s - F~ _ ~ _ t and p be ~(q) lying in S d_ s - Sd - 8-1. 
The exact sequence 

0 ' (~*Jd-  jtorsion)~ , (~*d~x)q , (~*(~s~-~)q ,0  

o , r , (~y) ,  , ( r  , 0  

splits after passing to the completion So for each f ~  ~"  ~x. p we may write (rc*f)~ 
=g + h, where  gc(rt*d~sd/" )q, h ~ (P(- F~a_s)~l. 

The d~x, p module O~x.p is generated by dft ^ ... ^ df~, where f~ ~ Cx.r'/-, Therefore 
(~ , )p  is generated by 

(Tz*(dfl A.. .  ^ df,))~ = ~. ( -  1) sgntt ...... i")dgit ^ . . .  ^ dgl, ^ dh~, + t ^ . . .  ^ dhi . 
I=1 

For  l > d - s ,  one has dgi~ ̂ . . .  ^ dg~ = 0. 
For  any l, one has dh~,+~ ̂  ... ^ dh~ e( fPr- l ( logF'd_,)(-(n-I)  �9 F'd-,))~. 
Therefore one h as (n*(dfl ^ . . .  ^ df~))a E (f~r(logF~ _ ~) ( - (n - d + s). F~_ ~))~. 

(0.3) We go back to a general desingularization z as in (0A). 

Lemma. There is an effective divisor E with support Ed such that ( n - d )  . Ej  < E and 
such that ~a~ embedds in ~,rOogE)(-E) .  

Moreover if  S = So, one may take E = n. F where 6r ( -bO:  =(n*~o/torsion), 

Proof Let ~r': Y'--*X be the desingularization considered in (0.2). I fS  = S  o, we may 
take n to be n' and apply (0.2). 

In general, let p:Z--*X be a desingularizatiou factorizing over t r : Z ~  Y and 
a ' : Z ~  Y' such that p-~S is a normal crossing divisor. 

Then the conditions (0.1) and (0.2) are fulfdled for p. Call A the reduced 
exceptional locus of a '  in Z, C the locus in Y where tr is not  isomorphism. Then C is 
of codimension >-2. 

One has injections 

p*f~x/torsion = a*#-~ = a '*u '*~x/torsion ~a'*f~r,(logF) ( -  F) 

~I2~z(logp - ~S) ( -  A)|  # r , ( - F ) =  : ~d. 

As ( n -  d). F~.d C F, one has 

r - d). {p- ~ S),,a ) C tr'*r tr'*(Pr,( - F)| 
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Let E be the divisor defined by Ec~(Y- C): =(d + a'*F)r~(Y-- C). The torsion free 
sheaf r  embeds on ( Y - C )  in t~'r(logE)(-E)lr_ c. As ~ r 0 o g E ) ( - E )  is locally 
free everywhere, t~,z, t embeds in it everywhere. This gives the map 

a,o'*~a~. = #-,~ -~ f~y(log E) ( -  E). 

(0.4) We fix now n as in (0.1) and E as in (0.3). 
We may differentiate.~n in frr + l(logE) ( -- E). This defines a complex a ~ d  with 

m _  # ~ = 0  for j<n ,  ~ o - ~ ,  and ,+l ~+~ #-,o -- O r (logE) ( -  E) for l > L 
One has an injection of complexes 

~ - ~  --* a ~  n(logE) (-- E). 

(0.5) a) Let Tt be a desingularization as in (0.I). Fix ~ : Y-~ X a good compactification 
n. This means that X is proper, Y is proper and smooth; one has a commutative 
diagram 

�9 1 t" 
X--w,, X 

where ( ~ -  Y) and ( i  ~- Y)+E  are normal crossing divisors. 
b) Let V be a Zariski open subset of Y. Define V' : = Y -  ( Y -  V). Then V' is 

smooth and (V'-- V) is a normal crossing divisor. One has a commutative diagram 

l '  
V , V' 

i 
Both sheaves i ~ n  and ~v,(log(V'- V)) are contained in l , ~ .  Define 

~p: = / , ~ o n ~ r , ( l o g ( V '  - V)) (p for partial). 

c) Let V be a Zariski open subset of Y A good compactification ~: V--* F of z is 
defined by a commutative diagram 

! 

V , V  

,1 1, y t~ ~ 

where [~ is proper and smooth, ( ~ -  V) and ( V -  V)+(Ec~V) are normal crossing 
divisors. If Vis of the shape n -  1 U, where U is a Zariski open subset of X, one has a 
commutative diagram 

l 
V , V  

-1 l- 
U . . ~ , X  
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Both sheaves l , ~ ,  and O~(log(~ - lO) are contained in l,~v. Define 

~ :  = l , ~ c ~ O ~ ( l o g ( ~ -  II)). 

As ~,f~e(log(P- V)) injects into r~f~v.(log(V'- V)) one has injections 

(0.6) One has injections 

~-p~O~,(log(V'- V) + E c~ V) ( - E c~ V) , 

~ ~ ~(log(~- v) + gc~ V) (- Ec, V) 

which allow one to differentiate ,~p (rcsp. ~') in 

~,+ l(log(V' - V) + ~ )  (-- E~ff)  

[resp. ~ +  ~(log(P'- V) + Ec~ V) ( -  ~ -V) ] .  
Define complexes ~-~" and ~ r-->" by: 

~=~-a r i=0  for i<n ,  

~ . = ~ = ,  ~ - .=~ - ,  

,~fl+~=~v+'(log(V'--V)+Fn--V)(-Ec~V) for I>'1, 

~-"+~=Q~,+t(log(~'- V)+Ec~V)(--EnV) for l > l .  

One has injections of complexes. 

(~,~)-'"~(~,~=,)-~"~((t~),~.) ~-" 

As ~-~" is a complex starting in degree n, one has an injection R"~.~>--"[-n] 
~(~,~-)-~" (and similarly for the others), which gives injections of sheares 

/ I -  >~__~ n t > a _..~ n ~ t l  R ~,o~-- R ~*~'b- R (lr~),#" ~ . 

