(c) Springer-Verlag 1990

A regulator map for singular varieties

Hélène Esnault*
Institut des Hautes Études Scientifiques, 35, Route de Chartres, F-91440 Bures-sur-Yvette, France

Hans Grauert zu seinem 60. Geburtstag gewidmet

Introduction

Let X be an algebraic variety over \mathbb{C}, the field of complex numbers. If X is smooth, there is a regulator map r from \mathscr{K}_{n}^{M}, the Zariski sheaf of Milnor K-theory, to $\mathscr{H}_{9}^{n}(n)$, the Zariski sheaf of Deligne-Beilinson cohomology. The aim of this article is to construct a similar functorial regulator map ϱ (2.2) from $\mathscr{K}_{n X}^{M}$ to a Zariski sheaf called $\mathscr{H}^{n}(n)$ (1.4) if X is not necessarily smooth. For this we assume that $d:=$ dimension of the singular locus S verifies $d \leqq n-1$ with $n \geqq 2$.

If X is smooth, then $\mathscr{H}^{n}(n)=\mathscr{H}_{9}^{n}(n)$ and $\varrho=r$. If not, let $\pi: Y \rightarrow X$ be a desingularization. Then ϱ factorizes $\pi_{*} r$ via the natural map $\mathscr{K}_{\boldsymbol{n} X}^{M} \rightarrow \pi_{*} \mathscr{K}_{n Y}^{M}$ and a map $\mathscr{H}^{n}(n) \rightarrow \pi_{*} \mathscr{H}_{9}^{n}(n)$ which we construct (1.4) 7).

Taking the cohomology of ϱ, one obtains maps $H^{q}(\varrho): H^{q}\left(X, \mathscr{X}_{n}^{M}\right)$ $\rightarrow H^{q}\left(X, \mathscr{H}^{n}(n)\right)$. The cohomology group $H^{q}\left(X, \mathscr{H}^{n}(n)\right)$ is independent of the desingularization choosen as $\mathscr{H}^{n}(n)$ is. Unfortunately one may only approximate this group by a map t from $H^{a}\left(X, \mathscr{H}^{n}(n)\right)$ to some cohomology group $H^{q+n}\left(Y, \mathbb{Z}(n)_{a n}\right)$ on $Y(2.7)$.

Srinivas [S] considered a cone X of vertex 0 over a smooth projective curve C. He constructed a map s from

$$
H^{1}\left(X, \mathscr{K}_{2 X}\right)\left(=H^{0}\left(X, \pi_{*} \mathscr{K}_{2 Y} / K_{2}\left(\mathcal{O}_{X, 0}\right)\right) / H^{0}\left(Y, \mathscr{K}_{2 Y}\right)\right.
$$

to $H^{0}\left(C, \omega_{c}(1)\right)$, where ω_{c} is the dualizing sheaf of C, and $\pi: Y \rightarrow X$ is the blowing up of 0 , whose non triviality shows that the image of $K_{2}\left(\mathcal{O}_{x, 0}\right)$ in $K_{2}(\mathbb{C}(X))$ differs from $\varliminf_{0 \in \mathbb{O}} H^{0}\left(\pi^{-1} U, \mathscr{K}_{2 Y}\right)$.

Actually s comes from $H^{1}(\varrho)(2.10)$, Example 2. This fact is the main motivation for this article. I take this opportunity to thank V. Srinivas for getting me acquainted with this topic.

Collino [C] compactified the cone X to a smooth variety \bar{X} (more exactly he considered a normal proper surface \bar{X} with an isolated cone like singularity) and

[^0]lifted s to
$$
\bar{s}: H^{\prime} \rightarrow H^{3}\left(\bar{Y}, j \underline{Z}(2) \rightarrow \mathcal{O}_{\mathcal{P}}(-2 C) \rightarrow \Omega_{\mathfrak{Y}}^{1}(\log C)(-2 C)\right),
$$
where $\bar{Y} \rightarrow \bar{X}$ is the blowing up of $0, H^{\prime}$ is a subgroup of $H^{1}\left(X, \mathscr{K}_{2 X}\right)$ and j is the embedding $Y-C \rightarrow Y$. In fact $H^{1}(\varrho)$ factorizes \bar{s} and one has $\bar{s}=t \circ H^{1}(\varrho)(2.8)$, Example 1.

In this spirit we work out several examples of the cohomology of $\varrho(2.7),(2.8)$, (2.9), (2.10), (2.11), (2.12). However it is not always possible to give a nice answer (2.13).

The construction of $\mathscr{K}^{n}(n)$ is as follows. Take a desingularisation π such that $E:=\pi^{-1} S$ is a divisor with normal crossings and such that $\mathscr{F}_{\mathrm{gn}}:=\pi^{*} \Omega_{X}^{n} /$ torsion is a locally free sheaf (0.1). We observe that $\mathscr{F}_{a n}$ embedds in $\Omega_{r}^{n}(\log E)(-k \cdot E)$, for some positive integer $k(0.3)$, and therefore the complex $\mathscr{F}_{\mathrm{an}}{ }^{\underline{\geq}}$, where $\mathscr{\mathscr { F }}_{\mathrm{an}}^{\mathrm{i}}=0$ for $i<n, \mathscr{F}_{\text {an }}^{n}=\mathscr{F}_{\text {an }}, \mathscr{F}_{a n}^{n+i}=\Omega_{Y}^{n+l}(\log E)(-k \cdot E)$ for $l \geqq 1$ maps to $j_{l} \mathbb{C} / \mathbb{Z}(n)$, where j is the embedding from $X-S=Y-E$ to $Y(0,4)$. On each Zariski open set of Y we take those sections of $\mathscr{F}_{\boldsymbol{a}_{n}}{ }^{n}$ which have logarithmic growth at infinity (0.5). This defines a "subcomplex" $\mathscr{F} \geqq n(0.6)$, with a "map" φ_{j} from $\mathscr{F} \geqq n$ to $j \mathbb{C} / \mathbb{Z}(n)(0.7)$. Taking the n-th cohomology on $\pi^{-1} U$, where U is a Zariski open subset of X, of cone $\varphi_{j}[-1]$
 subquotient of it.

It is easy to prove the independency of $\mathscr{H}^{n}(n)$ of the desingularization choosen (1.4) 1), and not hard to prove the functoriality (1.4) 7). Then it is straightforward to construct ϱ by lifting the universal situation (2.2).

In order to construct t, one has first to forget the growth condition at infinity (1.5) 2), (1.8), (2.9), a technique used in [E2] to describe the cycle map from the Chow group to the Deligne-Beilinson cohomology as the cohomology of a forgetful functor.

This paper is organized as follows. In Sect. 0 we construct the complexes on Y and X, whose cohomologies will define the Zariski sheaves wanted in Sect. 1. In Sect. 2 we construct ϱ and compute some examples.

0. Notations and definition of the complexes

(0.1) Let X be a reduced algebraic variety over \mathbb{C}. Let S be its singular locus. We assume that $\operatorname{dim} S=d$. We fix in this article an integer n with $n \geqq d+1$ and $n \geqq 2$. Let $S_{d}:=S$ and define by induction S_{d-s}, the singular locus of S_{d-s+1} for $1 \leqq s \leqq d . S_{0}$ consists of finitely many points.

Let $\pi: Y \rightarrow X$ be a desingularization of X such that $E_{d}:=\left(\pi^{-1} S\right)_{\text {red }}$ is a normal crossing divisor and such that $\mathscr{F}_{\text {an }}:=\pi^{*} \Omega_{X}^{n}$ /torsion is locally free, where Ω_{X}^{n} is the analytic sheaf of Kähler differentials of degree n.

Define $E_{d-a}:=\left(\pi^{-1} S_{d-s}\right)_{\text {red }}$.
(0.2) In this section, we consider a special desingularization Y to give an upper bound on $\mathscr{F}_{\mathrm{an}}$. We will use it just to prove (0.3).

Let \mathscr{I}_{d-s} be the ideal sheaf of S_{d-s} with the reduced structure. This means that $\mathcal{O}_{S_{d--1}}:=\mathcal{O}_{\boldsymbol{x}} / \mathscr{S}_{d-s}$ is a smooth ring away from S_{d-s-1}. We will assume that ($\pi^{*} \mathscr{F}_{d-s}$ /torsion) is an invertible sheaf $\mathcal{O}_{\mathbf{P}}\left(-F_{d-s}\right)$, where F_{d-s} is an effective normal
crossing divisor (with multiplicities). We also assume that $\mathscr{F}_{\mathrm{an}}$ is locally free.
Define $F_{d-s}^{\prime}:=F_{d-s}$-components above S_{d-s-1}

$$
F:=\sum_{s=0}^{d}(n-d+s) \cdot F_{d-s}^{\prime} .
$$

Lemma. One has an embedding

$$
\mathscr{F}_{\mathrm{an}} \rightarrow \Omega_{Y}^{n}(\log F)(-F) .
$$

Proof. As both sheaves are locally free, it is enough to prove the injection at the generic point of each component of F.

Let q be a generic point in $F_{d-s}^{\prime}-F_{d-s-1}^{\prime}$ and p be $\pi(q)$ lying in $S_{d-s}-S_{d-s-1}$. The exact sequence

splits after passing to the completion ${ }^{\wedge}$. So for each $f \in \widehat{\boldsymbol{O}_{X, p}}$ we may write $\left(\pi^{*} f\right)_{q}$ $=g+h$, where $g \in\left(n^{*} \hat{O}_{S_{d-s}}\right)_{q}, h \in \mathcal{O}\left(-F_{d-s}^{\prime}\right)_{r}$

The $\mathcal{O}_{x, p}$ module $\Omega_{X, p}^{n}$ is generated by $d f_{1} \wedge \ldots \wedge d f_{w}$, where $f_{i} \in \mathcal{O}_{\widehat{X, p}}$. Therefore $\left(\mathscr{F}_{a n}\right)_{p}$ is generated by

$$
\left(\pi^{*}\left(d f_{1} \wedge \ldots \wedge d f_{n}\right)\right)_{q}=\sum_{i=1}^{n}(-1)^{\operatorname{sgn}\left(i_{1}, \ldots, i_{n}\right)} d g_{i_{1}} \wedge \ldots \wedge d g_{i_{1}} \wedge d h_{i_{1}+1} \wedge \ldots \wedge d h_{i_{n}} .
$$

For $l>d-s$, one has $d g_{i_{1}} \wedge \ldots \wedge d g_{i_{1}}=0$.
For any l, one has $d h_{i_{t+1}} \wedge \ldots \wedge d h_{i_{n}} \in\left(\Omega_{\gamma}^{n-l}\left(\log F_{d-s}^{\prime}\right)\left(-(n-l) \cdot F_{d-s}^{\prime}\right)\right)_{q}$.
Therefore one has $\left(\pi^{*}\left(d f_{1} \wedge \ldots \wedge d f_{n}\right)\right)_{q} \in\left(\Omega_{\gamma}^{n}\left(\log F_{d-s}^{\prime}\right)\left(-(n-d+s) \cdot F_{d-s}^{\prime}\right)\right)_{q}$.
(0.3) We go back to a general desingularization π as in (0.1).

Lemma. There is an effective divisor E with support E_{d} such that $(n-d) \cdot E_{d}<E$ and such that $\mathscr{F}_{\text {an }}$ embedds in $\Omega_{\mathrm{r}}^{n}(\log E)(-E)$.

