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Introduction

Let X be an algebraic variety over €, the field of complex numbers. If X is smooth,
there is a regulator map r from XY, the Zariski sheaf of Milnor K-theory, to J#3(n),
the Zariski sheaf of Deligne-Beilinson cohomology. The aim of this article is to
construct a similar functorial regulator map ¢ (2.2) from ) ¥ to a Zariski sheaf
called #™n) (1.4) if X is not necessarily smooth. For this we assume that
d:=dimension of the singular locus § verifies d<n—1 with n=>2.

If X is smooth, then #"(n)=#5(n) and g=r. If not, let n: Y¥—>X be a
desingularization. Then g factorizes n,r via the natural map ¥, —+n, X and a
map J#"(n)—n,#5(n) which we construct (1.4)7).

Taking the cohomology of g, one obtains maps H%g): HY(X, XX
—HYX, #"(n)). The cohomology group HYX, #"(n)) is independent of the
desingularization choosen as #"(n) is. Unfortunately one may only approximate
this group by a map t from H%X,3"n) to some cohomology group
H**™(Y,Z(n),,) on Y (2.7).

Srinivas [S] considered a cone X of vertex 0 over a smooth projective curve C.
He constructed a map s from

Hl(X, Hax) (= HO(X, n.fzr/Kz(@x. o))/Ho(Y; Hay)

to H%(C, w/(1)), where w, is the dualizing sheaf of C, and n: Y- X is the blowing up
of O, whose non triviality shows that the image of K,(0y, o) in K,(€(X)) differs from

_})l:%’Ho(ﬂ— 1 U, %2y)-

Actually s comes from H'(g)(2.10), Example 2. This fact is the main motivation
for this article. I take this opportunity to thank V. Srinivas for getting me
acquainted with this topic.

Collino [C] compactified the cone X to a smooth variety X (more exactly he
considered a normal proper surface X with an isolated cone like singularity) and
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lifted s to
§5:H' - H(Y, jZ(2)- 0y —2C)~ QHlog C)(—20)),

where Y—X is the blowing up of 0, H' is a subgroup of H'(X, X#,y) and j is the
embedding Y- C—Y. In fact H{(g) factorizes § and one has 5=t H'(g) (2.8),
Example 1.

In this spirit we work out several examples of the cohomology of ¢ (2.7), (2.8),
(2.9), (2.10), (2.11), (2.12). However it is not always possible to give a nice answer
(2.13).

The construction of #™(n) is as follows. Take a desingularisation = such that
E:=n"'§is a divisor with normal crossings and such that &, : =7*Q%/torsion is
a locally free sheaf (0.1). We observe that &, embedds in Q}logE)(—k - E), for
some positive integer k (0.3), and therefore the complex #,2" where &) =0 for
i<n Fr=F,, FrH= log E)(—k- E)for |21 maps to j,C/Z(n), where j is the
embedding from X— S =Y— Eto Y (0.4). Oneach Zariski open set of Y we take those
sections of #,2" which have logarithmic growth at infinity (0.5). This defines a
“subcomplex” # 2" (0.6), with a “map” ¢; from F =" to jC/Z(n) (0.7). Taking the
n-th cohomology on = *U, where U is a Zariski open subset of X, of cone ¢;[ —1]
defines a Zariski sheaf on X (1.4). If d <n— 2, this is #"(n). In general, #"(n)is a
subquotient of it.

It is easy to prove the independency of #™"(n) of the desingularization choosen
(1.4) 1), and not hard to prove the functoriality (1.4) 7). Then it is straightforward to
construct g by lifting the universal situation (2.2).

In order to construct ¢, one has first to forget the growth condition at infinity
(1.5)2), (1.8), (2.9), a technique used in [E 2] to describe the cycle map from the
Chow group to the Deligne-Beilinson cohomology as the cohomology of a
forgetful functor. )

This paper is organized as follows. In Sect. 0 we construct the complexes on Y
and X, whose cohomologies will define the Zariski sheaves wanted in Sect. 1. In
Sect. 2 we construct ¢ and compute some examples.

0. Notations and definition of the complexes

(0.1) Let X be a reduced algebraic variety over €. Let S be its singular locus. We
assume that dim S =d. We fix in this article an integer n withn=>d+1 andn=2. Let
8,:=38 and define by induction S, _, the singular locus of S,_,,, for 1<s<d. S,
consists of finitely many points.

Let n: Y—X be a desingularization of X such that E,: =(n"!5),., is a normal
crossing divisor and such that &, : =n*Q%/torsion is locally free, where Q% is the
analytic sheaf of Kahler differentials of degree n.

Define Ed—s : =("~ lsd—s)red'

(0.2) In this section, we consider a special desingularization Y to give an upper
bound on #,,. We will use it just to prove (0.3).

Let #,_, be the ideal sheaf of S, with the reduced structure. This means that
Os,_,:=0x/F4_, is a smooth ring away from S,_, ;. We will assume that
(r* £, /torsion)is an invertible sheaf Oy(— F,_,), where F,_ ,is an effective normal
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crossing divisor (with multiplicities). We also assume that #,, is locally free.
Define F,_,: =F;_.components above S,_,_,

d
F:=Y (n—d+s)-Fy_,.
s=0

Lemma, One has an embedding
F o QillogF)(—F).

Proof. As both sheaves are locally free, it is enough to prove the injection at the
generic point of each component of F.