(0.7) a) We use the convention S o = O, E0 = 0. Definej~ the inclusion Y -  E , ~  Y and 
is the inclusion X - S , ~ X  for s= r  ..... d. 

In the derived category Db(Y) of bounded complexes on Y, one has a map 

O~"(logE) ( -  E)-*jd,C/~(n), 

obtained as the composite map 

fl~ "(log E) ( -- E)-* 12 F n(log Ea) ( - Ed) -'* 12~(10 g Ea) ( - -  E a ) ~  k t r  

1 
k x ~ / Z ( n )  . 

This defines maps in Db(Y) 

q~j~,:~-~"~j~1~/Z(n) for s=0,  0 ..... d. 

Define in Db(Y) Z(n)j....: =coneq~*[ -  1] for s=O, 0, .... d. 
One has maps 

~)j.,..-'..--'~")Jo,.~-~Z(%,.~-'Z("). . . . .  

where Z(n)~.~n := cone(I2~"~C/Z(n)) [ - 1 ]  is the Deligne complex. 
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b) If V is a Zariski  open subset of Y as in (0.5), ~oj~ n defines in Db(v ') 

and therefore 

q~y :.~p>=~-, Rl~,js~C/g(n) 

for s=O, 0 . . . . .  d. 
Define in Db(V') Z(n~,: = cone ~ay~ [- -- 1] for s = 0, 0 . . . . .  d. 
Similarly def'me a "partial" Deligne-Br complex by 

X(n~ :  = cone(f2~?(log(V'-- V))---,RI,(E/Z(n)) [ -  1].  

One has maps in D~(V'): 

Z(n~d-*...--ZCn)~o--Z(n~,--Z(n)g. 

c) Similarly, one has maps in D~(V) 

9j:Y;>="~RI,j~./g(n) for s = 0 , 0  . . . . .  d .  

Define in Db(P) 

Z ( n ) i : = c o n e q ~ 7 , [ - 1 ] ,  for s=O, 0 . . . . .  d. 

The Ddigne-Beflinson complex is defined by 

�9 (n)~: = cone (f~ ~, "(Jog (F'- V)) --., RI,~E/Z(n) [ - 1]. 

One has maps  in Db(I 7) 

(0.8) Let U be a Zariski  open subset of X. 
We consider a compactification of ~ -  1U as in (0.5). 
As 

R~dat =R~,RJd, (Jar is exact) 

= R(~j~)z (~ is proper)  

= Ridt = i~ (ia~ is exact) 

r defines 

This defines in D'(,~) 

tp~. : R( ~ , ,~  >-- "--, Rk ,  i,j ~l~(n) 

for s=O, O, .... d. 
Define l(n)~ : =coner [ - 1 ]  for s=O, 0 ..... d. 
One has maps  in D~(.~) 

Z(n)l~-,...-,Z(n L-,z(n),.. 
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(0.9) Define c~j, by the exact triangle in Db(X) 

1 
Z(n)j,--*Z(n)~ ~ c ~ ,  ~ Z(n)j,, 

and similarly for ~ ,  in Db(v ') and ~j,, a~ in Db(V), for s = 0 ,  0 . . . . .  d. 
One has 

re j, = cone(,Qv,.(log(P._ V))/~r >=,~RI,r [ _  1], 

p >--n p OZ-_>n i c~j, = cone(f2vT, (log(V - V))/~* ~ oR1,C/Z(n)IE) [ -  1], 

ffj . . . .  = eone(O~, "/~ar~nn~ll~/Z(n)lE, ) [ -- 1]. 

(0.10) By definition one has ~oi,=R(~O, tpj~, and one has maps 

7~(n)~R(~f),TZ(n)j, for s = 0 , 0  . . . . .  d ,  

coming from the maps 

i,! = n ,j,, + R n , j  ,~ . 

Therefore we have an isomorphism 

Z(n),~= R(~z--),TF(nb~ 

and maps 

7.{n)ioR(~z-),Tg(n)j" for s = 0 , 0  . . . . .  d - 1 .  

(0.11) If Z is any complex algebraic variety, we denote by c t : Z ~ - , Z , ~  the 
continuous map  from Z endowed with the classical topology to Z endowed with 
the Zariski topology. 

1. Definition of the Zariski sheaves 

(1.1) Let V be a Zariski open subset of Y as in (0.5). 
Define #-an(V) = How, ~ ) ,  #-p(V) = H~ ', ~p), and ~-(10 = H~ V,, ~ar). 

Lemma. i) #-p(V) does not depend on ~" choosen in (0.5)a). 
ii) ~ ( I 0  does not depend on F choosen in (0.5) c). 
I t  does not require the existence of f. 
iii) One has injections ~'(V)~*Mrp(V)~ar~n(V). 

Proof. i) Let Y ~ , Z "~ , Ywith trr2r = 1 r be another  good compactification. One 
has a commutative diagram 

Y ~Y,Z o y  ~. 

l l l 
V ~' ~',~ V' ' > W ,  

with W = Z - ( Y -  V). 
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One has a.~Tw(log(W-V))= ~v,(log(V'-V)). 
From the exact sequence 

p ._.0 t 0 ~ p  ~x,~n.W~log(W- 10} ,~,~ 
one obtains the exact sequence 

0-)  ~,~v ~l,~n(Dt'Pv.(log(V'- V))+l ,~ . .  