Moreover if $S=S_{0}$, one may take $E=n \cdot F$ where $\mathcal{O}_{\mathrm{Y}}(-F):=\left(\pi^{*} \mathscr{I}_{0} /\right.$ torsion $)$.
Proof. Let $\pi^{\prime}: Y^{\prime} \rightarrow X$ be the desingularization considered in (0.2). If $S=S_{0}$, we may take π to be π^{\prime} and apply (0.2).

In general, let $p: Z \rightarrow X$ be a desingularization factorizing over $\sigma: Z \rightarrow Y$ and $\sigma^{\prime}: Z \rightarrow Y^{\prime}$ such that $p^{-1} S$ is a normal crossing divisor.

Then the conditions (0.1) and (0.2) are fulfilled for p. Call Δ the reduced exceptional locus of σ^{\prime} in Z, C the locus in Y where σ is not isomorphism. Then C is of codimension $\geqq 2$.

One has injections

$$
\begin{gathered}
p^{*} S_{X}^{n} / \text { torsion }=\sigma^{*} \mathscr{F}_{\text {an }}=\sigma^{\prime *} \pi^{\prime *} \Omega_{X}^{n} / \text { torsion } \rightarrow \sigma^{\prime *} \Omega_{Y}^{n} \cdot(\log F)(-F) \\
\rightarrow S_{Z}^{n}\left(\log p^{-1} S\right)(-\Lambda) \otimes \sigma^{*} \mathcal{O}_{Y^{\prime}}(-F)=: \mathscr{A} .
\end{gathered}
$$

As $(n-d) \cdot F_{\text {red }} \subset F$, one has

$$
\mathcal{O}_{Z}\left((n-d) \cdot\left(p^{-1} S\right)_{\mathrm{red}}\right) \subset \sigma^{*} \mathcal{O}_{Y^{\prime}}(F) \subset \sigma^{\prime *} \mathcal{O}_{Y^{\prime}}(-F) \otimes \mathcal{O}_{Z}(\Delta) .
$$

Let E be the divisor defined by $E \cap(Y-C):=\left(\Delta+\sigma^{*} F\right) \cap(Y-C)$. The torsion free sheaf $\sigma_{*} \mathscr{A}$ embeds on $(Y-C)$ in $\Omega_{Y}^{n}(\log E)(-E)_{\mid Y-c}$. As $\Omega_{Y}^{n}(\log E)(-E)$ is locally free everywhere, $\sigma_{*} \mathscr{A}$ embeds in it everywhere. This gives the map

$$
\sigma_{*} \sigma^{*} \mathscr{F}_{\mathrm{an}}=\mathscr{F}_{\mathrm{an}} \rightarrow \Omega_{Y}^{n}(\log E)(-E)
$$

(0.4) We fix now π as in (0.1) and E as in (0.3).

We may differentiate $\mathscr{F}_{\text {an }}$ in $\Omega_{Y}^{n+1}(\log E)(-E)$. This defines a complex $\mathscr{F}_{\mathcal{F i n}^{\geqq} n}{ }^{n}$ with $\mathscr{F}_{\mathrm{an}}^{i}=0$ for $i<n, \mathscr{F}_{\mathrm{an}}^{n}=\mathscr{F}_{\mathrm{an}}$ and $\mathscr{F}_{\mathrm{an}}^{n+l}=\Omega_{Y}^{n+l}(\log E)(-E)$ for $l \geqq 1$.

One has an injection of complexes

$$
\mathscr{F} \geqq_{\mathrm{an}}{ }^{n} \rightarrow \Omega_{\overline{\mathrm{Y}}}{ }^{n}(\log E)(-E) .
$$

(0.5) a) Let π be a desingularization as in (0.1). Fix $\bar{n}: \bar{Y} \rightarrow \bar{X}$ a good compactification π. This means that \bar{X} is proper, \bar{Y} is proper and smooth; one has a commutative diagram

where $(\bar{Y}-Y)$ and $(\bar{Y}-Y)+E$ are normal crossing divisors.
b) Let V be a Zariski open subset of Y. Define $V^{\prime}:=\bar{Y}-(\overline{Y-V})$. Then V^{\prime} is smooth and $\left(V^{\prime}-V\right)$ is a normal crossing divisor. One has a commutative diagram

Both sheaves $l_{*} \mathscr{F}_{\text {an }}$ and $\Omega_{V}^{n}\left(\log \left(V^{\prime}-V\right)\right.$) are contained in $l_{*}^{\prime} S_{V}^{n}$. Define

$$
\mathscr{F}_{p}:=l_{*}^{\prime} \mathscr{F}_{\mathrm{an}} \cap \Omega_{V^{\prime}}^{n}\left(\log \left(V^{\prime}-V\right)\right) \quad(p \text { for partial })
$$

c) Let V be a Zariski open subset of Y. A good compactification $\bar{\tau}: \bar{V} \rightarrow \bar{Y}$ of τ is defined by a commutative diagram

where $\bar{\nabla}$ is proper and smooth $(\bar{V}-V)$ and $(\bar{V}-V)+(\overline{E \cap V})$ are normal crossing divisors. If V is of the shape $\pi^{-1} U$, where U is a Zariski open subset of X, one has a commutative diagram

Both sheaves $l_{*} \mathscr{F}_{\text {an }}$ and $\Omega_{V}^{n}(\log (\bar{V}-V))$ are contained in $l_{*} \Omega_{V}^{n}$. Define

$$
\mathscr{F}:=l_{*} \mathscr{F}_{\text {an }} \cap \Omega_{\bar{p}}^{n}(\log (\bar{V}-V)) .
$$

As $\bar{\tau}_{*} \Omega_{V}^{n}(\log (\bar{V}-V))$ injects into $\tau_{*}^{\prime} \Omega_{V}^{n}\left(\log \left(V^{\prime}-V^{\prime}\right)\right)$ one has injections

$$
\bar{\tau}_{*} \mathscr{F F} \rightarrow \tau_{*}^{\prime} \mathscr{F}_{\mathrm{p}} \rightarrow\left(l_{\mathrm{l}} \tau\right)_{k} \mathscr{F}_{\mathrm{an}} .
$$

(0.6) One has injections

$$
\begin{gathered}
\mathscr{F}_{\mathrm{p}} \rightarrow \Omega_{V}^{n} \cdot\left(\log \left(V^{\prime}-V\right)+\overline{E \cap V}\right)(-\overline{E \cap V}), \\
\mathscr{F} \rightarrow \Omega_{V}^{n}(\log (\bar{V}-V)+\overline{E \cap V})(-\overline{E \cap V})
\end{gathered}
$$

which allow one to differentiate \mathscr{F}_{p} (resp. \mathscr{F}) in

$$
\Omega_{V^{\prime}}^{n+1}\left(\log \left(V^{\prime}-V\right)+\overline{E \cap V}\right)(-\overline{E \cap V})
$$

$\left[\right.$ resp. $\left.\Omega_{\bar{V}}^{n+1}(\log (\bar{V}-V)+\overline{E \cap V})(-\overline{E \cap V})\right]$.
Define complexes $\mathscr{F}_{\overline{\mathrm{p}}}{ }^{n}$ and $\mathscr{F} \geqq n$ by:

$$
\begin{gathered}
\mathscr{F}_{\mathrm{p}}^{i}=\mathscr{F}_{\mathrm{F}}=0 \text { for } i<n, \\
\mathscr{F}_{\mathrm{p}}^{n}=\mathscr{F}_{\mathrm{p}}, \quad \mathscr{\mathscr { F } ^ { n }}=\mathscr{F}, \\
\mathscr{F}_{p}^{n+l}=\Omega_{V}^{n+l}\left(\log \left(V^{\prime}-V\right)+\overline{E \cap V}\right)(-\overline{E \cap V}) \text { for } l \geqq 1, \\
\mathscr{F}^{n+l}=\Omega_{V}^{n+l}(\log (\bar{V}-V)+\overline{E \cap V})(-\overline{E \cap V}) \text { for } l \geqq 1 .
\end{gathered}
$$

One has injections of complexes.

$$
\left(\tilde{\tau}_{*} \mathscr{F}^{2}\right)^{\geqq n} \rightarrow\left(\tau_{*}^{\prime} \mathscr{F}_{\mathrm{p}}\right)^{\geqq n} \rightarrow\left(\left(l_{\mathrm{r}} \tau\right)_{*} \mathscr{F}_{\mathrm{an}}\right)^{\geqq n}
$$

As $\mathscr{F}_{F} \geqq n$ is a complex starting in degree n, one has an injection $R^{n} \bar{\tau}_{*} \mathscr{F} \geqq n[-n]$ $\rightarrow\left(\bar{\tau}_{*} \mathscr{F}\right)^{\geq n}$ (and similarly for the others), which gives injections of sheares

$$
R^{n} \bar{\tau}_{*} \mathscr{F} \geqq n \rightarrow R^{n} \tau_{*}^{\prime} \mathscr{F} \geq_{\mathbf{p}}^{\geq n} \rightarrow R^{n}\left(l_{\mathbf{r}} \tau\right)_{*} \mathscr{F}_{\mathrm{Ya}}^{\geqq n} .
$$

(0.7) a) We use the convention $S_{\emptyset}=\emptyset, E_{\emptyset}=\emptyset$. Define j_{s} the inclusion $Y-E_{s} \rightarrow Y$ and i_{s} the inclusion $X-S_{s} \rightarrow X$ for $s=\emptyset, 0, \ldots, d$.

In the derived category $D^{b}(Y)$ of bounded complexes on Y, one has a map

$$
\Omega_{\bar{Y}}^{\frac{\imath}{\eta}}(\log E)(-E) \rightarrow j_{d!} \mathbb{C} / \mathbb{Z}(n),
$$

obtained as the composite map

This defines maps in $D^{b}(Y)$

$$
\varphi_{j_{s}}^{\mathrm{an}}: \mathscr{F}_{\mathrm{an}}^{\geqq n} \rightarrow j_{s 1} \mathbb{C} / \mathbb{Z}(n) \quad \text { for } s=\emptyset, 0, \ldots, d .
$$

Define in $D^{b}(Y) \mathbb{Z}(n)_{j_{s}, \text { an }}:=\operatorname{cone} \varphi_{j_{2}}^{\mathrm{an}}[-1]$ for $s=\emptyset, 0, \ldots, d$.
One has maps

$$
\mathbb{Z}(n)_{j_{d}, \text { an }} \rightarrow \ldots \rightarrow \mathbb{Z}(n)_{j_{0}, \text { an }} \rightarrow \mathbb{Z}(n)_{j_{q}, \text { an }} \rightarrow \mathbb{Z}(n)_{\mathscr{P}, \text { an }},
$$

where $\mathbb{Z}(n)_{\mathcal{G} \text {, an }}:=\operatorname{cone}\left(\Omega_{\bar{Y}}^{\geq} n \rightarrow \mathbb{C} / \mathbb{Z}(n)\right)[-1]$ is the Deligne complex.
b) If V is a Zariski open subset of Y as in (0.5), $\varphi_{j_{s}}^{\mathrm{an}}$ defines in $D^{b}\left(V^{\prime}\right)$

$$
\varphi_{j_{s}}^{\mathrm{p}}: \mathscr{F}_{\mathbf{y}}^{\geq} \geq{ }^{\underline{n}} \rightarrow \mathrm{l}_{*}^{\prime} j_{s} \mathbb{C} / \mathbb{Z}(n)
$$

and therefore

$$
\varphi_{j_{s}}^{P}: \mathscr{F}_{\mathbf{p}} \geqq^{n} \rightarrow R l_{*}^{\prime} j_{s i} \mathbb{C} / \mathbb{Z}(n)
$$

for $s=0,0, \ldots, d$.
Define in $\left.D^{b}\left(V^{\prime}\right) \mathbb{Z}(n)\right)_{j_{s}}^{p}:=$ cone $\varphi_{j_{s}}^{p}[-1]$ for $s=\emptyset, 0, \ldots, d$.
Similarly define a "partial" Deligne-Beilinson complex by

$$
\mathbb{Z}(n)_{S}^{\mathbf{M}}:=\operatorname{cone}\left(\Omega_{V^{\prime}}^{\mathbb{Z}}\left(\log \left(V^{\prime}-V\right)\right) \rightarrow R l_{*}^{\prime} \mathbb{C} / \mathbb{Z}(n)\right)[-1] .
$$