Let g be a generic pointin F;_,—F;_,_; and p be n(q) lyingin S, _,—S,,_;.
The exact sequence

0——(n* #,_ ftorsion), — (n*0y), — (a*Cs,_,),— 0

H i I

0— OU-Fi)y — Oy — (Op,_ ) —0

splits after passing to the completion *. So for each fe (9;\, we may write (n*f),
=g+h, where ge(n*0g, ), he O(—F;_ ),

The 0y, , module Q% , is generated by df, A ... Adf,, where f,e 0. Therefore
(#.4)p is generated by

(m*dfy A A )= i (—tyenlivminde A Adg Adh,  A.. Adh .
i=1

For I>d—s, one has dg; A ... Adg;, =0.
For any [, one has dh,, A ... Adh; e(€Qy 'QogFy_)(—(n—D-F;_ ),
Therefore one has (n*(dfy A ... Adf.)), € (Q3(logFy_)(—(n—d+5)- F;_)),

(0.3) We go back to a general desingularization = as in (0.1).

Lemma. There is an effective divisor E with support E; such that (n—d)- E;<E and
such that #,, embedds in Qy(log E)(— E).
Moreover if S=S,, one may take E=n-F where 00— F): =(n*$y/torsion).

Progf. Let n': Y'— X be the desingularization considered in (0.2). If S=S,, we may
take n to be o’ and apply (0.2).

In general, let p: Z— X be a desingularization factorizing over ¢:Z—Y and
¢':Z—Y’ such that p~!§ is a normal crossing divisor.

Then the conditions (0.1) and (0.2) are fulfilled for p. Call 4 the reduced
exceptional locus of ¢’ in Z, C the locus in Y where o is not isomorphism. Then C is
of codimension =2,

One has injections

p*y/totsion = o* F, = o' *n'*Qy/torsion—o"*Q}.(log F) (— F)
- 2logp™ 1S)(— AR *Oy(—F)=: o .
As (n~d)- F,4CF, one has
Op(n—d)+ (P S)ed) Co™*Oy(F)C0"* Oy — FYRO(4).
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Let E be the divisor defined by En(Y— C): =(4+ 6"*F)n(Y—C). The torsion free
sheaf o,/ embeds on (Y—C) in Q3{logE)(—E)y - . As Q¢(logE)(— E) is locally
free everywhere, o,/ embeds in it everywhere. This gives the map

04 0* F oy =Fou > R5(10g E) (— E).

(0.4) We fix now = as in (0.1) and E as in (0.3).

We may differentiate #,, in 23+ '(log E)(— E). This defines a complex & 2" with
Fi=0fori<n Fh=F,, and F =02 logE)(—E) for I21.

One has an injection of complexes

FE~+Q7"(logE)(~E).

(0.5)a) Let n be a desingularization as in(0.1). Fix #: Y- X a good compactification
. This means that X is proper, Y is proper and smooth; one has a commutative
diagram

N

11 ln

X—X

kx

where (Y—Y) and (Y— Y)+ E are normal crossing divisors.

b) Let ¥ be a Zariski open subset of Y. Define ¥':=Y¥—(Y— V). Then V' is
smooth and (V' — V) is a normal crossing divisor. One has a commutative diagram

V—s V"
Y ¥
Both sheaves I, #,, and 2}.(log(V’'—V)) are contained in [ Q.. Define
Fy =l F N (log(V'—V))  (p for partial).

¢) Let V be a Zariski open subset of Y. A good compactification 7: V- ¥ of s
defined by a commutative diagram

Vi P
N
Y—Y

where ¥ is proper and smooth, (V— V) and (¥ —V)+(EnV) are normal crossing
divisors. If ¥ is of the shape n ™ U, where U is a Zariski open subset of X, one has a
commutative diagram
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Both sheaves [,%,, and Q}(log(V— V)) are contained in I, 02%. Define
F =1, 7.0 (log(V-V)).
As T, Q%(log(V— V1)) injects into 7,Q%.(log(V'— V) one has injections
T F 1Ty (Iy 1) Ty -
(0.6) One has injections
F,— 2 (og(V' ~ V) + EAV)(~EAP),
F->Q(log(V-V)+EAV)(—EAT)
which allow one to differentiate &, (resp. #) in
Q" Wlog(V' V) +EnV)(—EnV)

[resp. Q4+ '(log(V-V)+EnV)(—E~V)].
Define complexes # 2" and & =" by:

Fl=F'=0 for i<n,

F=%, =%,
Frtl= Q8 log(V'~V)+EnV)(—EnV) for I21,
Fril=Q log(P—V)+EnV)(—EnV) for I121.

IV

One has injections of complexes. )
EF )2 O F) 2" > (D) Fun) 2"

As F=" is a complex starting in degree n, one has an injection R*%, F 2"[ —n]
—(7,%)%" (and similarly for the others), which gives injections of sheares

R, F 2" R, FE"— R () F 5.

(0.7)a) We use the convention Sy=0, Ey =. Define j, the inclusion Y— E,— Y and
i; the inclusion X —S,— X for s=4,0,...,d.
In the derived category D®(Y) of bounded complexes on ¥, one has a map

QF"(0g E)(— E)~juC/Z(n),
obtained as the composite map

Qf"(log E)(— E)> QF"(log Eg)(— E) > Qllog E))(— Ej) «—>—jyC

JaC/Z(n).
This defines maps in D¥(Y)
P FEj C/Zn) for s=0,0,...d.