Therefore one has cr, fr = ~rp. 
# 

As for any other good compactification Y ) ?~ there is a third one Z as 

above with Y *~, Z "d, Y'~ such that l~, = ~ly,~ and ly = ~ry,~, this proves i). 

ii) Let V--~ ~ W--~ ~ with cr)~=l be another good compactification of V 

(without necessarily assuming that W and ~" map to F). 
One has a , f l"~log(W- V))= fie(log(P- V)). 
From the exact sequence 

0 - } ~ - , 2 , ~ a T d l o g ( W -  V ) ) - ~ , r ~  

one obtains the exact sequence 

0-}~, fr l , ~ , ~  a~,0og(V- V ) ) ~ t , ~  

which proves that ~r,fr = ~'. 
One concludes as before 

iii) By 0.5 c), one has that 

injects in 

(1.2) Define 

H~ F,, f , ~ )  = H~ V, ~r) = ~ ( V) 

#ran(V)ol : = Kerd: Sr, n(V)~ H~ ~:~.+ 1), 

~(V)cl : = Kerd: ~:p(V)~ H~ ', ~p'+ 1), 

#-(V)~l: = Kerd: ~,a~(V)-~ H~ ~n  + 1). 

Obviously one may replace H~ H~ and H~ ~-"+l) by 
H~ and the th r~  groups defined do not depend on E choosen in (0.3). 

Corollary. i) The groups ~a(  V)~l, ~p(V)~l, and ~:(V)ol depend only on the choice of 
in (0.1) and on E They define Zariski sheaves on Y 

ii) One has injections 

~(v)o~-.~gv)~,-~.(V)ol. 
(1.3) Let U be a Zariski open subset of X. We consider a good compactification of 
V=Ir-aU as in (0.5). 



A regulator map for singular varieties 177 

Lemma. i) The group : ( r t -  ~ U)~ depends only on U. I t  defines a Zariski sheaf on X.  
ii) I f  U is smooth, then one has o:(u- 1U)~1 = F,Hn(U ' I~), the Hodge filtration. 

Proof. i) Let cr : Z-~  Y be a birat ional  morphism such that  Z is smooth and F :  = tr* 
E is a normal  crossing divisor. Define p:  = n a  and W: = t r - ~ E  Choose a good 
compactification 2: W~I4 :  such that  one has a commutative diagram 

,1 
W ,I~'  

v~--, ~. 

One has ~ , f ~ ' ~ l o g ( I ~ -  W))= ff'-v(log(~'- V)). 
F rom the exact sequence 

0 ~ :~ ---+ .,q., tr*~an O) ,Qn~(log ( I~ - V))--+~,~'2nw 

one obtains the exact sequence 

0 ~ t i . f f  ~ / . ~ n ~  f~ ( log(V ' -  V ) ) ~ l , ~  

which shows that  #.f~ = ~ ' .  
Therefore one has 

~ - (n -  1U)cl = Ker(~-(~z- t U ) ~ n ~  1 U, ~ +- ~v) 

= Ker  (fffp -1U)--+H~ U, I2~p+-?v) 

= f f ( ~ -  1 U)ol .  

Now if nl  : I:1 ~ X  is another  desingularization as in (0.1), we find a third one Z 
as above with a:Z- -*Y  and tr 1 : Z ~ Y I  such that  p:  =~zo=nlcr  1. 

ii) If U is smooth, replace in the previous argument V by U, ~-an by f2~, W by V. 
Then ~r is replaced by ~f , ( log(~ ' -  V)). 

(1.4) We may  now define on X ~ ,  the sheaves we are interested in. 
Let U be a Zariski  open subset of X. Choose a compactification X" as in (0.5) a). 

We consider Z(n),, in Db(3f) as defined in (0.8), which depends on U. 
Define 

t-/'(nk(v): = H~(:?, Zfn) 0 

and 

~,~,(U): =Ker(~,~Ot-lU)cl~Hn(U,i~!C/Z(n)) for s = 0 ,  0, . . . ,d .  

Theorem and definition 

1) The groups H"(n)~.(U) depend only on U. 
2) I f  t r : X ' ~ X  is any morphism, then one has a map 

tr - 1 : Hn(n)~( U)--* H"(n)j,(tr- 1U). 
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3) I f  ~ is the embedding of a Zariski open subset W,, one has maps 

a -  1 : H~(n)i,(U)... H,(n)i,(Uc~ W) 

for s =0, 0 . . . . .  d, and the groups H"(n)i,(U) define Zariski presheaves. 
4) Assume U to be affine. 
I f  d < n -  2, then H'(n)ia(U) = H"(n)i,(U). 
I f  n = 2, then H2(2)io(U)= H2(2)o(U) provided So C~U is connected. 
I f  n > 2, then H~(n)i ~ _~(U) = H'(n)i,(U) if d = n -  2, and IP(n)id_ 2(U) = Ha(n)io(W) 

i f  d = n - l .  
5) I f  X is smooth, then H*(n),,(U)=IP~(U,n):=H"(O,Z(n)~) (0.7)c), the 

Deligne-Beilinson group. 
6) Define Yf~(n) to be the Zariski sheaf associated to H"(n)~ , and ~*(n)i, to be 

the one associated to H*(n)~, for s = 0,.. . ,  d. 
If d < n -  2, then ~,~(n)~ = ~ ( n ) .  
I f  n=2,  then ~2(2)10=,,~2(2 ). 
I f  n > 2, then JY'(n)i~_ , = ~ ' ( n )  if  d = n - 2 and ~"(n)~_ ~ = Yt~ if  d = n -  1. 
At  any case, there is always an integer s o with O<so <d such that 

~(n), ,o = ~e~(n). 

I f  X is smooth, then ~ ( n ) = . , ~ ( n ) ,  the Deligne-Beilinson sheaf associated to 
H~(U,n). 

7) I f  a : X '  ~ X  is any morphism, one has a map a -  1 : YY~(n)-*a,Y~"(n). In other 
words, ~n(n)  is functorial. In particular, i f  a is any desingularization of  X (not 
necessarily as in (0.1)), one has a map A"(n)-*a,~,O~(n). 

Proof. 1) One has an exact sequence 

0 ~ n ~ - 1( U, i,t C/Z(n)) ~ H"(n)i,(U) ~ ~ , (U)  ~ 0 .  

As ~ '0 t -  1U)~l depends only on U (1.3) i), ~,(U) depends only on U as well. This 
proves 1). 