One has maps in $D^{b}\left(V^{\prime}\right)$:

$$
\mathbb{Z}(n)_{j_{d}}^{p_{d}} \rightarrow \ldots \rightarrow \mathbb{Z}(n)_{j_{0}}^{p} \rightarrow \mathbb{Z}(n)_{j_{0}}^{p} \rightarrow \mathbb{Z}(n)_{\mathscr{W}}^{p} .
$$

c) Similarly, one has maps in $D^{b}(\bar{V})$

$$
\varphi_{j_{s}}: \mathscr{F} \geqq n \rightarrow R l_{*} j_{s t} \mathbb{C} / \mathbb{Z}(n) \text { for } s=\emptyset, 0, \ldots, d
$$

Define in $D^{b}(\bar{V})$

$$
\mathbb{Z}(n)_{j_{s}}:=\operatorname{cone} \varphi_{j_{s}}[-1], \text { for } s=\emptyset, 0, \ldots, d .
$$

The Deligne-Beilinson complex is defined by

$$
\mathbb{Z}(n)_{\mathcal{F}}:=\operatorname{cone}\left(\Omega \overline{\bar{V}}^{\frac{2}{n}}(\log (\bar{V}-V)) \rightarrow R l_{*} \mathbb{C} / \mathbb{Z}(n)[-1]\right.
$$

One has maps in $D^{b}(\bar{V})$

$$
\mathbb{Z}(n)_{j_{d}} \rightarrow \ldots \rightarrow \mathbb{Z}(n)_{j_{0}} \rightarrow \mathbb{Z}(n)_{j_{b}} \rightarrow \mathbb{Z}(n)_{\mathscr{G}}
$$

(0.8) Let U be a Zariski open subset of X.

We consider a compactification of $\pi^{-1} U$ as in (0.5).
As

$$
\begin{aligned}
R \pi_{*} j_{d!} & =R \pi_{*} R j_{d!}\left(j_{d l} \text { is exact }\right) \\
& =R\left(\pi j_{d}\right):(\pi \text { is proper }) \\
& =R i_{d!}=i_{d!}\left(i_{d!} \text { is exact }\right)
\end{aligned}
$$

$\varphi_{j_{d}}$ defines

$$
\varphi_{i_{d}}: R(\bar{\pi} \tilde{\tau})_{*} \mathscr{F} \geqq n \rightarrow R k_{*} i_{d!} \mathbb{C} / Z(n) \quad \text { in } D^{b}(\bar{X})
$$

This defines in $D^{b}(\bar{X})$

$$
\varphi_{i_{s}}: R(\tilde{\pi} \tilde{\tau})_{*} \mathscr{F} \geqq n \rightarrow R k_{*} i_{s l} \mathbb{C} / \mathbb{Z}(n)
$$

for $s=\emptyset, 0, \ldots, d$.
Define $\boldsymbol{Z}(n)_{t}:=$ cone $\varphi_{i_{1}}[-1]$ for $s=\emptyset, 0, \ldots, d$.
One has maps in $D^{b}(\bar{X})$

$$
\mathbf{Z}(n)_{i_{\theta}} \rightarrow \ldots \rightarrow \mathbf{Z}(n)_{i_{0}} \rightarrow \mathbb{Z}(n)_{i_{\theta}} .
$$

(0.9) Define $\mathscr{C}_{j_{s}}$ by the exact triangle in $D^{b}(\bar{X})$

$$
\mathbb{Z}(n)_{j_{s}} \rightarrow \mathbb{Z}(n)_{\mathscr{D}} \rightarrow \mathscr{C}_{j_{s}} \xrightarrow{\mathcal{Z}} \mathbb{Z}(n)_{j_{s}},
$$

and similarly for $\mathscr{C}_{j_{s}}^{p}$ in $D^{b}\left(V^{\prime}\right)$ and $\mathscr{C}_{j_{s}, \text { an }}$ in $D^{b}(V)$, for $s=\emptyset, 0, \ldots, d$.
One has

$$
\begin{gathered}
\mathscr{C}_{j_{s}}=\operatorname{cone}\left(\Omega_{\bar{V}}^{\geq n}(\log (\bar{V}-V)) / \mathscr{F} \geqq n \rightarrow R l_{*} \mathbb{C} / \mathbb{Z}(n)_{\mid E_{s}}\right)[-1], \\
\mathscr{C}_{j_{s}}^{p}=\operatorname{cone}\left(\Omega_{\bar{V}}^{\geq} n\left(\log \left(V^{\prime}-V\right)\right) / \mathscr{F}_{\bar{F}}^{\geqq n} \rightarrow R l_{*}^{\prime} \mathbb{C} / \mathbb{Z}(n)_{\mid E_{s}}\right)[-1], \\
\mathscr{C}_{j_{s}, \text { an }}=\operatorname{cone}\left(\Omega_{\bar{V}}^{\geq n} / \mathscr{F} Z_{\text {an }}^{\geqq n} \rightarrow \mathbb{C} / \mathbb{Z}(n)_{\mid E_{s}}\right)[-1] .
\end{gathered}
$$

(0.10) By definition one has $\varphi_{i_{d}}=R(\bar{\pi} \bar{\tau})_{*} \varphi_{j^{a}}$, and one has maps

$$
\mathbb{Z}(n)_{i_{s}} \rightarrow R(\bar{\pi} \bar{\tau})_{*} \mathbb{Z}(n)_{j_{s}} \text { for } s=\emptyset, 0, \ldots, d,
$$

coming from the maps

$$
i_{s!}=\pi_{*} j_{s!} \rightarrow R \pi_{*} j_{s!} .
$$

Therefore we have an isomorphism

$$
\mathbb{Z}(n)_{i_{d}}=R(\bar{\pi} \bar{\tau})_{*} \mathbb{Z}(n)_{j_{d}}
$$

and maps

$$
\mathbb{Z}(n)_{i_{s}} \rightarrow R(\bar{\pi} \tilde{\tau})_{*} \mathbb{Z}(n)_{j_{s}} \quad \text { for } \quad s=\emptyset, 0, \ldots, d-1
$$

(0.11) If Z is any complex algebraic variety, we denote by $\alpha: Z_{\mathrm{an}} \rightarrow Z_{\text {zar }}$ the continuous map from Z endowed with the classical topology to Z endowed with the Zariski topology.

1. Definition of the Zariski sheaves

(1.1) Let V be a Zariski open subset of Y as in (0.5).

Define $\mathscr{F}_{\text {an }}(V)=H^{0}(V, \mathscr{F}), \mathscr{F}_{\mathrm{p}}(V)=H^{0}\left(V^{\prime}, \mathscr{F}_{\mathrm{p}}\right)$, and $\mathscr{F}(V)=H^{0}(\bar{V}, \mathscr{F})$.
Lemma. i) $\mathscr{F}_{\mathrm{p}}(V)$ does not depend on \bar{Y} choosen in (0.5) a).
ii) $\mathscr{F}(V)$ does not depend on \bar{V} choosen in $(0.5) \mathrm{c})$.

It does not require the existence of $\bar{\tau}$.
iii) One has injections $\mathscr{F}(V) \rightarrow \mathscr{F}_{\mathrm{p}}(V) \rightarrow \mathscr{F}_{\mathrm{an}}(V)$.

Proof. i) Let $Y \xrightarrow{\lambda_{Y}} Z \xrightarrow{\sigma_{Y}} \bar{Y}$ with $\sigma_{Y} \lambda_{Y}=l_{Y}$ be another good compactification. One has a commutative diagram

with $W=Z-(\overline{Y-V})$.

One has $\sigma_{*}^{\prime} S_{W}^{n}(\log (W-V))=\Omega_{V}^{n}\left(\log \left(V^{\prime}-V\right)\right)$.
From the exact sequence

$$
0 \rightarrow \mathscr{G}_{\mathrm{p}} \rightarrow \lambda_{*}^{\prime} \mathscr{F}_{\mathrm{an}} \oplus \Omega_{W}^{n}(\log (W-V)) \rightarrow \lambda_{*}^{\prime} Q_{V}^{n}
$$

one obtains the exact sequence

$$
0 \rightarrow \sigma_{*}^{\prime} \mathscr{G}_{\mathrm{p}} \rightarrow l_{*}^{\prime} \mathscr{F}_{\mathrm{an}} \oplus \Omega_{V}^{n}\left(\log \left(V^{\prime}-V\right)\right) \rightarrow l_{*}^{\prime} \Omega_{V}^{n}
$$

Therefore one has $\sigma_{*}^{\prime} \mathscr{G}_{\mathrm{p}}=\mathscr{F}_{\mathrm{p}}$.
As for any other good compactification $Y \xrightarrow{t_{Y}^{1}} \bar{Y}_{1}$ there is a third one Z as above with $Y \xrightarrow{\lambda_{Y}} Z \xrightarrow{\sigma_{Y}^{1}} \bar{Y}_{1}$ such that $l_{Y}^{1}=\sigma_{Y}^{1} \lambda_{Y}$ and $l_{Y}=\sigma_{Y} \lambda_{Y}$, this proves i).
ii) Let $V \xrightarrow{\lambda} W \xrightarrow{\sigma} \bar{V}$ with $\sigma \lambda=l$ be another good compactification of V (without necessarily assuming that W and \bar{V} map to \bar{Y}).