Define in DX(Y) Z(n),,, on: =cone@i*[—1] for s=6,0,...,d.
One has maps

Z1);, —Z(n)jo, a0 "’Z(n)j,,nn —Z(1)g, a0,
where Z(n)g ,,: = cone(QF"—~C/Z(n) [—1] is the Deligne complex.
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b) If ¥ is a Zariski open subset of Y as in (0.5), ¢ defines in D*(V")
@5, : 2" Rl jo C/Z(n)
and therefore
@5, F 2"~ R joC/Zn)

for s=9,0,....d.
Define in DX(V') Z(n) : = coneq? [ —1] for s=9,0,...,d.
Similarly define a “partial” Deligne-Beilinson complex by

Z(n),: =cone(Q3 (log(V' — V))—»RI C/Z(n)) [ —1].
One has maps in DX(V'):
Ay~ ... _’Z(")Fo“l(")ﬁ, —Z(n), .

¢) Similarly, one has maps in D¥¥)

@,: F 2RI j,C/En) for s=0,0,...d.
Define in D*(¥)

Z(n); :=coneg;[—1], for 5=0,0,....d.
The Deligne-Beilinson complex is defined by

Z(n)g: =cone(Qz"(log(V—V)—~RI C/Zn)[—1].
One has maps in DX(¥)
Zn);,—... —>Z(n),-o—->l(n)j‘ —Z(n)g.

(0.8) Let U be a Zariski open subset of X.
We consider a compactification of z~'U as in (0.5).
As

Rn*jdl=Rn*Rj¢g (jd[ is exact)
=R(njg), (m is proper)
=Riyz=1i, (i is exact)

@, defines
@, R(7E) F 2+ Rk,i,C/Zmn) in DNX).

This defines in D¥X)
@;,: R(7D),F "= Rk iy C/Z(n)

for s=9,0,...,d.
Define Z(n),,: =coneq, [—1] for s=9,0,....d.
One has maps in D*(X)

Z(n),,~ ... Zn),~Z(n),.
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(0.9) Define ¢, by the exact triangle in D*(X)
1
Z(n);,~Z(n)g—€;,— Ln);,,

and similarly for %, in D*(V") and 4,
One has

in D¥(V), for s=9, 0, ...,d.
%;,=cone(Q25 "(log(V—V))/# =" R, C/Z(n)z) [— 1],
%%, = cone(QF log(V' — V) F 2"~ RI,C/Zn) g ) [ 1],
F)o.an =CONE(QF"/F 51> C/Z(n)g,) [—1].
(0.10) By definition one has ¢;, = R(77),@;,, and one has maps
Z(n), > R(1),Z(n);, for s=0,0,...,d,
coming from the maps
Iy =T ja>Rujy.
Therefore we have an isomorphism
Z(n);,=R(77) Z(n);,

and maps

Z(n),,—»R(@D),Z(n);, for s=9,0,...,d—1.

(0.11) If Z is any complex algebraic variety, we denote by «:Z,,—»Z,,, the
continuous map from Z endowed with the classical topology to Z endowed with
the Zariski topology.

1. Definition of the Zariski sheaves

(1.1) Let V be a Zariski open subset of Y as in (0.5).
Define &,,(V)=H(V, #), Z(V)=HYV', #,), and F(V)=HV, %).

Lemma. i) #(V) does not depend on Y choosen in (0.5)a).
iy #(V) does not depend on V choosen in (0.5) c).
It does not require the existence of 1.
iif) One has injections F (V) F(V)=F (V).

Proof. i) Let Y21 275, Y with oy/y =1y be another good compactification. One
has a commutative diagram

v,z

P11

v 2w,y

with W=2Z—(Y=T).
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One has o, Q% (log(W— V)= (log(V' — V).

From the exact sequence

0%, 1, 7, O log(W— V)~ 4,2
one obtains the exact sequence
00,9, Fp @ X (log(V' — V)1, .

Therefore one has ¢, %,=#,

As for any other good compactification Y—i» Y, there is a third one Z as

above with y-2r, VA 1—»71 such that [} =011, and Iy =ayAy, this proves i).

ii) Let V- W-">¥ with oi=1 be another good compactification of V

(without necessarily assuming that W and ¥V map to Y).
One has o, {log(W—V))=Q(log(V— V).
From the exact sequence

0% -2, 7, . DL llog(W—-V) -1 0
one obtains the exact sequence

00,91, 7,0 (log(V- V)12
which proves that ¢, ¥ =%.

One concludes as before
i) By 0.5¢), one has that

L HYY, 7, %)= HV,F)=F (V)
injects 1n
HATL A, F)=HV, F)= 7).
(1.2) Define
FoiV)a: =Kerd: &, (V)~HOV, F1+1),
FV)a: =Kerd: F(V)>H(V', Fr+Y),
F(V)o: =Kerd: F(V)-»HV, F+1Y).

Obviously one may replace H(V,Zn*Y), HAV', #2* "), and HOV,#"*') by
H°(V,25* %), and the three groups defined do not depend on E choosen in (0.3).

Corollary. i) The groups #,,(V).;, V)., and F(V),, depend only on the choice of =
in (0.1) and on V. They define Zariski sheaves on Y.
il) One has injections

y( V)cl—"g:p( mcl—) '9:“( V)cl .

(1.3) Let U be a Zariski open subset of X. We consider a good compactification of
V=n"1U as in (0.5).
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Lemma. i) The group #(n~*U),, depends only on U. It defines a Zariski sheaf on X.
ii) If U is smooth, then one has F(n~1U), = F"HYU,T), the Hodge filtration.
Proof.i) Let 0: Z— Y be a birational morphism such that Z is smooth and F: =¢*
E is a normal crossing divisor. Define p: =n¢ and W:=¢ "'V, Choose a good
compactification A: W—W such that one has a commutative diagram
wW—s W
a:[ l&
V—,P I_/.
One has &, Q%(log(W— W)= Q(log(V - V).
From the exact sequence
0% > 1,0*F,, OLpllog(W—V) 4,25
one obtains the exact sequence
Oeé*gal*.%n@%ﬂog(V—— V))——»l*,Q"',
which shows that 6,% =%.
Therefore one has
Frn Uy =Ket(F(n U)»HY(n U, L,
=Ker(@(p~'U)-H(p U, 2L,
=%(n"U)y.