2), 3) Consider a commutative diagram 

y,  * ~ y  

X'  , X  

where n' and n are as in (0.1). In case 3) (o is the embedding of an open set X ' =  I49, 
just take ~ '=  ~qw,. 

Define f~a.: = E* frx,/torsion. Then z%.ar, n injects in lean, and z*s~r + I(log E) (-- E) 
injects in 

~+Z(logz- IE)(-z*E). 

Ddine E' such that frr(logE')(-E')  contains both ~a. and z*s'I~r0ogE)(-E)(0.3). 
Define correspondingly f r  (0.4). 
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If U is Zariski open in X, define U' :  = tr- t U, V' : = n ' -  t U', V: = ~ - t U. Take 
compactifications r ~ 

V , P '  , ~  V 

U'- - -~X '  , X ~ - - U  
as in (0.5). k' o 

From the exact sequence 

0 z.(~ t. l .~t~t.t~r,( log(V -V) )  z./.f~v, 
and the maps 

,~r~,~-~t,fg~n, t2~(log(V - V))-~'~,t2~ ( log(V ' -  V')), 

~ + ~ . ( ~ + ~  for/->_1, one obtains maps , ~ . f g  and 

~:>"-~(r  

This gives maps in Db(~) 

R ~ , ~  >~ , Rg , f f ,  fg) -~n 

One also has maps 

Rk . ff~/Z(n) 

, R(~,~),~ >=~ 

H 

Rk .a .  (E/TZ(n) , R(ka). (E/Z(n) 

II 
R(Sk'),C/Z(n) 

and if cr is as in 3), maps 

Rk.i~(E/Z(n)~ Rk,tx .i~t~E/Z(n)~g(~k'),i~ff~/Z(n). 

Therefore one has maps 

2~(n)i~-~R~.Z(n)i ~ and if cr is as in 3), 

Z(n)is-~R~,Z(n)i ~ for s = 0  . . . . .  d. 

Then H"(n)i (U) maps to H(n)i o (a-~U). 
This proves 2). 
Also in 3), H"(n)i~(U ) maps to Hn(n)i,(Uc~W). This proves 3). 
4) If U is affine, then Ssc~ U is affine as well and therefore Hl(Ssc~ U, (E/Z(n)) = 0 

for l>s. Now H'(n)~,(U) surjects onto H"(n)i,(U ) if H"(S,c~U,(E/Z(n)) 
=Hn-I(S/uU, C/Z(n))=O, and is isomorphic to it if moreover Hn-2(U,C/Z(n)) 
surjects onto H n- 2(S/~ U, C/Z(n)). 

5) If X is smooth, then ~- is just  ~ ( l o g ( O -  U)) for a good compactification of 
U [Proof of (1.3)ii)]. 

6) By 2), H~(n)i,(U) maps to H"(n)~j(a-lU), which maps to H~ ~t~(n)). 
This proves 7), where one applies 5) if X'  is smooth. 

1.5) We define on Y~, sheaves to which we will compare ,,~r constructed 
in (1.4). Let V be a Zariski open subset of Y Choose compactifications as in (0.5). 



180 

Define 

H"(n)j,,,n( V) : = H~(V,, Z(n)j,, ~,), 

H'(n)j,. ,(V) : = H~( V', Z(n~,),  

H'(%,(V): = H'(e,, Z(%) 

for s = 0, 0, .... d, ~ with the convention ~.(n)~, = Z(n)~ etc . . . .  

H, Esnault 

Proposition and definition 

1) The groups I'~(n)~,,a,(V), H*(n)i,,p(V), H"(n)j,(V) depend only on V. They define 
Zariski presheaves on Y for s = O, O, .... d, ~ .  

2) Let Yfn(n)~, . . . .  ~(n)~, ,p,  ~Yn(n)~. be the associated sheaves. There are 
injectives maps 

~n(n)j  "* ~n(n)j,,p-'*.~an(n)j,.an 

for s=O, O .. . . .  d ,~ .  
3) There are maps 

Xe~(n)j,-,...--,Xe~(n)jo--,~e~(n)j0-*~(n)~ 

and similarly for ~:'(n)j,.  p and Yt:~(n)~o.a.. 

Proof. 1) This is by definition for H*(n)~,,~. One has an exact sequence 

(*) O - , H  n- I(V,j~C/Z(n))-,H~(n)j,(V)~Ker(~(V)~-+H~(V,j~IE/2K(n)))--,O. 

As ~-(V), i depends only on V(1.2) i), the kernel to H~(V,j~IE/Z(n)) depends only on 
V as well. Similarly for H'(n)j,.p. 

2) One has 

Rf ,Z (nb ,  = cone(R~.~" > ~-*R(Irr),j~IC/Z(n)) 1- - 1] ,  

R z ,  Tr(n~, = c one (R ~ ,~ - " - - ,  R(lrz),j,:C/7.(n)) [ -  1].  

As ~r_z, starts in degree n, one has a map  R ' f , ~ z - ~ [ - n ] - - * R f , ~  ~-~ whose cone 
starts in degree (n+  1). 

Define jus t  for a moment  in Db(Y) 

K = c o n e ( R ~ , ~  " ~-~[- n]--*R(Ir~),j~tC/T.(n)) [ -  1]. 

Then one has an isomorphism 

I-P( ~,, K ) =  H*( Y,, R f ,Z(n) j )  . 

On the other hand, one has an injeetive map  (0.6): 

R n .  ~ :  > n  . . ,  l~n, : '  .q~ ~_ n 

and again a map  

R%~a~-p [ - n ]  R % ~ - ~  . 
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Therefore 

maps to 

Ha(n) j.( V) = H"( Y, R ~ .Z(n) j )  

H"(~,, Rz'. TZ,(n~) = Hn(n)j~. pC V). 

Now write the sequence (*) and the corresponding sequence (*)p for Hn(n)A,p(V), 
and apply (1.2)ii). 

This gives the injection yia'(n)j--*~'(n)j~.p. 
As for the second one consider the restriction map 

H'( V', Z(n)y)--* H"( V, Z(n)~.W) . 