One has $\sigma_{*} \Omega_{W}^{n}(\log (W-V))=\Omega_{V}^{n}(\log (\bar{V}-V))$.
From the exact sequence

$$
0 \rightarrow \mathscr{G} \rightarrow \lambda_{*} \mathscr{F}_{{ }_{a n}} \oplus \Omega_{W}^{n}(\log (W-V)) \rightarrow \lambda_{*} \Omega_{V}^{n}
$$

one obtains the exact sequence

$$
0 \rightarrow \sigma_{*} \mathscr{G} \rightarrow l_{*} \mathscr{F}_{\text {an }} \oplus \Omega_{V}^{n}(\log (\bar{V}-V)) \rightarrow l_{*} \Omega_{V}^{n}
$$

which proves that $\sigma_{*} \mathscr{G}=\mathscr{F}$.
One concludes as before
iii) By 0.5 c), one has that

$$
H^{0}\left(\bar{Y}, \tau_{*} \mathscr{F}\right)=H^{\mathrm{o}}(\overline{\boldsymbol{V}}, \mathscr{F})=\mathscr{F}(V)
$$

injects in

$$
H^{0}\left(\bar{Y}, \tau_{*}^{\prime} \mathscr{F}_{p}\right)=H^{0}\left(V^{\prime}, \mathscr{F}_{p}\right)=\mathscr{F}_{p}(V)
$$

(1.2) Define

$$
\begin{aligned}
\mathscr{F}_{\mathrm{an}}(V)_{\mathrm{cl}} & :=\operatorname{Ker} d: \mathscr{F}_{\mathrm{an}}(V) \rightarrow H^{0}\left(V, \mathscr{F}_{\mathrm{an}}^{n+1}\right), \\
\mathscr{F}_{\mathrm{p}}(V)_{\mathrm{cl}} & :=\operatorname{Ker} d: \mathscr{F}_{\mathrm{p}}(V) \rightarrow H^{0}\left(V^{\prime}, \mathscr{F}_{\mathrm{p}}^{n+1}\right), \\
\mathscr{F}(V)_{\mathrm{cl}} & :=\operatorname{Ker} d: \mathscr{F}(V) \rightarrow H^{0}\left(\bar{V}, \mathscr{F}^{n+1}\right),
\end{aligned}
$$

Obviously one may replace $H^{0}\left(V, \mathscr{F}_{\mathrm{an}}^{n+1}\right), H^{0}\left(V^{\prime}, \mathscr{F}_{\mathrm{p}}^{n+1}\right)$, and $H^{0}\left(\bar{V}, \mathscr{F}^{n+1}\right)$ by $H^{0}\left(V, \Omega_{V}^{n+1}\right)$, and the three groups defined do not depend on E choosen in (0.3).

Corollary. i) The groups $\mathscr{F}_{\mathrm{an}}(V)_{\mathrm{cl}}, \mathscr{F}_{p}(V)_{\mathrm{c} 1}$, and $\mathscr{F}(V)_{\mathrm{cl}}$ depend only on the choice of π in (0.1) and on V. They define Zariski sheaves on Y.
ii) One has injections

$$
\mathscr{F}(V)_{\mathrm{cl} \rightarrow} \rightarrow \mathscr{F}_{p}(V)_{\mathrm{ci}} \rightarrow \mathscr{F}_{\mathrm{an}}(V)_{\mathrm{cl}} .
$$

(1.3) Let U be a Zariski open subset of X. We consider a good compactification of $V=\pi^{-1} U$ as in (0.5).

Lemma. i) The group $\mathscr{F}\left(\pi^{-1} U\right)_{\mathrm{cl}}$ depends only on U. It defines a Zariski sheaf on X. ii) If U is smooth, then one has $\mathscr{F}\left(\pi^{-1} U\right)_{\mathrm{cl}}=F^{n} H^{n}(U, \mathbb{C})$, the Hodge filtration.

Proof. i) Let $\sigma: Z \rightarrow Y$ be a birational morphism such that Z is smooth and $F:=\sigma^{*}$ E is a normal crossing divisor. Define $p:=\pi \sigma$ and $W:=\sigma^{-1} V$. Choose a good compactification $\lambda: W \rightarrow \bar{W}$ such that one has a commutative diagram

One has $\bar{\sigma}_{*} \Omega_{W}^{n}(\log (\bar{W}-W))=\Omega_{\bar{V}}^{n}(\log (\bar{V}-V))$.
From the exact sequence

$$
0 \rightarrow \mathscr{G} \rightarrow \lambda_{*} \sigma^{*} \cdot \mathscr{Y}_{{ }_{a n}} \oplus \Omega_{W}^{n}(\log (\bar{W}-V)) \rightarrow \lambda_{*} \Omega_{W}^{n}
$$

one obtains the exact sequence
which shows that $\bar{\sigma}_{*} \mathscr{G}=\mathscr{F}$.
Therefore one has

$$
\begin{aligned}
\mathscr{F}\left(\pi^{-1} U\right)_{\mathrm{cl}} & =\operatorname{Ker}\left(\mathscr{F}\left(\pi^{-1} U\right) \rightarrow H^{0}\left(\pi^{-1} U, \Omega_{\pi-1}^{n+1}\right)\right. \\
& =\operatorname{Ker}\left(\mathscr{G}\left(p^{-1} U\right) \rightarrow H^{0}\left(p^{-1} U, \Omega_{p-1}^{n+1}\right)\right. \\
& =\mathscr{G}\left(\pi^{-1} U\right)_{\mathrm{cl}} .
\end{aligned}
$$

Now if $\pi_{1}: Y_{1} \rightarrow X$ is another desingularization as in (0.1), we find a third one Z as above with $\sigma: Z \rightarrow Y$ and $\sigma_{1}: Z \rightarrow Y_{1}$ such that $p:=\pi \sigma=\pi_{1} \sigma_{1}$.
ii) If U is smooth, replace in the previous argument V by $U, \mathscr{F}_{\text {an }}$ by Ω_{U}^{n}, W by V. Then \mathscr{F} is replaced by $\Omega_{V}^{n}(\log (\bar{V}-V))$.
(1.4) We may now define on $X_{\text {zar }}$ the sheaves we are interested in.

Let U be a Zariski open subset of \boldsymbol{X}. Choose a compactification \bar{X} as in (0.5) a). We consider $\mathbb{Z}(n)_{i_{s}}$ in $D^{b}(\bar{X})$ as defined in (0.8), which depends on U.

Define

$$
H^{n}(n)_{i_{s}}(U):=H^{n}\left(\bar{X}, \mathbb{Z}(n)_{i_{s}}\right)
$$

and

$$
\mathscr{F}_{i_{s}}(U):=\operatorname{Ker}\left(\mathscr{F}\left(\pi^{-1} U\right)_{\mathrm{cl}^{1}} \rightarrow H^{n}\left(U, i_{s t} \mathbb{C} / \mathbb{Z}(n)\right) \text { for } s=\emptyset, 0, \ldots, d .\right.
$$

Theorem and definition

1) The groups $H^{\prime \prime}(n)_{i_{g}}(U)$ depend only on U.
2) If $\sigma: X^{\prime} \rightarrow X$ is any morphism, then one has a map

$$
\sigma^{-1}: H^{n}(n)_{i_{g}}(U) \rightarrow H^{n}(n)_{i d}\left(\sigma^{-1} U\right)
$$

3) If σ is the embedding of a Zariski open subset W, one has maps

$$
\sigma^{-1}: H^{n}(n)_{i_{s}}(U) \rightarrow H^{n}(n)_{i_{s}}(U \cap W)
$$

for $s=\emptyset, 0, \ldots, d$, and the groups $H^{n}(n)_{i_{g}}(U)$ define Zariski presheaves.
4) Assume U to be affine.

If $d<n-2$, then $H^{n}(n)_{i_{d}}(U)=H^{n}(n)_{i_{\theta}}(U)$.
If $n=2$, then $H^{2}(2)_{i_{0}}(U)=H^{2}(2)_{i_{g}}(U)$ provided $S_{0} \cap U$ is connected.
If $n>2$, then $H^{n}(n)_{i_{d-1}}(U)=H^{n}(n)_{i_{\theta}}(U)$ if $d=n-2$, and $H^{n}(n)_{i_{d-2}}(U)=H^{n}(n)_{i_{\theta}}(U)$ if $d=n-1$.
5) If X is smooth, then $\left.H^{n}(n)_{i_{\varphi}}(U)=H_{\mathscr{\Phi}}^{n}(U, n):=H^{n}\left(\bar{U}, \mathbb{Z}(n)_{\mathscr{G}}\right)(0.7) \mathrm{c}\right)$, the Deligne-Beilinson group.
6) Define $\mathscr{H}^{n}(n)$ to be the Zariski sheaf associated to $H^{n}(n)_{i}$, and $\mathscr{H}^{n}(n)_{i_{s}}$ to be the one associated to $H^{n}\left(n_{i_{s}}\right.$ for $s=0, \ldots, d$.

If $d<n-2$, then $\mathscr{H}^{n}(n)_{i_{d}}=\mathscr{H}^{n}(n)$.
If $n=2$, then $\mathscr{H}^{2}(2)_{i 0}=\mathscr{H}^{2}(2)$.
If $n>2$, then $\mathscr{H}^{n}(n)_{i_{d-1}}=\mathscr{H}^{n}(n)$ if $d=n-2$ and $\mathscr{H}^{n}(n)_{i_{d-2}}=\mathscr{H}^{n}(n)$ if $d=n-1$. At any case, there is always an integer s_{0} with $0 \leqq s_{0} \leqq d$ such that

$$
\mathscr{H}^{n}(n)_{i_{s_{0}}}=\mathscr{H}^{n}(n)
$$

If X is smooth, then $\mathscr{H}^{n}(n)=\mathscr{H}_{s}^{n}(n)$, the Deligne-Beilinson sheaf associated to $\mathbf{H}_{\mathbf{m}}^{\mathbf{n}}(\boldsymbol{U}, \boldsymbol{n})$.
7) If $\sigma: X^{\prime} \rightarrow X$ is any morphism, one has a map $\sigma^{-1}: \mathscr{H}^{n}(n) \rightarrow \sigma_{*} \mathscr{H}^{n}(n)$. In other words, $\mathscr{H}^{n}(n)$ is functorial. In particular, if σ is any desingularization of X (not necessarily as in (0.1)), one has a map $\mathscr{H}^{n}(n) \rightarrow \sigma_{*} \mathscr{H}_{\mathscr{D}}^{n}(n)$.
Proof. 1) One has an exact sequence

$$
0 \rightarrow H^{n-1}\left(U, i_{s} \mathbb{C} / \mathbb{Z}(n)\right) \rightarrow H^{n}(n)_{i_{s}}(U) \rightarrow \mathscr{F}_{i_{s}}(U) \rightarrow 0 .
$$

As $\mathscr{F}\left(\pi^{-1} U\right)_{\mathrm{cl}}$ depends only on $\left.U(1.3) i\right), \mathscr{F}_{i_{9}}(U)$ depends only on U as well. This proves 1).
2), 3) Consider a commutative diagram

where π^{\prime} and π are as in (0.1). In case 3) (σ is the embedding of an open set $X^{\prime}=W$), just take $\pi^{\prime}=\pi_{\mid W^{\prime}}$.

Define $\mathscr{G}_{\mathrm{an}}:=\pi^{*} \Omega_{X_{X}^{\prime}}^{n} /$ torsion. Then $\tau^{*} \mathscr{F}_{\mathrm{an}}$ injects in $\mathscr{G}_{\mathrm{an}}$, and $\tau^{*} \Omega_{Y}^{n+l}(\log E)(-E)$ injects in

$$
\Omega_{\mathbf{Y}}^{n+l}\left(\log \tau^{-1} E\right)\left(-\tau^{*} E\right)
$$

Define E^{\prime} such that $\Omega_{Y}^{n}\left(\log E^{\prime}\right)\left(-E^{\prime}\right)$ contains both $\mathscr{G}_{\mathrm{an}}$ and $\tau^{*} \Omega_{Y}^{n}(\log E)(-E)(0.3)$. Define correspondingly $\mathscr{G}_{\text {an }}^{\geq n}$ (0.4).

If U is Zariski open in X, define $U^{\prime}:=\sigma^{-1} U, V^{\prime}:=\pi^{\prime-1} U^{\prime}, V:=\pi^{-1} U$. Take compactifications
as in (0.5).