Now if n; : Y; — X is another desingularization as in (0.1), we find a third one Z
as above with 6: Z—Y and ¢,:Z—Y, such that p: =no=mn,0,.

ii) If U is smooth, replace in the previous argument ¥ by U, &, by Qf, Wby V.
Then # is replaced by Q(log(V—V)).

(1.4) We may now define on X ,,, the sheaves we are interested in.

Let U be a Zariski open subset of X. Choose a compactification X asin (0.5)a).
We consider Z(n),, in D¥(X) as defined in (0.8), which depends on U.

Define

H(n),(U): = HY(X, Z(n),)
and

F (U): =Ker(F(n~'U)y—H"U,i,C/Zn) for s=0,0,...d.

Theorem and definition

1) The groups H(n), (U) depend only on U.
2) If ¢:X'—X is any morphism, then one has a map

o~ H'(n),(U)—~H"(n) (o~ *U).
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3) If o is the embedding of a Zariski open subset W, one has maps
o~ !t HYm), (U)~>H"(n), (UnW)

Jor s=9,0,....d, and the groups H"(n), (U) define Zariski presheaves.

4) Assume U to be affine.

If d<n—2, then Hn), (U)=H"(n), (V).

If n=2, then H*(2),(U)=H?*(2),(U) provided SonU is connected.

If n>2, then HYn);,_ (U)=H"(n),(U) if d=n—2, and H"(n),,_(U)=H"(n),(U)
if d=n—1.

5) If X is smooth, then H"(n),(U)=HyU,n):=HYU,Z(n)g) (0.7)c), the
Deligne-Beilinson group.

6) Define H#"(n) to be the Zariski sheaf associated to H*(n); , and #™(n),, to be
the one associated to H'(n);, for 5=0,...,d.

If d<n—2, then H#"(n);, = H#"(n).

If n=2, then #*(2),,=#*(2).

If n>2, then #™n),,_ =H"n)if d=n—2 and #"(n), ,=H"(n) if d=n—1.

At any case, there is always an integer s, with 0<s,<d such that

H(n),,, = Hn).

If X is smooth, then #"(n)=3#"%(n), the Deligne-Beilinson sheaf associated to
n
Q(U, n).
T If 6: X’ X is any morphism, one has a map o~ " : #™(n)—>a,#"(n). In other
words, #"(n) is functorial. In particular, if ¢ is any desingularization of X (not
necessarily as in (0.1)), one has a map #"(n)— o, H5(n).

Proof. 1) One has an exact sequence
0-H"" (U, iy C/Z(n))— H"(n), (U) > F, (U)~0.

As #(n~'U), depends only on U (1.3)i), &, (U) depends only on U as well, This
proves 1).
2),3) Consider a commutative diagram

Y—>Y

,‘l 1,.

x-—2.x

where 7’ and 7 are as in (0.1). In case 3) (o is the embedding of an open set X' = W),
just take 7' =y
Define 4, : = n'*§2% /torsion. Then t* %, injectsin ¢, and t*Q2* (log E) (— E)
injects in
" logt™ ' E)(—T*E).

Define E’ such that Q3{logE')(— E') contains both 4, and t*Q%(log E)(— E) (0.3).
Define correspondingly 2" (0.4).
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If U is Zariski open in X, define U':=¢"'U, V': =n'"'U’, Vi=n"'U. Take

compactifications .

VP vty
ni ft' 11 Jﬂ
U—aX'—Xe—U
as in (0.5). kr 2 k

From the exact sequence
07,910, %, . DT 2 (log(V' — V)11,
and the maps
Fa— T4 Guns  Dpllog(V—V)-1,25 (log(V' - V"),
FrHiag gt for 121, one obtains maps F —1,% and
FEo(1,9)2".
This gives maps in D¥(x)
R F 2" — Rii (7,9)2"— R(77),9>"
RGR7,%="
One also has maps
Rk, C/Z(n)— Rk, 0, C/Z(n)— R(ko), C/Z(n)

R(6k"), C/Z(n)
and if o is as in 3), maps

Rk, i C/Z(n)— Rk, 0,i C/Z(n)— R(6K) iy C/Z(n).
Therefore one has maps
Z(n),,»Ra , Z(n),, and if ¢ is as in 3),
Zn), —»Ré,Z(n);, for s5=0,...d.

Then H"(n), (U) maps to H(n);, (¢~ 'U).

This proves 2).

Also in 3), H(n); (U) maps to H"(n), (UnW). This proves 3).

4) If U is affine, then S,nU is affine as well and therefore H(S,nU, €/Z(n))=0
for I>s. Now H"(n),(U) surjects onto H'(n) (U) if H"S,U,T/Z(n)
=H""Y8,nU,C/Z(n))=0, and is isomorphic to it if moreover H"*~%(U, T/Z(n))
surjects onto H" ™ %(S,nU, C/Z(n)).

5) If X is smooth, then # is just G (log(U — U)) for a good compactification of
U [Proof of (1.3)ii)].

6) By 2), H"(n),(U) maps to H"(n),(¢c~'U), which maps to H%g ™ 'U, 5#"(n)).
This proves 7), where one applies 5) if X’ is smooth.