As Z(n)ydr=Z(n)~ .... this gives a map 

H'(n)j.,p ~ H*(n)j,,~(V). 

One concludes as before. [Actually one could argue via the restriction map to 
construct the injection ~ ( n ) A ~ n ( n ) j . , ~ . ]  

3) Apply (0.7). 

(1.6) We could have defined on X~.~ "partial" and "analytic" sheaves in the same 
way. As we will not use them, we do not give details. 

(1.7) Proposition. There is a map 

Proof. By (0.10) there is a map, for each Zariski open set U in X: 

Hn(n)JU)=H'(~,Z(n)i ,)  , H'(W,,~(n)j,) 

Hn(n)~,Oz- t U), 

and one has a map 

H,(n) i,(rc- 1U)~HO(~ - l U, ~n(n) j )  . 

(1.8) Proposition. There is a map 

�9 ~(n)A, ~n-*Rna.Z(n)A,~n. 

Proof. One has H"(n)j,.an(V)= H n (V, Z(n) j , , J  which maps to H~ R'%Z(n)y,.,n). 

(1.9) 1) Let V be a Zariski open subset on Y, and take compactifications as in (0.5). 
One has 

m -  ~(V, % , . . ) =  H ' -  '(V', ~ ) =  H ' -  ~(~, % )  

= H ' -  ~(VoE~, ~r/Z(n)). 
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One also has 

H. Esnault 

H" - I(V, Z(n)~, .~) = n " -  l(V,, ~ n ) ~ )  = H" - 1(~ Z(n)~) 

= n " -  ~(V, r 

Denoting by #g~(~E/Z(n)) the Zariski sheaf on Y associated to the Betti 
cohomology HkOE/Z)), we obtain 

Lemma. There is an exact sequence 

O-,  a~"- 2(E~, r a~"- 2(r 
for s=O, 13, .... d. 

2) As H~ :>=") might depend on ~, one can not define a 
sheaf on Y associated to H"(V,, :~j). Similarly for c~j. 

But there is a restriction map 

n"(~ (~j.) rest Hn( V~ (~ js[V) = H g ( g  ~ (~ Js, an)" 

One has an exact sequence 

O~H"- '(VnE,, r ~ , , , , )  

--*Ker (H"(V,, f2:"/:: .  >")--+H"(VnE., r 

Define aCf"(:g~,) to be Zariski sheaf on Y associated to H"(V, Cg:~,a,). 

Lemma. i) There is a complex 

and a map 

ii) I f  n > dimX, then 

is surjective and 

iii) / f  n=d imX,  then 

~ . ( n ) : ,  ~:.(n)~-,.~"(%) 

.,~"(%)-,R"~,,(a: " I : - : : )  �9 

.,~,(%.)=o 

n ~ n ~ R  ~ n  __ (%) R ~,(.% / : a  )-~,~1~,~,~ 
is surjective. 

Proof. i) One has an exact sequence 

H"(n)j,(V)--,H'(n),(V)--,H"(~ %). 

Applying the map rest, this gives the complex. 
The sheaf associated t o / P ( H  ~ g/~,~ ") is just R"~ .(fJ~-~'/~F~n~"). 
ii) and iii) If V is affine, then HI(VnE~,C/Z(n))=O for l>dimE,, especially if 

l > d i m X - 1 .  This proves that H"(F,~gjo)=H"(V, fg~,..n)=O if n>dimX, and that 
H~(V, ~j..,,) surjects onto H~(V, ~" /~ ' ,~" )  ff n ffi dimX. 
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Finally observe that R t~ .~ ,~=0  as ~ ,  is coherent, and therefore 

n ->n ~ n  __ R z , ( O r / ~  ) -~ .~ /~ .# - ,~ .  

(1.10) Multiplication. Applying Beilinson's formulae [E-V], Sect. 3, where one 
replaces the F-filtration by our ~,~>--', one obtains multiplications: 

Z(n)j.| ~Z(n + m)j., 

Z(n)~, | k -Z(n  + m),, 

which give products: 

n'(n)j.(V)| +~'(n + m)j.(V), 

H~(n)~,(U)| ~ H n + m(n + rn)i,(U) 

and at the sheaf level: 

~ n ( n ) j .  @Z#fan*(m)j~--+ o*f~ 'n + m(n + r e ) j , ,  

,~r174 zJFm(m)--,,Cd" +'(n + m). 

We observe that in order to perform this construction, one has to take 
desingularizations n where both ~*f~x/torsion and n*g~x/torsion are locally free. 
This is allowed by (1.4) 1) and (1.5) 1). 

Of course one obtains also a version for Hn(n)~,.p, Hn(n)j,.~n as well as for 
R'z,Z(n)i . . ,~.  

2. Definition of the regulator map on the Milnor K-theory 

(2.1) We consider Bloch's regulator map 

at the sheaf level from the Milnor K-theory to the Deligne-Beilinson cohomology 
on a smooth variety Z. 

Recall the definition. 
Let V be a Zariski open subset of Z, gt ..... gn ~ F(V, d)~), the sheaf of regular 

invertible functions, and let {gt ..... g~} be their symbol in F( V, .,~,zU). Let 
g: =(gt ..... g,): V~(~  x)n be the corresponding morphism, with xi as coordinate 
on the i-th factor. Then x, eH~((Cx)*,l). The Deligne-Beilinson product 
(x~ ..... xn) e H~((IE x),, n) factorizes over Steinberg symbols (via the existence of the 
dilogarithm function). Then 

r~{g, ..... g.): =g-~(x, ..... x.)~n~(V,n). 

Call the situation 

t xn 1 I'xle/-/~((r ) ,  ), (xL ..... x,)e/-P~((tE• 

the universal situation. 
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(2.2) F o r  any morphism t r : X ' ~ X ,  we consider the natural  map  ~ , ~ t r , ~ E ~ , .  If 
rt: Y ~ X  is any desingularization, we have the map  of functodali ty ~"(n)  
~ , ~ r  (1.4)5). If X is smooth, then .gC"(n)= ~ ( n )  (1.4)5). 