From the exact sequence

$$
0 \rightarrow \bar{\tau}_{*} \mathscr{G} \rightarrow \bar{\tau}_{*} l_{*}^{\prime} \mathscr{G}_{\mathrm{an}} \oplus \bar{\tau}_{*} \Omega_{V}^{n}\left(\log \left(\bar{V}^{\prime}-V^{\prime}\right)\right) \rightarrow \bar{\tau}_{*} l_{*}^{\prime} \Omega_{V}^{n},
$$

and the maps

$$
\mathscr{F}_{\mathrm{an}} \rightarrow \tau_{*} \mathscr{G}_{\mathrm{an}}, \quad \Omega_{V}^{n}(\log (\bar{V}-V)) \rightarrow \bar{\tau}_{*} \Omega_{V}^{n}\left(\log \left(\bar{V}^{\prime}-V^{\prime}\right)\right),
$$

$\mathscr{F}^{n+l} \rightarrow \bar{\tau}_{*} \mathscr{G}^{n+l}$ for $l \geqq 1$, one obtains maps $\mathscr{F} \rightarrow \bar{\tau}_{*} \mathscr{G}$ and

$$
\mathscr{F}_{\mathcal{F}} \geqq n \rightarrow\left(\bar{\tau}_{*} \mathscr{G}^{\prime}\right)^{\geqq n} .
$$

This gives maps in $D^{b}(\bar{x})$

One also has maps

and if σ is as in 3), maps

$$
R k_{*} i_{s t} \mathbb{C} / \mathbb{Z}(n) \rightarrow R k_{*} \sigma_{*} i_{s 1} \mathbb{C} / \mathbb{Z}(n) \rightarrow R\left(\bar{\sigma} k^{\prime}\right)_{*} i_{s l} \mathbb{C} / \mathbb{Z}(n)
$$

Therefore one has maps

$$
\begin{aligned}
\mathbb{Z}(n)_{i_{\phi}} & \left.\rightarrow R \bar{\sigma}_{*} \mathbb{Z}(n)_{i_{t}} \text { and if } \sigma \text { is as in } 3\right), \\
\mathbb{Z}(n)_{i_{s}} & \rightarrow R \bar{\sigma}_{*} \mathbb{Z}(n)_{i_{s}} \text { for } s=0, \ldots, d .
\end{aligned}
$$

Then $H^{n}(n)_{i}(U)$ maps to $H(n)_{i \theta}\left(\sigma^{-1} U\right)$.
This proves 2).
Also in 3$), H^{n}(n)_{i_{s}}(U)$ maps to $H^{n}(n)_{i_{s}}(U \cap W)$. This proves 3$)$.
4) If U is affine, then $S_{s} \cap U$ is affine as well and therefore $H^{l}\left(S_{s} \cap U, \mathbb{C} / \mathbb{Z}(n)\right)=0$
for $l>s$. Now $H^{n}(n)_{i_{s}}(U)$ surjects onto $H^{n}(n)_{i_{g}}(U)$ if $H^{n}\left(S_{s} \cap U, \mathbb{C} / \mathbb{Z}(n)\right)$ $=H^{n-1}\left(S_{s} \cap U, \mathbb{C} / \mathbb{Z}(n)\right)=0$, and is isomorphic to it if moreover $H^{n-2}(U, \mathbb{C} / \mathbb{Z}(n))$ surjects onto $H^{n-2}\left(S_{s} \cap U, \mathbb{C} / \mathbb{Z}(n)\right)$.
5) If X is smooth, then \mathscr{F} is just $\Omega_{\bar{U}}^{n}(\log (\bar{U}-U))$ for a good compactification of U [Proof of (1.3)ii)].
6) By 2), $H^{n}(n)_{i \theta}(U)$ maps to $H^{n}(n)_{i f}\left(\sigma^{-1} U\right)$, which maps to $H^{0}\left(\sigma^{-1} U, \mathscr{H}^{n}(n)\right)$. This proves 7), where one applies 5) if X^{\prime} is smooth.
1.5) We define on $Y_{\text {zar }}$ sheaves to which we will compare $\mathscr{H}^{n}(n)_{i_{r}}$, constructed in (1.4). Let V be a Zariski open subset of Y. Choose compactifications as in (0.5).

Define

$$
\begin{aligned}
H^{n}(n)_{j_{s, ~ a n ~}}(V) & :=H^{n}\left(V, \mathbb{Z}(n)_{j_{s}, \text { an }}\right), \\
H^{n}(n)_{j_{s}, p}(V) & \left.:=H^{n}\left(V^{\prime}, \mathbb{Z}(n)\right)_{j_{s}}^{p}\right), \\
H^{n}(n)_{j_{s}}(V) & :=H^{n}\left(\bar{V}, \mathbb{Z}(n)_{j_{s}}\right)
\end{aligned}
$$

for $s=\emptyset, 0, \ldots, d, \mathscr{D}$ with the convention $\mathbb{Z}(n)_{j \mathscr{}}=\mathbb{Z}(n)_{\mathscr{T}}$ etc \ldots.

Proposition and definition

1) The groups $H^{n}(n)_{j_{s}, \text { an }}(V), H^{n}(n)_{j_{s}, \mathrm{p}}(V), H^{n}(n)_{j_{s}}(V)$ depend only on V. They define Zariski presheaves on Y for $s=\emptyset, 0, \ldots, d, \mathscr{D}$.
2) Let $\mathscr{H}^{n}(n)_{j_{s}, \text { an }}, \mathscr{H}^{n}(n)_{j_{s}, p}, \mathscr{H}^{n}(n)_{j_{s}}$ be the associated sheaves. There are injectives maps

$$
\mathscr{H}^{n}(n)_{j_{s}} \rightarrow \mathscr{H}^{n}(n)_{j_{s}, \mathrm{P}} \rightarrow \mathscr{H}^{n}(n)_{j_{s}, \text { an }}
$$

for $s=\emptyset, 0, \ldots, d, \mathscr{D}$.
3) There are maps

$$
\mathscr{H}^{n}(n)_{j_{a}} \rightarrow \ldots \rightarrow \mathscr{H}^{n}(n)_{j_{0}} \rightarrow \mathscr{H}^{n}(n)_{j_{9}} \rightarrow \mathscr{H}^{n}(n)_{\mathscr{A}}
$$

and similarly for $\mathscr{H}^{n}(n)_{j_{s}, \mathrm{p}}$ and $\mathscr{H}^{n}(n)_{j_{s} \text { an }}$.
Proof. 1) This is by definition for $H^{n}(n)_{f_{k}, \text { an }}$. One has an exact sequence
(*) $\quad 0 \rightarrow H^{n-1}\left(V, j_{s t} \mathbb{C} / \mathbb{Z}(n)\right) \rightarrow H^{n}(n)_{j_{s}}(V) \rightarrow \operatorname{Ker}\left(\mathscr{F}(V)_{\mathrm{cl}_{1}} \rightarrow H^{n}\left(V, j_{s i} \mathbb{C} / \mathbb{Z}(n)\right)\right) \rightarrow 0$.
As $\mathscr{F}(V)_{\mathrm{cl}}$ depends only on $V(1.2) \mathrm{i}$), the kernel to $H^{n}\left(V, j_{s} \mathbb{C} / \mathbb{Z}(n)\right)$ depends only on V as well. Similarly for $H^{n}(n)_{j, p}$.
2) One has

$$
\begin{aligned}
& R \bar{\tau}_{*} \mathbb{Z}(n)_{j_{s}}=\operatorname{cone}\left(R \bar{\tau}_{*} \mathscr{F} \geqq n \rightarrow R\left(l_{\chi} \tau\right)_{*} j_{s} \mathbb{C} / \mathbb{Z}(n)\right)[-1], \\
& R \tau_{*} \mathbb{Z}(n)_{i_{s}}=\operatorname{cone}\left(R \tau_{*}^{\prime} \mathscr{F} \geq n \rightarrow R\left(l_{\gamma} \tau\right)_{*} j_{s} \mathbb{C} / \mathbb{Z}(n)\right)[-1] .
\end{aligned}
$$

As $\mathscr{F} \geqq n$ starts in degree n, one has a map $R^{n} \tilde{\tau}_{*} \mathscr{F} \geqq n[-n] \rightarrow R \bar{\tau}_{*} \mathscr{F} \geqq n$ whose cone starts in degree $(n+1)$.

Define just for a moment in $D^{b}(\bar{Y})$

$$
K=\operatorname{cone}\left(R^{n} \tilde{\tau}_{*} \mathscr{F} \underline{\Xi}^{n}[-n] \rightarrow R\left(l_{y} \tau\right)_{*} j_{s} \mathbb{C} / \mathbb{Z}(n)\right)[-1]
$$

Then one has an isomorphism

$$
H^{n}(\bar{Y}, K)=H^{n}\left(\bar{Y}, R \tau_{*} \mathbb{Z}(n)_{j_{j}}\right) .
$$

On the other hand, one has an injective map (0.6):

$$
R^{n} \tau_{*} \mathscr{F} \geqq n \rightarrow R^{n} \tau_{*}^{\mathscr{F}} \Xi_{\mathrm{P}}{ }^{n}
$$

and again a map

$$
R^{n} \tau_{*}^{\prime} \mathscr{F} \geqq n[-n] \rightarrow R \tau_{\mathbf{F}}^{\prime \mathscr{F} \geqslant n}
$$

Therefore

$$
H^{n}(n)_{j_{s}}(V)=H^{n}\left(\bar{Y}, R \bar{\tau}_{*} \mathbb{Z}(n)_{j_{s}}\right)
$$

maps to

$$
\left.H^{n}\left(\bar{Y}, R \tau_{*}^{\prime} \mathbb{Z}(n)\right)_{j_{s}}^{p}\right)=H^{n}(n)_{j_{s}, \mathrm{p}}(V)
$$

Now write the sequence $\left({ }^{*}\right)$ and the corresponding sequence $\left({ }^{*}\right)_{\mathrm{p}}$ for $H^{n}(n)_{j, p}(V)$, and apply (1.2) ii).