1.5) We define on Y,,, sheaves to which we will compare 3#"(n), constructed
in (1.4). Let V be a Zariski open subset of ¥. Choose compactifications as in (0.5).
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Define
H'(n);, ou(V): = H'(V, Z(n);,,00)
Hn),, (V) =H"V', Z(n}}),
H'(n),(V): = H'(V, Z(n),))
for s=9,0,...,d, 2 with the convention Z(n);,=Z(n)g etc ....

Propesition and definition

1) The groups H™n);_.o(V), H"(n);, V), H"(n), (V) depend only on V. They define
Zariski presheaves on Y for s=9, 0, ...,d, 2.

2) Let #M(n);, 0y H#(n);, » H"(n);, be the associated sheaves. There are
injectives maps

.}?"(n)j,—r.?f’"(n),-,_p—’”"(")j,,an

for s=0,0,....,d,9.
3) There are maps

Hn);, > ...~ H(1);— A (), = H(N) g
and similarly for X#*(n); , and #"(n);, ...
Proof. 1) This is by definition for H(n); ... One has an exact sequence
(*)  O—~H"" 'V, juC/Zm)~H"(n);, (V) Ker(F (V)u—~HY, j C/Z(n)) 0.

As #(V),, depends only on ¥ (1.2)i), the kernel to H*(V, j,&/Z(n)) depends only on
V as well. Similarly for H"(n);, ,.
2) One has

RZ,Z(n);,=cone(RT,# 2"~ R(lyr), joC/Z(n) [ -1],
R Z(n), =cone(Rt, FE " R(ly7), jo  C/EM) [ —1].
As & " starts in degree n, one has a map R"{,F 2"[ —n]-R7,# =" whose cone

starts in degree (n+1).
Define just for a moment in DY)

K =cone(R*, & [ - n]>R{y1) j,L/Z ) [—1].
Then one has an isomorphism
HY(Y, K)=H"(Y, Rt &(n);).
On the other hand, one has an injective map (0.6):
Rt FE R FE"
and again a map
R, FF[~n]-oRt FZ".
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Therefore
H*(n),;,(V)=H"(Y,R%,Zn),)
maps to
HYY, RE,Z(n)) = Hn);, (V).
Now write the sequence (*) and the corresponding sequence (*), for H'(n);, .(V),
and apply (1.2)ii).

This gives the injection #(n); —#™"(n);, .
As for the second one consider the restriction map

H"(V, Zn)3)—>H(V,Z(n),v).
As Z(n)®y =Z(n);,, ., this gives a map
Hn);, o H'();,, 0n(V).

One concludes as before. [Actually one could argue via the restriction map to
construct the injection J#(n);, — H#"(n);, 4]
3) Apply (0.7).

(1.6) We could have defined on X, “partial” and “analytic” sheaves in the same
way. As we will not use them, we do not give details.

(1.7) Proposition. There is a map
H'(n);, > m, H(n);, .
Proof. By (0.10) there is a map, for each Zariski open set U in X:
H(n),(U)=H"X,Z(n),)— H"(V,Z(n);)
and one has a map
H(n), (™ 'U)—>H(x"'U, #™(n),).

(1.8) Proposition. There is a map
H'n);,, an—= R0 E(N); o -

Proof. One has H(n);, ,,(V)=H" (V,Z(n);,, .,) Which maps to H o, R, Z(n);, .0)-
(1.9) 1) Let V be a Zariski open subset on Y, and take compactifications as in (0.5).
One has
H'" V8, W =H""(V,€)=H"'(V,%,)
=H""YVnE, C/Zn).
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One also has
H " (V,Z(n)g,.0) = H" (V' Z(n)5)=H"""(V, Z(n),)
=H""*(V,C/Z(n).

Denoting by #%TC/Z(n)) the Zariski sheaf on Y associated to the Betti
cohomology HYT/Z)), we obtain

Lemma. There is an exact sequence
0"~ XE,, C/Z(n)/ 2"~ Y(C/En)— H"(n);,—> H"(n)g

fors=9,0,....d

2) As H%(V,23(og(V—V))/# =™ might depend on ¥, one can not define a
sheaf on Y associated to H'(V,%;). Similarly for €2,

But there is a restriction map

rest

H"(V,€,)— H'(V,€,v)=H"V. ¥, ..)-
One has an exact sequence
0—-H"" {VAE,C/Z(n)—H(V,%,, 1n)
~+Ket(H'(V, Q7"/# 2"~ HYVAE,, C/Zn))—0.
Define #(¥,) to be Zariski sheaf on Y associated to H(V,¥;_,,).
Lemma. i) There is a complex
H "(")j,—’x H(n)g—H "((gj_,)
and a map
A ) R (I F E).
i) If n>dimX, then
H(n);,— A" (n)g
is surjective and
H"E,;)=0
iif) If n=dimX, then
H(E,)~ R0 (QF" /1 F2") =0, S0 0 F oy

is surjective.

Proof. i) One has an exact sequence
H(n);,(V)- H"n)o(V) > H"(V,€).

Applying the map rest, this gives the complex.

The sheaf associated to HY(V, QF"/#,2" is just R"a (QF"/F.2").

ii) and iii) If V is affine, then H(VE,, €/Z(n))=0 for I >dimE,, especially if
I>dim X —1. This proves that H(V,€¢,)=H"(V, ¥, ,,)=0 if n>dimX, and that
HY(V,€,, .) surjects onto H*(V,Q¢"/#2") if n=dim X.
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Finally observe that R'a, %, =0 as %, is coherent, and therefore
Rn“*(g?" PASE o, Q5 /0,

(1.10) Multiplication. Applying Beilinson’s formulae [E-V], Sect. 3, where one
replaces the F-filtration by our # 2", one obtains multiplications:

Z(n);, @2Z(m), ~Z(n+m);,,

Z(n), ®zZ(m), ~ZL(n+m),

which give products:

H(n);,(V)®zH™(m), (V) H" ™n+m), (V),
Hn), (V)@ H™(m), (U)— H" ™(n+m), (U)

and at the sheaf level:

H(n);, @A ™(m);, > H "+ m);,,
H(M)@zH™(m)—> A" "+ m).