Theorem. 1) Let ~: Y ~ X  be any desingularization. There is a commutative diagram 

i I I n~ry 
y:"(n) , , t , ~ ( n ) .  

2) I f  X is smooth, then Q = r x. 
3) I f  ~ r : X ' ~ X  is any morphism, there is a commutative diagram 

~ ..> ~,~.~. 

.l I o.. 
~"(n) , ,r ,~"(n) .  

Proof. 1) Let p e X be a point, f~ . . . . .  f ,  be regular functions in p. Choose a Zariski  
open neighbourhood U of p such that  f~ e F(U, (9 • ). Define V= ~ -  ~ U, f to be the 
map  (f3: U-~(IE ~)", and g =f~, with g~ = ~*f~. By the functoriality (1.4) 2) f - ~ maps  
(x~ . . . . .  x .)  e Hb((~E •  n) to an element which we call t?{f~ . . . . .  f,} in H"(n)~(U). By 
definition ~r-~{f, . . . . .  f.} = rr{g ~ . . . . .  g,} and it lies in H~(V, n). 

2) is by construction. 
3) Take the notat ions of 1). Then one has 

f -  t(x 1 . . . . .  x~ = e( f t  . . . . .  f . }  e H"(n)i.(a - ~ U) 

which maps  to  

a - ~ f - ~ ( x ,  . . . . .  x , )=e{a -~ f~  . . . . .  a -~f .}  in H"(n)~(a-IU). 

(2.3) Fol lowing Srinivas IS],  define the sheaves ~ and ~r on X .... which are 
supported on S, by the exact sequence 

As n.oW.~ depends on the desingularization chosen in (0.1), zr and ~ '  do too. 
Choose So to be the maximum integer with 0 < So < d such that  :t:"(n) = X:"(n)~,o 

(1.4) 4). 

Theorem. For any s with 0 <_ s ~_ So < d, there is a commutative diagram 

~ ' -  2(E s, C/Z(n)) 
0-- ,  ~ ,  ~r~_ ~(C/l~n)) 

~r 

\ /  l 
where the bottom horizontal row is a complex. 

, 0  
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Moreover the sequence 

~ "  - 2(Es, C/Z(n)) 
0-*~,  ~: ._  2(~/~.(n)) 

is exact. 

Proof Put together (2.2) and (1.9). 

, n ,af"(n)~ ~ n,~rg~(n) 

(2.4) Remark. This way of mapping .W~ in n.af"(n)j, land afortiori to n..Cg"(n)j,] 
is not as good as considering # itself as n,af"(n)j, depends on the desingularization 
chosen. However we will now consider the cohomology of 0, and it is not clear how 
to compute the cohomology of ~"(n). That is the reason why we will "approxi- 
mate" it by the cohomology of oW"(n)j. [or of o~tO"(n)~]. 

(2.5) Define ~ :  = , , ~ / ~ .  
As ~ and ~r are supported in S of dimension d, one has 

I-P(X, 3 ~ )  = Ha(X, yU) for q > d, 

H4(X,;,~Y)=Hq(X,~r.oC:~) for q > d + l .  

Therefore one has exact sequences 

O-~ Ha(M)/H a- '(2g)~ Hd(oU,~)-* Hn(o~r)-* O, 

0-* Hd(~)/Ha(~,~,~)-* H a + '(~,~)-* H a + ~(~,.~'-~).--* O. 

(2.6) Lemma. One has 

R"~,Z(n)j  .. . .  = R r " - ~ . j s ~ / Z ( n  ) for re<n, s=~,(b,0 ..... d, 

= ,~r ~  l(r for s = ~ ,  O. 

Proof The first equality comes just from the fact that a ~ ,  >, �9 and ~ start m degree 
n. The second one is due to Deligne [B 2]. 

(2.7) Consider the spectral sequence 

~ " =  n~(r=,, R%Z(n)j.,..) ~ H~ +t(Y. . . . . .  Z(.)~.,=). 

By abuse of notation, we write the graded pieces Y. E~ +t't-~ instead of the 
corresponding filtration on H k + I(Yan, Z(n)j.,..). ~_-> 1 

Prolmsition. Let s be as in (2.3). Let q >= n - 2 .  Assume that 

H~+l(Y,R"-i~,jszll~/Z(n))=O for i ~ 2 .  
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1) Then one has a commutative diagram 

H~(X, ~ )  , Hq(X, ~z,~g~r ~) 

I" I .... 
H'(X, Yf"(n)) , H'(X, ~,Yf~(n)) 

1 1 
H '  + "( Y, ~(n)l:, ,n) :' Hq + "( ~ ~=~( n)9, an) 

q+i ,n- i  E E ~  \ 

m +"( Y, Z(n)~.. J .  

2) F. E ~  + i ' ' -~  is contained in H'+"- 2(E~, ~tZ(n))/H~+"- 2(Y, ~/Z(n)) which 

maps to 

H ~ +"-'(Y, :~j:,.)IH ~ +"(Y, #.(.)~.,..). 

Proof. 1) Consider the diagram (2.3). 
One  has maps 

H~(X, ~..,~"(n)s.)-> H!  ( Y, . # : " ( n ) s ) ~  H'( Y, <~"(n)s:,.,,) 

l.a) ' H~( Y' R"g,j,:C/Z(n)). 

One has E[+i'"-i+t=H~+i(Y,R"-ia.j~tC/g(n)) for i__>2 (2.6). This vanishes by 
hypothesis. Therefore 

Hq( Y, R"~,j~igg(n)j~.~,) 

) ~ E ~ o  �9 maps to Hq+"(Y,Z(n)s . . . .  ~+~.,-i 
_1 

On the other hand as Hs(~m-l(~tZ(n)))=O for j > m  FB1], one has 
E~ +i '~-t+i = 0  for i~2 ,  and  E~+t'n-~=E~+i'"-t=O for i=>1 and s = ~  or 0. 