This gives the injection $\mathscr{H}^{n}(n)_{j_{s}} \rightarrow \mathscr{H}^{n}(n)_{j_{s} \text { p }}$.
As for the second one consider the restriction map

$$
H^{n}\left(V^{\prime}, \mathbb{Z}(n)_{j_{s}}^{p}\right) \rightarrow H^{n}\left(V, \mathbb{Z}(n)_{j_{s} \mid V}^{p}\right)
$$

As $\mathbb{Z}(n)_{j_{s} \mid V}^{p}=\mathbb{Z}(n)_{j_{s}, \text { an }}$, this gives a map

$$
H^{n}(n)_{j_{s}, \mathrm{p}} \rightarrow H^{n}(n)_{j_{n}, \mathrm{an}}(V)
$$

One concludes as before. [Actually one could argue via the restriction map to construct the injection $\mathscr{H}^{n}(n)_{j_{s}} \rightarrow \mathscr{H}^{n}(n)_{j_{s}, \text { an }}$.]
3) Apply (0.7).
(1.6) We could have defined on $X_{\text {zar }}$ "partial" and "analytic" sheaves in the same way. As we will not use them, we do not give details.
(1.7) Proposition. There is a map

$$
\mathscr{H}^{n}(n)_{i_{s}} \rightarrow \pi_{*} \mathscr{H}^{n}(n)_{j_{s}} .
$$

Proof. By (0.10) there is a map, for each Zariski open set U in X :

and one has a map

$$
H^{n}(n)_{j_{s}}\left(\pi^{-1} U\right) \rightarrow H^{0}\left(\pi^{-1} U, \mathscr{H}(n)_{j_{j}}\right) .
$$

(1.8) Proposition. There is a map

$$
\mathscr{H}^{n}(n)_{j_{s}, \text { an }} \rightarrow R^{n} \alpha_{*} \mathbb{Z}(n)_{j_{s}, \text { an }} .
$$

Proof. One has $H^{n}(n)_{j_{s}, \text { an }}(V)=H^{n}\left(V, \mathbb{Z}(n)_{j_{s, ~ a n ~}}\right)$ which maps to $H^{0}\left(V, R^{n} \alpha_{*} \mathbb{Z}(n)_{j_{s}, \text { an }}\right)$.
(1.9) 1) Let V be a Zariski open subset on Y, and take compactifications as in (0.5). One has

$$
\begin{aligned}
H^{n-1}\left(V, \mathscr{C}_{j, ~ a n}\right) & =H^{n-1}\left(V^{\prime}, \mathscr{C}_{j}^{p}\right)=H^{n-1}\left(\bar{V}, \mathscr{C}_{j 2}\right) \\
& =H^{n-2}\left(V \cap E_{s,} \mathbb{C} / \mathbb{Z}(n)\right) .
\end{aligned}
$$

One also has

$$
\begin{aligned}
H^{n-1}\left(V, \mathbb{Z}(n)_{\mathscr{P}, \mathrm{an}}\right) & =H^{n-1}\left(V^{\prime}, \mathbb{Z}(n)^{\text {P }}\right)=H^{n-1}\left(\bar{V}, \mathbb{Z}(n)_{\mathscr{G}}\right) \\
& =H^{n-2}(V, \mathbb{C} / \mathbb{Z}(n)) .
\end{aligned}
$$

Denoting by $\mathscr{H}^{k}(\mathbb{C} / \mathbb{Z}(n))$ the Zariski sheaf on Y associated to the Betti cohomology $H^{k}(\mathbb{C} / \mathbb{Z})$), we obtain

Lemma. There is an exact sequence

$$
0 \rightarrow \mathscr{H}^{n-2}\left(E_{s}, \mathbb{C} / \mathbb{Z}(n)\right) / \mathscr{H}^{n-2}(\mathbb{C} / \mathbb{Z}(n)) \rightarrow \mathscr{H}^{n}(n)_{s_{s}} \rightarrow \mathscr{H}^{n}(n)_{\mathscr{O}}
$$

for $s=0,0, \ldots, d$.
2) As $H^{0}\left(\bar{V}, \Omega_{\bar{V}}{ }^{n}(\log (\bar{V}-V)) / \mathscr{F}^{\eta} \geqq n\right)$ might depend on $\overline{\mathrm{V}}$, one can not define a sheaf on Y associated to $H^{n}\left(\bar{V}, \mathscr{C}_{j_{s}}\right)$. Similarly for $\mathscr{C}_{j_{s}}^{p}$.

But there is a restriction map

$$
H^{n}\left(\bar{V}, \mathscr{C}_{j_{s}}\right) \xrightarrow{\text { rest }} H^{n}\left(V, \mathscr{C}_{j_{s} \mid}\right)=H^{n}\left(V, \mathscr{C}_{j_{s}, \text { an }}\right)
$$

One has an exact sequence

$$
\begin{aligned}
& 0 \rightarrow H^{n-1}\left(V \cap E_{\mathrm{s}}, \mathbb{C} / \mathbb{Z}(n)\right) \rightarrow H^{n}\left(V, \mathscr{C}_{j_{s}, \mathrm{an}}\right) \\
\rightarrow & \operatorname{Ker}\left(H^{n}\left(V, \Omega_{\bar{Y}}{ }^{n} / \mathscr{F} \geqq \frac{\geqq n}{n}\right) \rightarrow H^{n}\left(V \cap E_{s}, \mathbb{C} / \mathbb{Z}(n)\right)\right) \rightarrow 0 .
\end{aligned}
$$

Define $\mathscr{H}^{n}\left(\mathscr{C}_{j_{a}}\right)$ to be Zariski sheaf on Y associated to $H^{n}\left(V, \mathscr{C}_{j_{s, ~ a n ~}}\right)$.
Lemma. i) There is a complex

$$
\mathscr{H}^{n}(n)_{j_{s}} \rightarrow \mathscr{H}^{n}(n)_{\mathscr{I}} \rightarrow \mathscr{H}^{n}\left(\mathscr{C}_{j_{s}}\right)
$$

and a map

$$
\mathscr{H}^{m}\left(\mathscr{C}_{j_{s}}\right) \rightarrow R^{n} \alpha_{*}\left(\Omega_{\bar{Y}}^{\sum_{\bar{Y}}^{n}} / \mathscr{F}_{\text {an }}^{\underline{\Xi_{n}^{n}}}\right)
$$

ii) If $n>\operatorname{dim} X$, then

$$
\mathscr{H}^{n}(n)_{j_{s} \rightarrow \mathscr{K}^{n}(n)_{\mathscr{A}}}
$$

is surjective and

$$
\mathscr{H}^{n}\left(\mathscr{C}_{j,}\right)=\mathbf{0}
$$

iii) If $n=\operatorname{dim} X$, then

$$
\mathscr{H}^{n}\left(\mathscr{C}_{j_{s}}\right) \rightarrow R^{n} \alpha_{*}\left(\Omega_{\bar{Y}}^{2 n} / \mathscr{F}_{\text {an }}^{\geq n}\right)=\alpha_{*} S_{Y}^{n} / \alpha_{*} \mathscr{F}_{a n}
$$

is surjective.
Proof. i) One has an exact sequence

$$
H^{n}(n)_{j_{s}}(V) \rightarrow H^{n}(n)_{\mathscr{P}}(V) \rightarrow H^{n}\left(\bar{V}, \mathscr{C}_{j_{s}}\right)
$$

Applying the map rest, this gives the complex.
The sheaf associated to $H^{n}\left(V, \Omega_{Y}^{\frac{2}{n}} / \mathscr{F}_{\text {an }} \geq_{n}^{n}\right)$ is just $R^{n} \alpha_{*}\left(\Omega_{Y}^{\frac{2}{Y}} / \mathscr{F}_{a n} \frac{\geq}{n}\right)$.
ii) and iii) If V is affine, then $H^{l}\left(V \cap E_{s}, \mathbb{C} / \mathbf{Z}(n)\right)=0$ for $l>\operatorname{dim} E_{s}$, especially if $l>\operatorname{dim} X-1$. This proves that $H^{n}\left(\bar{V}, \mathscr{C}_{j}\right)=H^{n}\left(V, \mathscr{C}_{j_{s, a n}}\right)=0$ if $n>\operatorname{dim} X$, and that

Finally observe that $R^{1} \alpha_{*} \mathscr{F}_{\mathrm{an}}=0$ as $\mathscr{F}_{\text {an }}$ is coherent, and therefore

$$
R^{n} \alpha_{*}\left(\Omega_{\bar{Y}}^{\underline{Y}} / \mathscr{F}_{a n} \frac{\mathrm{Zn}}{}{ }^{n}\right)=\alpha_{*} \Omega_{Y}^{n} / \alpha_{*} \mathscr{F}_{\text {an }} .
$$

(1.10) Multiplication. Applying Beilinson's formulae [E-V], Sect. 3, where one replaces the F-filtration by our $\mathscr{F} \geqq n$, one obtains multiplications:

$$
\begin{gathered}
\mathbb{Z}(n)_{j_{s}} \otimes_{\mathbf{Z}} \mathbb{Z}(m)_{i_{s}} \rightarrow \mathbb{Z}(n+m)_{j_{s}}, \\
\mathbb{Z}\left(n_{i_{s}} \otimes_{\mathbb{Z}} \mathbb{Z}(m)_{i_{s}} \rightarrow \mathbb{Z}(n+m)_{i_{s}}\right.
\end{gathered}
$$

which give products:

$$
\begin{gathered}
H^{n}(n)_{j_{s}}(V) \otimes_{\mathbf{Z}} H^{m}(m)_{j_{s}}(V) \rightarrow H^{+m}(n+m)_{j_{s}}(V), \\
H^{n}(n)_{i_{s}}(U) \otimes_{\mathbf{2}} H^{m}(m)_{i_{s}}(U) \rightarrow H^{n+m}(n+m)_{i_{s}}(U)
\end{gathered}
$$

and at the sheaf level:

$$
\begin{gathered}
\mathscr{H}^{n}(n)_{j_{s}} \otimes_{\boldsymbol{X}} \mathscr{H}^{m}(m)_{j_{s}} \rightarrow \mathscr{H}^{n+m}(n+m)_{j_{s}} \\
\mathscr{H}^{n}(n) \otimes_{\mathbf{R}^{\prime}} \mathscr{H}^{m}(m) \rightarrow \mathscr{H}^{n+m}(n+m)
\end{gathered}
$$

We observe that in order to perform this construction, one has to take desingularizations π where both $\pi^{*} \Omega_{X}^{n}$ /torsion and $\pi^{*} \Omega_{X}^{m} /$ torsion are locally free. This is allowed by (1.4) 1) and (1.5) 1).

Of course one obtains also a version for $H^{n}(n)_{j_{s}, \text { p }} H^{n}(n)_{j_{s}, \text { an }}$ as well as for $R^{n} \alpha_{*} \mathbb{Z}(n)_{j_{s}, \text { an }}$.

2. Definition of the regulator map on the Milnor K-theory

(2.1) We consider Bloch's regulator map

$$
r_{Z}: \mathscr{K}_{n Z}^{M} \rightarrow \mathscr{H}_{\square}^{n}(n)
$$

at the sheaf level from the Milnor K-theory to the Deligne-Beilinson cohomology on a smooth variety Z.

Recall the definition.
Let V be a Zariski open subset of $Z, g_{1}, \ldots, g_{n} \in \Gamma\left(V, \mathcal{O}_{Z}^{\times}\right)$, the sheaf of regular invertible functions, and let $\left\{g_{1}, \ldots, g_{n}\right\}$ be their symbol in $\Gamma\left(V, \mathscr{K}_{n Z}^{M}\right)$. Let $\mathrm{g}:=\left(g_{1}, \ldots, g_{n}\right): V \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$ be the corresponding morphism, with x_{i} as coordinate on the i-th factor. Then $x_{i} \in H_{g}^{1}\left(\left(\mathbb{C}^{\times}\right)^{n}, 1\right)$. The Deligne-Beilinson product $\left(x_{1}, \ldots, x_{n}\right) \in H_{¥(}^{n}\left(\left(\mathbb{C}^{\times}\right)^{n}, n\right)$ factorizes over Steinberg symbols (via the existence of the dilogarithm function). Then

$$
r_{z}\left\{g_{1}, \ldots, g_{n}\right\}:=g^{-1}\left(x_{1}, \ldots, x_{n}\right) \in H_{\Re}^{n}(V, n) .
$$

Call the situation

$$
\left[x_{i} \in H_{9}^{1}\left(\left(\mathbb{C}^{\times}\right)^{n}, 1\right),\left(x_{1}, \ldots, x_{n}\right) \in H_{9}^{n}\left(\left(\mathbb{C}^{\times}\right)^{n}, n\right)\right]
$$

the universal situation.
(2.2) For any morphism $\sigma: X^{\prime} \rightarrow X$, we consider the natural map $\mathscr{K}_{n X^{\prime}}^{\mathcal{M}} \rightarrow \sigma_{*} \mathscr{K}_{n X^{\prime}}^{M}$. If $\pi: Y \rightarrow X$ is any desingularization, we have the map of functoriality $\mathscr{H}^{n}(n)$ $\rightarrow \pi_{*} \mathscr{H}_{9}^{m}(n)(1.4) 5$). If X is smooth, then $\left.\mathscr{H}^{(n}(n)=\mathscr{H}_{9}^{n}(n)(1.4) 5\right)$.
Theorem. 1) Let $\pi: Y \rightarrow X$ be any desingularization. There is a commutative diagram