We observe that in order to perform this construction, one has to take
desingularizations n where both 7*2%/torsion and n*Q%/torsion are locally free.
This is allowed by (1.4} 1) and (1.5)1).

Of course one obtains also a version for H"n);, ,, H"(n),, ., as well as for
Reo, Z(n);, on-

2. Defimnition of the regulator map on the Milnor K-theory
(2.1) We consider Bloch’s regulator map
Py Ky = H5(n)

at the sheaf level from the Milnor K-theory to the Deligne-Beilinson cohomology
on a smooth variety Z.

Recall the definition.

Let V be a Zariski open subset of Z, gy, ...,g,eI'(V, 0;), the sheaf of regular
invertible functions, and let {g,...,g,} be their symbol in I'(V,#¥). Let
g2:=(gy,...,24): V—(C™)" be the corresponding morphism, with x; as coordinate
on the i-th factor. Then x;e HL{(T*)",1). The Deligne-Beilinson product
(x4, ..., x,) & HR({(C*)", n) factorizes over Steinberg symbols (via the existence of the
dilogarithm function). Then

Tz{gl, ---ygn}: =g—1(xl’ "-’xn)EH;(V:n)'
Call the situation
[x;€ HY(T™), 1), (X5 -« X,) € HEH(C XY, 1)]

the universal situation.
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(2.2) For any morphism o : X' — X, we consider the natural map X% —o S If
n:Y—X is any desingularization, we have the map of functoriality #"(n)
-1, #pn) (1.4)5). If X is smooth, then #™"(n)=Hg(n) (1.4) 5).
Theorem. 1) Let n: Y— X be any desingularization. There is a commutative diagram
3{:‘){ I 75*9{.3{
e Ty
H'(n)— n,H5(0n).
2) If X is smooth, then g =ry.
3) If a: X'~ X is any morphism, there is a commutative diagram
Hi — ar)f;n‘}l'
['] OxQ
H(n)— 0, 7"(n).
Proof. 1) Let pe X be a point, f, ..., f, be regular functions in p. Choose a Zariski
open neighbourhood U of p such that f,e I'(U, 0*). Define V=n"1U, f to be the
map(f): U~ (C*)", and g = frr, with g;=n*f.. By the functoriality (1.4)2) f ~! maps
(%1, --» X3 € HS(C )", n) to an element which we call o{f, ..., f,} in H"(n),(U). By
definition z *{f,, ..., fi}=rv{gs, ... €.} and it lies in HYH(V, n).

2) is by construction.
3) Take the notations of 1). Then one has

f_l(xl’ '-"xn)=a{fb '~'5.f;g} EH"(H);‘(O" IU)
which maps to )
6 T %y, wX)=0{6 7}, .., 0T} in H(n),(c "1U).

(2.3) Following Srinivas [S], define the sheaves # and o on X,,, which are
supported on §, by the exact sequence

O—B-H Y n, AN+ ~0.

As Y depends on the desingularization chosen in (0.1), «# and # do too.
Choose s to be the maximum integer with 0 < 5, <d such that #™(n)= #"(n); ,
(1.4)4).

Theorem. For any s with 0<s<s,<d, there is a commutative diagram

0 B AH— Y o 0
l lR l"-ry l
i H(n)
! l l {

0, X HEs /2
* AT

— L H"(n);,— 1, H5(n)— 1, HE,)

n K n(n)j. m R0, (27" F
where the bottom horizontal row is a complex.
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Moreover the sequence

H"XEs, C/Z(n))

R T /)

—>n, K" (n);, —n,H5n)

is exact.

Proof. Put together (2.2) and (1.9).

(24) Remark. This way of mapping X, in 7, 3¢"(n); [and afortiori to n,#"(n) )
is not as good as considering g itself as 7, #"(n), depends on the desingularization
chosen. However we will now consider the cohomology of g, and it is not clear how

to compute the cohomology of #7(n). That is the reason why we will “approxi-
mate” it by the cohomology of #"(n);, [or of #™(n); 1.

(2.5) Define o": =4 /5.
As # and of are supported in S of dimension d, one has

HYX, X M)=HYX, %) for q>d,
HYX, #)=HYX,x, XY) for q>d+1.

Therefore one has exact sequences

O~ HYB)H* \(A')~>HY %)~ H(A) -0,
O HY o) H'm A N) > H (A )~ H H(my A ) =0

(2.6) Lemma. One has

R0, Z(n);, pn=R" 'a,j, C/Zn) for m<n,s=2,0,0,...d,
=H#""YC/Zn)) for 5=9,0.

Proof. The first equality comes just from the fact that #,2" and Q2" start in degree
n. The second one is due to Deligne [B2].

(2.7) Consider the spectral sequence
E’i’ I= Hk( Yzm R’atz(n)j., an) = H** l( Yam an» Z(n)jm ﬂn)‘

By abuse of notation, we write the graded pieces ¥ E%!~instead of the
corresponding filtration on H**!(¥,,, Z(n);, ,.). iz1

Proposition. Let s be as in (2.3). Let g2n—2. Assume that
HY"'Y YR a, j C/Zm)=0 for iz2.
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1) Then one has a commutative diagram

H(X, %) — HOX,m 40

e LLls g

Hq(X’ '}f"(n)) —_ HG(X’ n*”;(n))

H Y, Z(w);, o) — H (L (M)5,00)

i1 ~N

Hq+n(Yiz(n)j..an) .