2) As E~ + t,, - i = H ~ + i( y, R . - i -  i :t ,.]si(l~ll(n)) for i ~ 1, (2.6), y~ E~ + i . . -  i maps 
to i>_ l 

Hq + "-  t(y,,AICIZ(n)) 

which maps to H~+"(Y,g(n)i,,.~). For  i > 1 ,  one has q + i > , - i - 1 .  Therefore 
H~+t(Y,R ~ - i -  ta,j, ,C/Z(n)), and E E~ +i"~-i maps to 0 in H ~+"- ~(E,, C/g(n)); in 
other words it is contained in i=> 

/-l~ +" - 2(E,, r ~ + "- 2(y, C/Z(n)) .  

(2.8) Example 1. Assume n=2, d=O or 1, q=l;  then so=O. Then 

R~ =jorC/g(2) . 

F r o m  the exact sequence 

0-~j01C/Z(2)~C1g(2) ~C/g (2 )  is=so-sO 

one obtains Hta,(jolC/Z(2)) = 0 for i>= 2. 
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Therefore one has H~+~(Y,R"-~.j~t~/Z(2))=O for i > 2  and E~'~ "~ =0.  
One obtains a commutative diagram 

H l ( X , ~ )  , HI(X,,,YI2y) 

1 1 
If d--O, one has a map (0.3): 

~'~, --* f2~(log F) (--  2F),  

~ r ( -  F) :  = n*Jo/ tors ion.  

Therefore Z(2)j . . . .  ~Z(2)~,~n factorizes over 

~(2)': =Jo ,z(2)  --, o~( - 2F)-, a~0og v) ( - de) 

and one obtains a diagram 

H~(X, ~ x )  '~" n ~ ( x , ~ , ~ )  

1 1 
H3(y, Z(2) ' ) , Ha(Y,, 7.(2)~,an). 

If X is a proper  surface with one isolated conelike singularity, (in this case F = F r e  d 

is a smooth curve), the left vertical arrow was constructed by Collino I-C] [-on a 
subgroup of Hi(X, X2x)]. 

(2.9) Let (dlog) q be the map  

(d log)~:/-/~( Y, ~.~) --, H'  +"( r;, a ~  ") 

and a be the map  

: H a +"(Y, ~,(n)~, a.)--*Ha + "(Y, Or  "). 

If d > n - 2 ,  then (dlog) a factorizes ~ (2.7). 

Proposition. 1) I f  (dlog)q=0 one has a map 

2) /f ~ = 0  and d->n-3,  one has a commutative diagram 

o , Ha(X,~C)/Ha(X,~.YC."I) , ~ +I(X,~c~) 

1 1 
a'l [ l ~ t . ~ "  /,YTa~ ) ) t ~ ', JJc.anY, 

where the two sequences are exact. 

3) lf a=O, d > n - 3 ,  take s as in (2.3). Assume moreover that 

Hd+I+~(Y,R"-ict,A~C/Z(n))=O for i_-->2. 



t 88 H. Esnault 

Then the diagram in 2) factorizes over the exact sequence 

Hd+~(y :r ~ Ha+t+"tyZ~n ~ 
0 _ ~ ,  ~ , J s , a n J  ~ , I, l j s ,  a n l  

Hd+.Cy.Z(n)~...)+ ~ r,~i+,,.-, ~ ~ ~.~t+~..-, 
i>= l i ~  l 

Proof. 1) Apply (2.3) and notice that  one has maps 

Hq(X, n,R'ot,(f2~"/~~))~ Hq( Y, g"c~,(f2~"/~ ~n")) 

as the complex ,or~ ~. starts in degree n. 
2) Apply (2.7) and notice that  

cone (Z(n)j,.~n--)Z(n)~.an) = c o n e ( t 2 ~ n / ~ " )  [ _  1]. 

3) Apply (2.7) again. 

(2.10) Example 2. Assume that X is an affine cone over a smooth projective variety 
E o of dimension < n. Set lr: Y---)X be the blow up of the vertex 0 = So = S, and 
p: Y--+E o be the corresponding At-bundle .  

Then F~(Y):=Ker(PH~(Y, (E)--)H~(Y,(I?,/Z(n)) is vanishing as it embeds in 
Gr~H"(Y, (E), and this last group is zero since Y has a good compactification with a 
smooth divisor at infinity. (Here W is the weight filtration.) 

As (d log) ~ : H~ n,~<'~) = H~176 t'Pr) factorizes over F[(Y), it is 
zero as well. Therefore one obtains (2.9)1) for q = 0: one has a map  

H~ ~r176 rr,Yf~)--) H~ s 

By (0.3), ,~-~ embedds in t 'Prf logEo)(-n .  Eo). 
As fPr/f~'r(log Eo) ( -  n.  Eo) = co(n_ t )Eo(- (n - 1). Eo), where "co is the dualizing 

sheaf, one obtains a map  

H~ X, ~d)/n~ X, ~*'Yf.~) ~ H~ Y,, co(~- t)eo( - (n - 1). Eo)). 

If Eo is a curve, this is Srinivas map. 
Actually in this case, Srinivas proves that  

Hi(X, 3F2x) = H~ ~d)I H~ rc.~"~r) , 

where ~r is by definition loie~H~ Yf2r)/K2((~x. o). 

(2.11) Example 3. Assume X proper.  As c( factorizes over 

Ker(Hd +"( Y, ~-")---.Hd+"(r, r 

which is 0 for d ~ n - I ,  one obtains the diagram (2.9)2). 

(2.12) Example4. I) Assume n = 2 ,  d = 0  or  I as in Example I, (2.8), and assume 
moreover  that  X is proper. Then one has (2.9)3) with 

H "+ 20;, ~ 2 ) ~ , . . ) = H  "+ t(Y,(g/Z(~))/F~H"+ ~0; r 
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If d = 0 ,  then Z(2)a. , ,  maps to Z(2)' as in (2.8), and ffio.,, maps to 

qf' = cone(t2~ 2/a~ 2(log F ) ( -  2F)-~ ~/Z(2)lEo) [ -  1]. 