2) If X is smooth, then $\varrho=r_{X}$.
3) If $a: X^{\prime} \rightarrow X$ is any morphism, there is a commutative diagram

Proof. 1) Let $p \in X$ be a point, f_{1}, \ldots, f_{n} be regular functions in p. Choose a Zariski open neighbourhood U of p such that $f_{i} \in \Gamma\left(U, \mathscr{V}^{\times}\right)$. Define $V=\pi^{-1} U, f$ to be the $\operatorname{map}\left(f_{i}\right): U \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$, and $g=f \pi$, with $g_{i}=\pi^{*} f_{i}$. By the functoriality (1.4)2) f^{-1} maps $\left(x_{1}, \ldots, x_{n}\right)=H_{\Phi}^{\pi}\left(\left(\mathbb{C}^{\times}\right)^{n}, n\right)$ to an element which we call $\varrho\left\{f_{1}, \ldots, f_{r}\right\}$ in $H^{n}(n)_{i_{\phi}}(U)$. By definition $\pi^{-1}\left\{f_{1}, \ldots, f_{n}\right\}=r_{Y}\left\{g_{1}, \ldots, g_{n}\right\}$ and it lies in $H_{9}^{n}(V, n)$.
2) is by construction.
3) Take the notations of 1). Then one has

$$
f^{-1}\left(x_{1}, \ldots, x_{n}\right)=\varrho\left\{f_{1}, \ldots, f_{n}\right\} \in H^{n}(n)_{i_{e}}\left(\sigma^{-1} U\right)
$$

which maps to

$$
\sigma^{-1} f^{-1}\left(x_{1}, \ldots, x_{n}\right)=\varrho\left\{\sigma^{-1} f_{1}, \ldots, \sigma^{-1} f_{n}\right\} \quad \text { in } H^{n}(n)_{i_{q}}\left(\sigma^{-1} U\right) .
$$

(2.3) Following Srinivas [S], define the sheaves \mathscr{B} and \mathscr{A} on $X_{\text {zar }}$, which are supported on S, by the exact sequence

$$
O \rightarrow \mathscr{B} \rightarrow \mathscr{K}_{n X}^{M} \rightarrow \pi_{*} \mathscr{K}_{n Y}^{M} \rightarrow \mathscr{A} \rightarrow O .
$$

As $\pi_{*} \mathscr{K}_{n Y}^{M}$ depends on the desingularization chosen in (0.1), \mathscr{A} and \mathscr{B} do too.
Choose s_{0} to be the maximum integer with $0 \leqq s_{0} \leqq d$ such that $\mathscr{H}^{n}(n)=\mathscr{H}^{n}(n)_{i_{s}}$ (1.4)4).

Theorem. For any s with $0 \leqq s \leqq s_{0} \leqq d$, there is a commutative diagram

where the bottom horizontal row is a complex.

Moreover the sequence

$$
0 \rightarrow \pi_{*} \frac{\mathscr{H}^{n-2}\left(E_{S}, \mathbb{C} / \mathbb{Z}(n)\right)}{\mathscr{H}^{-2-2}(\mathbb{C} / \mathbb{Z}(n))} \rightarrow \pi_{*} \mathscr{H}^{n}(n)_{j_{s}} \rightarrow \pi_{*} \mathscr{H}_{\mathscr{M}}^{n}(n)
$$

is exact.
Proof. Put together (2.2) and (1.9).
(2.4) Remark. This way of mapping $\mathscr{K}_{n X}^{M}$ in $\pi_{*} \mathscr{H}^{n}(n)_{j_{s}}$ [and a fortiori to $\pi_{*} \mathscr{H}^{n}(n)_{j_{4}}$] is not as good as considering ϱ itself as $\pi_{*} \mathscr{H}^{n}(n)_{j_{s}}$ depends on the desingularization chosen. However we will now consider the cohomology of ϱ, and it is not clear how to compute the cohomology of $\mathscr{H}^{n}(n)$. That is the reason why we will "approximate" it by the cohomology of $\mathscr{H}^{n}(n)_{j_{s}}$ [or of $\mathscr{H}^{n}(n)_{j_{g}}$].
(2.5) Define $\mathscr{K}:=\mathscr{K}_{n X}^{M} / \mathscr{B}$.

As \mathscr{B} and \mathscr{A} are supported in S of dimension d, one has

$$
\begin{gathered}
H^{q}\left(X, \mathscr{K}_{n X}^{M}\right)=H^{q}(X, \mathscr{K}) \text { for } \quad q>d, \\
H^{q}(X, \mathscr{K})=H^{q}\left(X, \pi_{*} \mathscr{K}_{Y Y}^{M}\right) \text { for } \quad q>d+1 .
\end{gathered}
$$

Therefore one has exact sequences

$$
\begin{gathered}
O \rightarrow H^{d}(\mathscr{A}) / H^{d-1}(\mathscr{K}) \rightarrow H^{d}\left(\mathscr{K}_{n X}^{M}\right) \rightarrow H^{d}(\mathscr{K}) \rightarrow O, \\
O \rightarrow H^{d}(\mathscr{A}) / H^{d}\left(\pi_{*} \mathscr{K}_{n Y}^{M}\right) \rightarrow H^{d+1}\left(\mathscr{K}_{n X}^{M}\right) \rightarrow H^{d+1}\left(\pi_{*} \mathscr{K}_{n Y}^{M}\right) \rightarrow O .
\end{gathered}
$$

(2.6) Lemma. One has

$$
\begin{aligned}
R^{m} \alpha_{*} \mathbb{Z}(n)_{j_{s}, \text { an }} & =R^{m-1} \alpha_{*} j_{s} \mathbb{C} / \mathbb{Z}(n) \text { for } m<n, s=\mathscr{D}, \emptyset, 0, \ldots, d, \\
& =\mathscr{H}^{m-1}(\mathbb{C} / \mathbb{Z}(n)) \text { for } s=\mathscr{D}, \emptyset
\end{aligned}
$$

Proof. The first equality comes just from the fact that $\mathscr{\mathscr { F }}_{\text {an }}{ }^{\mathrm{Zn}}{ }^{n}$ and $\Omega_{\mathrm{an}}^{\geq n}$ start in degree n. The second one is due to Deligne [B2].
(2.7) Consider the spectral sequence

$$
\left.E_{2}^{k, l}=H^{k}\left(Y_{z a r}, R^{l} \alpha_{*} \mathbb{Z}(n)_{j_{s}, a n}\right) \Rightarrow H^{k+l}\left(Y_{a n}, \quad \text { an }, Z(n)\right)_{j_{s}, \text { an }}\right) .
$$

By abuse of notation, we write the graded pieces $\sum_{i \geq 1} E_{\infty}^{k+i, l-i}$ instead of the corresponding filtration on $H^{k+l}\left(Y_{\mathrm{an}}, \mathbb{Z}(n)_{j_{s}, \text { an }}\right)$.

Proposition. Let s be as in (2.3). Let $q \geqq n-2$. Assume that

$$
H^{q+i}\left(Y, R^{n-i} \alpha_{n} j_{s} \mathbb{C} / \mathbb{Z}(n)\right)=0 \quad \text { for } \quad i \geqq 2 .
$$

1) Then one has a commutative diagram

2) $\sum_{i \geq 1} E_{\infty}^{q+i, n-i}$ is contained in $H^{q+n-2}\left(E_{s}, \mathbb{C} / \mathbb{Z}(n)\right) / H^{q+n-2}(Y, \mathbb{C} / \mathbb{Z}(n))$ which maps to

$$
H^{q+n-1}\left(Y, \mathscr{C}_{j, \text { an }}\right) / H^{q+n}\left(Y, \mathcal{Z}(n)_{j, \text { an }}\right)
$$

Proof. 1) Consider the diagram (2.3).
One has maps

$$
H^{q}\left(X, \pi_{*} \mathscr{H}^{n}(n)_{j_{s}}\right) \rightarrow H^{q}\left(Y, \mathscr{H}^{n}(n)_{j_{s}}\right) \xrightarrow[(1.5)]{\xrightarrow[(1.8)]{\longrightarrow}} H^{q}\left(Y, \mathscr{H}^{n}(n)_{i_{s}, \text { an }}\right)
$$

One has $E_{2}^{q+i, n-i+1}=H^{q+i}\left(Y, R^{n-i} \alpha_{*} j_{s l} \mathbb{C} / \mathbb{Z}(n)\right)$ for $i \geqq 2$ (2.6). This vanishes by hypothesis. Therefore

$$
H^{q}\left(Y, R^{n} \alpha_{*} j_{s} \mathbb{Z}(n)_{j_{s}, \text { an }}\right)
$$

maps to $H^{q+n}\left(Y, \mathbb{Z}(n)_{j, \text { an }}\right) / \sum_{i \geqq 1} E_{\infty}^{q+i, n-i}$.
On the other hand as $H^{j}\left(\mathscr{H}^{m-1}(\mathbb{C} / \mathbb{Z}(n))\right)=0$ for $j \geqq m$ [B1], one has $E_{2}^{q+i, n-i+1}=0$ for $i \geqq 2$, and $E_{2}^{q+i, n-i}=E_{\infty}^{q+i, n-i}=0$ for $i \geqq 1$ and $s=\mathscr{D}$ or \emptyset.
2) As $E_{2}^{q+i, n-i}=H^{q+i}\left(Y, R^{n-i-1} \alpha_{*} j_{s} \mathbb{C} / \mathbb{Z}(n)\right)$ for $i \geqq 1$, (2.6), $\sum_{i \geqq 1} E_{\infty}^{q+i, n-i}$ maps

$$
H^{q+n-1}\left(Y, j_{s!} \mathbb{C} / \mathbb{Z}(n)\right)
$$

which maps to $H^{q+n}\left(Y, \mathbb{Z}(n)_{j_{s}, \text { an }}\right)$. For $i \geqq 1$, one has $q+i>n-i-1$. Therefore $H^{q+i}\left(Y, R^{n-i-1} \alpha_{*} j_{s l} \mathbb{C} / \mathbb{Z}(n)\right)$, and $\sum_{i \geq 1} E_{\infty}^{q+i, n-i}$ maps to 0 in $H^{q+n-1}\left(E_{s}, \mathbb{C} / \mathbb{Z}(n)\right)$; in other words it is contained in

$$
H^{q+n-2}\left(E_{s}, \mathbb{C} / \mathbb{Z}(n)\right) / H^{q+n-2}(Y, \mathbb{C} / \mathbb{Z}(n))
$$

(2.8) Example 1. Assume $n=2, d=0$ or $1, q=1$; then $s_{0}=0$. Then

$$
R^{0} \alpha_{*} j_{01} \mathbb{C} / \mathbb{Z}(2)=j_{01} \mathbb{C} / \mathbb{Z}(2) .
$$

From the exact sequence

$$
0 \rightarrow j_{01} \mathbb{C} / \mathbb{Z}(2) \rightarrow \mathbb{C} / \mathbb{Z}(2) \rightarrow \mathbb{C} / \mathbb{Z}(2)_{\mid S=s_{0}} \rightarrow 0
$$

one obtains $H_{z a r}^{i}\left(j_{01} \mathbb{C} / \mathbb{Z}(2)\right)=0$ for $i \geqq 2$.