2) ¥ EL""1 s contained in H*" "~ XE, C/Z(n)/H** " *(Y,C/Z(n)) which
i
maps to

HU" N Y6, wl/ HY (Y E (), 40)-
Proof. 1) Consider the diagram (2.3).
One has maps
HYX, 7, #"(n);,)— HUY, H°(m);)— 5557 HH(L H(n);,,a0)
—wa (L Ry o C/Z(n)) .
One has E{*H" it 1= H2*{(Y,R" ‘e, j,C/Z(n) for i22 (2.6). This vanishes by
hypothesis. Therefore
HY(Y, R"“*jsnz(n)j,, an)
maps to H** (Y, Z(n),,, )/ T B

On the other hand as H/(s#™ YC/Z(n)=0 for j=m [B1], one has
Egtir—itl=(for iz2, and E{* " i=EL " i=Qfori21 and s=9 or .
2) As E§Hon~i= HOH(Y, R Yo, j C/Z(n) for iz 1, (26), ¥ EL*"~' maps
to iz1
H* " NY, jy C/Zn)

which maps to H**"(Y,Z(n),, ,,). For i=1, one has g+i>n-—i-1. Therefore
HU YR b, j,€/Z(n), and ¥ EZ'""‘maps to 0in H** " Y(E, C/Zn); in
other words it is contained in 2!

H " XE, C/Zm)/H* " (Y, C/Z(n)).
(2.8) Example {. Assume n=2,d=0 or 1, g=1; then 5,=0. Then
R0, jolC/Z(2)=jo T/Z(2).
From the exact sequence
0o, C/Z(2) > C/Z(2) > C/Z(2); 55,0
one obtains H', (joL/2Z(2))=0 for i=2.
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Therefore one has H**{(Y,R" ', j,C/Z(2))=0 for i=2 and E3'°=E3>1=0,
One obtains a commutative diagram

HI(X’MZX) — HI(X9TC*‘%/‘2Y)

HY(Y, Z(2)j,,un)— HLZ(2)g,,0)-
If d=0, one has a map (0.3):
Z ..~ Qi{logF)(—2F),
Oyl —F):=n*4,/torsion.
Therefore Z(2);, sn—Z(2)a,., factorizes over
Z(2) : =joZ(2)— O — 2F)~Q{log F) (— 2F)
and one obtains a diagram

Hl(X’ fzx)""ul* Hl(Xa "*9{2}')

H Y Z(2)) — H¥ (Y Z(2)g,s)-

If X is a proper surface with one isolated conelike singularity, (in this case F=F .,
is a smooth curve), the left vertical arrow was constructed by Collino [C] [on a
subgroup of HY(X, o,,)].

(2.9) Let (dlog)? be the map

(dlogy': HY(Y, o,¥)—~> H* ™Y, Qf")
and « be the map

a: HO (X, Z(n)g, o)~ B (Y, QF").
If d=n—2, then (dlog)’ factorizes « (2.7).

Proposition. 1) If (dlog)?=0 one has a map
HYX, oA )/ H (Y, m, )~ H* (Y, Q8" F 5,
2) if a=0 and d=n—3, one has a commutative diagram
0— HYX, )/ H (X, m, )~ HUPHX, Y

0— HY™Y,QFYF3™) —— H VYL EMN), ),
where the two sequences are exact.
3) If a=0, d2n—3, take s as in (2.3). Assume moreover that
H Y, R o, j C/Em)=0 for i=2.
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Then the diagram in 2) factorizes over the exact sequence

O** Hd+"(Y:(€j,.an) _)H‘+1+”(xz(n)j,,an)
H“”(Kl(n)g,..,)'l'.;l E4;+1+x,n—1 _;1 Ealiu+l+x,n-l

Proof. 1) Apply (2.3) and notice that one has maps
HYX, n, R (QF"F 31— HY(Y, R0, (QF "/ F 37)
—HUY,Q¢"(F 5"
as the complex QF"%/#.2" starts in degree n.
2) Apply (2.7) and notice that
cone(Z(n);,, s~ ZN)g,.,) = cone(Q7 Y F3" [ —1].
3) Apply (2.7) again.

(2.10) Example 2. Assume that X is an affine cone over a smooth projective variety
E, of dimension <n. Set n: Y—X be the blow up of the vertex 0=S,=S, and
p: Y—E, be the corresponding A'-bundle.

Then FY):=Ker(F*H"(Y,C)-»H"(Y,C/Z(n)) is vanishing as it embeds in
Gr? H(Y, @), and this last group is zero since Y has a good compactification with a
smooth divisor at infinity. (Here W is the weight filtration.)