One may map  the sequence of (2.9)3) to the similar one replacing Z(2)~o,,n by 
Z(2)', % . . . .  by ~f'. 

2) Let X be a singularity of type A 2, of equation t a - x y .  One knows (letter of 
Collino), that  ~r contains C ~ ) C  if one takes n:  Y ~ X  to be the blow up of the 
singularity 0. 

We first define candidates a and fl in n.(JF2r)o for those two elements (as we do 
not know exactly how Collino constructs them.. . ) ,  and then we prove via (2.3) that  
they contribute to ~r 

A)  Cover Y by three Zariski open sets Yo, Y~, Y~ of coordinates and equations 

Yo:(a,b,t), x = a t , y = b t ; t - a b ,  

Yx:(x ,b ' ,T) ,  y = b ' x ,  t = T x ;  T 3 x - b  ' , 

Y2:(a' ,y,T') ,  x = a ' y ,  t = T ' y ;  T 'ay- -a  ' . 

Consider Y ' =  Y -  {t 2 = 1}. The exceptional locus of n is contained in Y'. Define 
Y/: = r'c~Y~. 

We consider the two Loday symbols in K2(Y~) [see Be] for the definition: 

ao : = {1 - ab, b}, flo : = {1 - ( a b )  2, b=}. 

In K2(EnY; ) ,  one has 

~o1~'~ = {1 - Tx, T2x} .  

As T is a unit on Y ~  Y~', ~ o ~  ~,~ is the sum of the normal  Steinberg symbol 
{ 1  - Tx, T} and of the Loday symgol {1 - Tx, Tx}. The later is zero as it is zero on 
Y~c~ Y~'n(Tx 4= 0) where it is a Steinberg symbol, and it is uniquely determined by its 
restriction on Y~c~ Y~n(Tx 4= 0). 

Therefore %1 . . . . .  = ~ l  . . . . .  where mx �9 Y~ is the Steinberg symbol {1 - Tx, T}. 
Similarly, as T' is a unit on Y,'c~ Y~, one has % . . . .  = ~2 -. where ct 2 �9 K2(Y~) is 0 i ~0~ r  2 IxO~Y 2 

the Steinberg symbol - { 1 -  T'y, T'}. One computes in the same way that  

~11 . . . . .  = ~t2t . . . . .  �9 K2(Y;- c~ Y~)" 

Define aeH~  ~F2r) to be ~i on Y[. 
In K2(Y;c~Y~) one has fl01,o.~r~ ={1--(Tx)2,(T2x)2}. 
Similarly as before,/~OlVo~r, is equal to the Steinberg symbol 

{1 - (Tx)  2, T 2 } �9 K 2 ( Y ~ n  r o ,  

restriction of the Lorelei symbol/71 = {1 - ( T x )  2, r 2} E K2(Y~). 
One also has flo'~ ,~ =f12,~, ~ where flz~K2(]~) is the Loday symbol 

- { 1 - (T 'y )  2, T '2 }, and ~~ i ~, . . . .  '--" ~ I~,. ,, in K2( ~' c~ r~). Define fl ~ H~ Y', .'~'2 r) to 
be #~ on  V[. 
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B)  One has n*oCo/torsion = tPr(-E) with E = E1 + E2, E~ = - 2  and E~ r 2 = :p. 
One has r~*tl~z./torsion = ~pt2~(- E), where ,n is the maximal ideal of p. Moreover, 
as n*t2~/torsion is generated by global sections and (X, 0) is a rational singularity, 
one has Rln,(~*t2zx/torsion)= 0. If a : Z ~  Y is the blow up of p with exceptional 
line F, one has 

~ = tr*~*f22/torsion = tr*t2~- E)| t~z(- F). 

As Rla , t~z ( -F)=0 ,  one obtains 

~,~,(a~j~.,)=,~,(a~,f~af4-E))= r 1 6 2  
where % is f2~(- E)/~2~{ - E) and Ir = H~ cog - E)). 

C)  We consider the map 

dlog=H~ , H~ 

Jl 
H~ n,)F2r,). 

One has 
da ^ db dx ^ dT  dy ^ dT'  

dlogat = 1 - a ~  = 1 - x T  1 - - yT '  

�9 daAdb  d x A d T  d y A d T '  
41- d iog~ff= - a o ~  1 - (xT)  - - - - - - ~  1 - (yT') 2" ~ T  ~ ) / y  I 

On Y~, ~t2~(-E)  is generated by 

2- da ^ db ab 2 da ^ db 
a b l_--Z- ~ -  and 1 - a b  " 

Therefore d logs, d logfl define two linearly independent elements of 

o~ Y'), ~,(a~,/.,,a~,(- e))). 

(2.13) One may also consider the map 

~,(x, r nq( Y, ~n -  2(E,, C/Z(n))/~'- 2(y, ~/Z(n))). (2.3) 
Of course if n = 2, and Es is connected, the second group is trivial. In general I do 
not know how to compute it. This is related to finding good assumptions under 
which the conditions (2.7) are fulfdled. 

(2.14) Levine ILl  defines another presheafon X. If U is a Zariski subset of X, such 
that a compactification/7 exists with the property that U -  U is supported by a 
Cartier divisor, he defines f~(tog(tT- U)) as those forms which have logarithmic 
growth along V -  V where V and 17 are as in (0.5). Further, he takes the cone of 
O~'flog(17-~ U)) with values in the cone of Z(n) in the de Rham complex t]b. 

As I kill the torsion of fib(log(17- U)) by taking a desingularization for which 
the K~hler differentials become locally free, "his" forms lift "mine". As I take the 
cone with values in C/Z(n), which maps to 12o/Z(n ), "my" Betti part lifts "his". So 
one does not obtain a map in either direction. 
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