As (dlog)’: HY(X, =, %) = HO(Y, 4 3) > HO(Y, %) factorizes over Fi(Y), it is
zero as well. Therefore one obtains (2.9) 1) for g=0: one has a map

HYX, st)/HO (X, =, A ) HUY, QY72

By (0.3), %, embedds in Q}{logE,)(—n- E,). .
As 3/Q5(log Eg)(—n - Eg) =Wy _ 4y —(n—1) - E), where o is the dualizing
sheaf, one obtains a map

HO(X3 d)/HO(X,n*'x/;g’I)_*HO(Y;m(n— l)Eo(_(n_ 1) : EO))‘

If E, is a curve, this is Srinivas map.
Actually in this case, Srinivas proves that

HY(X, o,x)=HX, &) H X, n,HA3y),
where & is by definition liﬂ'fH O~ U, K2y} Ko(Ox.0)-
Oe

(2.11) Example 3. Assume X proper. As « factorizes over
Ker(H**"(Y, QF ")~ H** (Y, C/Z(n),
which is 0 for d Sn—1, one obtains the diagram (2.9)2).
(2.12) Example 4. 1) Assume n=2, d=0 or 1 as in Example 1, (2.8), and assume
moreover that X is proper. Then one has (2.9) 3) with
H* Y Z(2g,,0) = H* (Y, C/Z(2))/F*H** (Y, ©),

Y Eirith2-ig,
431
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If d=0, then Z(2), ,, maps to Z(2)' as in (2.8), and ¥,

Jo,an

€' =cone(RE2/QF*(log F)(—2F)~C/Z(2) |[E,)[—-1].

maps to

One may map the sequence of (2.9) 3) to the similar one replacing Z(2);, ,, by
Z(2), €, . by €.

2) Let X be a singularity of type A4,, of equation £> —xy. One knows (letter of
Collino), that &/ contains €@ C if one takes n: Y- X to be the blow up of the
singularity 0.

We first define candidates a and f in n,(55y), for those two elements (as we do
not know exactly how Collino constructs them ...), and then we prove via(2.3) that
they contribute to .

A) Cover Y by three Zariski open sets Y, Y;, ¥, of coordinates and equations

Yy:(a,b,f), x=at,y=bt;t—ab,
Y, :(x,b,T), y=bx, t=Tx; Tx-b,
Y,:(a,y,T), x=ay, t=Ty; T3 —d.
Consider Y'= Y~ {r*=1}. The exceptional locus of = is contained in Y. Define

Y :=Y'nY.
We consider the two Loday symbols in K,(Y;) [see Be] for the definition:

to:={1—abb},  Boi={1—(ab,b?}.
In K,(Y3nYi), one has
={1-Tx, T*x}.

%0lyynry
As T is a unit on Y5nY], &y, . is the sum of the normal Steinberg symbol
{1 —Tx, T} and of the Loday symi)ol {1 —Tx, Tx}. The later is zero as it is zero on
Y3 Y] (T + 0) where it is a Steinberg symbol, and it is uniquely determined by its
restriction on YgnY{n(Tx=+0).
Therefore e, ,, =%y, .., Where a; € Y] is the Steinberg symbol {1—Tx, T}.
Similarly, as 7" is a unit on Yy Y;, one has g, ,, =2y, .y, Where ;€ Ky(Y3) is
the Steinberg symbol — {t —T"y, T'}. One computes in the same way that

— + ¢
allhnrz =02y nra € I<2(Y1h YZ) .

Define ae H(Y', o#>y) to be o; on Y.
In K,(Y;nY;) one has fy, . ={1—(Tx)*(T*x)*}.
Similarly as before, o, .. 1s equal to the Steinberg symbol

{1-(Tx), T*} e Ky(¥5n 1)),

restriction of the Lorelei symbol §, = {1 —(Tx)%, T*}e K (Y}).

One also has By, .. =Pa,, .y, Where Be K (Y;) is the Loday symbol
~{1=(T'yP T, and By, ., = Baty .y, i Ko(¥in Y;). Define fe HYY', 2,y to
be f; on Y.
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B) One has n* Sp/torsion = Oy(— E) with E=E, + E,, E?= —2 and E,nE,=:p.
One has n*Q%/torsion = »,Q}( — E), where s is the max1ma1 ideal of p. Moreover,
as n*0% /torsion is generated by global sections and (X, 0) is a rational singularity,
one has Rlz (n*Q%/torsion)=0. If 6: Z— Y is the blow up of p with exceptional
line F, one has

F..=o*n*Q torsion =o*QY — EYR O — F).
As R'0, 04— F)=0, one obtains
7404 (3] F0) = (QmQ — E) = C,DC.
where €, is QY — E)/mQ¥ — E) and €=HE, og—E)).
C) We consider the map
dlog=HY', X 1y)— H(n(Y"), 7,2}

I

Ho(n(Yl)s n*%ZY’) .

One¢ has
dlo a__daAdb__dx/\dT_dyAdT‘
B¥="T"ab = 1-xT 1—yT’
dandb dx adT , dyAdT’
glloef=—ab s = =T =T
On Y, #£2% — E) is generated by
dandb dandb
2 2
a*b T—ah and ab b

Therefore dloge, dlogf define two linearly independent elements of
Hn(Y"), 7, (QF/m QY — E)).
(2.13) One may also consider the map
HY(X,B)—>H(Y, " YE, C/Z(n)/ " *(Y,C/Zn)). 23

Of course if n=2, and E, is connected, the second group is trivial. In general I do
not know how to compute it. This is related to finding good assumptions under
which the conditions (2.7) are fulfilled.

(2.14) Levine [L] defines another presheaf on X. If U is a Zariski subset of X, such
that a compactification U exists with the property that U— U is supported by a
Cartier divisor, he defines Qp(log(T — U)) as those forms which have logarithmic
growth along V— ¥ where V and V are as in (0.5). Further, he takes the cone of
QF"(log(U — U)) with values in the cone of Z(n) in the de Rham complex Qy.

AsIkill thc torsion of 2y{log(U — U)) by taking a desingularization for which
the Kihler differentials become locally free, “his” forms lift “mine”. As I take the
cone with values in C/Z(n), which maps to Q/Z(n), “my” Betti part lifts “his”. So
one does not obtain a map in either direction.
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