Therefore one has $H^{q+i}\left(Y, R^{n-i} \alpha_{*} j_{s 1} \mathbb{C} / \mathbb{Z}(2)\right)=0$ for $i \geqq 2$ and $E_{2}^{3,0}=E_{2}^{2,1}=0$.
One obtains a commutative diagram

If $d=0$, one has a map (0.3):

$$
\begin{gathered}
\mathscr{F}_{\mathrm{an}} \rightarrow \Omega_{\mathrm{Y}}^{2}(\log F)(-2 F) \\
\mathcal{O}_{\mathrm{Y}}(-F):=\pi^{*} \mathscr{F}_{0} \text { torsion }
\end{gathered}
$$

Therefore $\mathbb{Z}(2)_{j 0, \text { an }} \rightarrow \mathbb{Z}(2)_{\mathscr{Q} \text {, an }}$ factorizes over

$$
\mathbb{Z}(2)^{\prime}:=j_{0} \mathbb{Z}(2) \rightarrow \mathcal{O}_{\mathrm{Y}}(-2 F) \rightarrow \Omega_{\mathrm{Y}}^{1}(\log F)(-2 F)
$$

and one obtains a diagram

If X is a proper surface with one isolated conelike singularity, (in this case $F=F_{\text {red }}$ is a smooth curve), the left vertical arrow was constructed by Collino [C] [on a subgroup of $\left.H^{1}\left(X, \mathscr{K}_{2 x}\right)\right]$.
(2.9) Let $(d \log)^{4}$ be the map

$$
(d \log)^{q}: H^{q}\left(Y, \mathscr{K}_{n \mathbf{Y}}^{M}\right) \rightarrow H^{q+n}\left(Y, \Omega_{\bar{Y}}{ }^{n}\right)
$$

and α be the map

$$
\alpha: H^{d+n}\left(Y, \mathbb{Z}(n)_{\mathscr{Q}, \mathrm{an}}\right) \rightarrow H^{d+n}\left(Y, \Omega \frac{\geq}{\mathrm{Y}} n\right) .
$$

If $d \geqq n-2$, then $(d \log)^{d}$ factorizes α (2.7).
Proposition. 1) If $(d \log)^{q}=0$ one has a map
2) if $\alpha=0$ and $d \geqq n-3$, one has a commutative diagram

where the two sequences are exact.
3) If $\alpha=0, d \geqq n-3$, take s as in (2.3). Assume moreover that

$$
H^{d+1+i}\left(Y, R^{n-i} \alpha_{*} j_{s 1} \mathbb{C} / \mathbb{Z}(n)\right)=0 \quad \text { for } \quad i \geqq 2
$$

Then the diagram in 2) factorizes over the exact sequence

$$
0 \rightarrow \frac{H^{d+n}\left(Y, \mathscr{C}_{j_{s, a n}}\right)}{H^{d+n}\left(Y, \mathbb{Z}(n)_{\mathscr{G}, \mathrm{an}}\right)+\sum_{i \leq 1} E_{\infty}^{d+1+i, n-i}} \rightarrow \frac{H^{d+1+n}\left(Y, \mathbb{Z}(n)_{j_{s, a n}}\right)}{\sum_{i \geq 1} E_{\infty}^{d+1+i, n-i}} .
$$

Proof. 1) Apply (2.3) and notice that one has maps

$$
\begin{aligned}
& H^{q}\left(X, \pi_{*} R^{n} \alpha_{*}\left(\Omega_{\bar{Y}}^{\geqq n} / \mathscr{F} \underset{\text { an }}{\geqq n} n\right) \rightarrow H^{q}\left(Y, R^{n} \alpha_{*}\left(\Omega_{\bar{Y}}^{\geq}{ }^{n} / \mathscr{F} \geqq \frac{\geqq n}{\text { an }}{ }^{n}\right)\right)\right.
\end{aligned}
$$

as the complex $\Omega_{\bar{Y}}^{\geq} n / \mathscr{F}_{a n}^{\geq n}$ starts in degree n.
2) Apply (2.7) and notice that

$$
\operatorname{cone}\left(\mathbb{Z}(n)_{j_{d}, \text { an }} \rightarrow \mathbb{Z}(n)_{\mathscr{G}, \mathrm{an}}\right)=\operatorname{cone}\left(\Omega_{\bar{Y}}^{\frac{2}{Y}} / \mathscr{F} \mathscr{F}_{\mathrm{an}}^{\underline{\geq} n}\right)[-1] .
$$

3) Apply (2.7) again.
(2.10) Example 2. Assume that X is an affine cone over a smooth projective variety E_{0} of dimension <n. Set $\pi: Y \rightarrow X$ be the blow up of the vertex $0=S_{0}=S$, and $p: Y \rightarrow E_{0}$ be the corresponding \mathbb{A}^{1}-bundle.

Then $F_{\mathbb{Z}}^{n}(Y):=\operatorname{Ker}\left(F^{n} H^{n}(Y, \mathbb{C}) \rightarrow H^{n}(Y, \mathbb{C} / \mathbb{Z}(n))\right.$ is vanishing as it embeds in $G r_{n}^{W} H^{n}(Y, \mathbb{C})$, and this last group is zero since Y has a good compactification with a smooth divisor at infinity. (Here W is the weight filtration.)

As $(d \log)^{0}: H^{0}\left(X, \pi_{*} \mathscr{X}_{n Y}^{M}\right)=H^{0}\left(Y, \mathscr{K}_{n \mathbf{Y}}^{M}\right) \rightarrow H^{0}\left(Y, \Omega_{Y}^{\eta}\right)$ factorizes over $F_{Z}^{n}(Y)$, it is zero as well. Therefore one obtains (2.9) 1) for $q=0$: one has a map

$$
H^{0}(X, \mathscr{A}) / H^{0}\left(X, \pi_{*} \mathscr{K}_{n \mathbf{r}}^{M}\right) \rightarrow H^{0}\left(Y, \Omega_{\mathbf{r}}^{n} / \mathscr{F}_{a \mathrm{an}}^{n}\right) .
$$

By (0.3), $\mathscr{F}_{\mathrm{an}}^{n} \mathrm{n}$ embedds in $\Omega_{Y}^{n}\left(\log E_{0}\right)\left(-n \cdot E_{0}\right)$.
As $\Omega_{Y}^{n} / \Omega_{Y}^{n}\left(\log E_{0}\right)\left(-n \cdot E_{0}\right)=\omega_{(n-1) E_{0}}\left(-(n-1) \cdot E_{0}\right)$, where ω is the dualizing sheaf, one obtains a map

$$
H^{0}(X, \mathscr{A}) / H^{0}\left(X, \pi_{*} \mathscr{K}_{n Y}^{M}\right) \rightarrow H^{0}\left(Y, \omega_{(n-1) \mathrm{E}_{0}}\left(-(n-1) \cdot E_{0}\right)\right) .
$$

If E_{0} is a curve, this is Srinivas map.
Actually in this case, Srinivas proves that

$$
H^{1}\left(X, \mathscr{K}_{2 X}\right)=H^{0}(X, \mathscr{A}) / H^{0}\left(X, \pi_{*} \mathscr{K}_{2 Y}^{M}\right),
$$

where \mathscr{A} is by definition $\lim _{0 \in U} H^{0}\left(\pi^{-1} U, \mathscr{K}_{2 Y}\right) / K_{2}\left(\mathcal{O}_{X, 0}\right)$.
(2.11) Example 3. Assume X proper. As α factorizes over

$$
\operatorname{Ker}\left(H^{d+n}\left(Y, \Omega_{Y}^{2} \eta\right) \rightarrow H^{d+n}(Y, \mathbb{C} / \mathbb{Z}(n)),\right.
$$

which is 0 for $d \leqq n-1$, one obtains the diagram (2.9)2).
(2.12) Example 4. 1) Assume $n=2, d=0$ or 1 as in Example 1, (2.8), and assume moreover that X is proper. Then one has (2.9) 3) with

$$
\begin{gathered}
H^{d+2}\left(Y, \mathbb{Z}(2)_{\mathscr{S}, \mathrm{an}}\right)=H^{d+1}(Y, \mathbb{C} / \mathbb{Z}(2)) / F^{2} H^{d+1}(Y, \mathbb{C}) \\
\sum_{i \equiv 1} E_{\infty}^{d+1+i, 2-i}=0
\end{gathered}
$$

If $d=0$, then $\mathbb{Z}(2)_{\mathscr{Q}, \text { an }}$ maps to $\mathbb{Z}(2)^{\prime}$ as in (2.8), and $\mathscr{C}_{\text {jo, an }}$ maps to

$$
\mathscr{C}^{\prime}=\operatorname{cone}\left(\Omega_{\bar{Y}}^{\geqq 2} / \Omega_{\bar{Y}}^{\gtrless}(\log F)(-2 F) \rightarrow \mathbb{C} / \mathbb{Z}(2) \mid E_{0}\right)[-1] .
$$

One may map the sequence of (2.9) 3) to the similar one replacing $\mathbb{Z}(2)_{j, \text { an }}$ by $\mathbb{Z}(2)^{\prime}, \mathscr{C}_{\mathrm{j}, \text { an }}$ by \mathscr{C}^{\prime}.
2) Let X be a singularity of type A_{2}, of equation $t^{3}-x y$. One knows (letter of Collino), that \mathscr{A} contains $\mathbb{C} \oplus \mathbb{C}$ if one takes $\pi: Y \rightarrow X$ to be the blow up of the singularity 0 .

We first define candidates α and β in $\pi_{*}\left(\mathscr{K}_{2 F}\right)_{0}$ for those two elements (as we do not know exactly how Collino constructs them ...), and then we prove via (2.3) that they contribute to \mathscr{A}.
A) Cover Y by three Zariski open sets Y_{0}, Y_{1}, Y_{2} of coordinates and equations

$$
\begin{gathered}
Y_{0}:(a, b, t), \quad x=a t, y=b t ; t-a b, \\
Y_{1}:\left(x, b^{\prime}, T\right), \quad y=b^{\prime} x, \quad t=T x ; \quad T^{3} x-b^{\prime}, \\
Y_{2}:\left(a^{\prime}, y, T^{\prime}\right), \quad x=a^{\prime} y, \quad t=T^{\prime} y ; \quad T^{3} y-a^{\prime} .
\end{gathered}
$$

Consider $Y^{\prime}=Y-\left\{t^{2}=1\right\}$. The exceptional locus of π is contained in Y^{\prime}. Define $Y_{i}^{\prime}:=Y^{\prime} \cap Y_{i}$.

We consider the two Loday symbols in $K_{2}\left(Y_{0}^{\prime}\right)$ [see Be$]$ for the definition:

$$
\alpha_{0}:=\{1-a b, b\}, \quad \beta_{0}:=\left\{1-(a b)^{2}, b^{2}\right\} .
$$

In $K_{2}\left(Y_{0}^{\prime} \cap Y_{1}^{\prime}\right)$, one has

$$
\alpha_{0 \mid X_{X_{0}^{\prime} \cap Y_{1}^{\prime}}}=\left\{1-T x, T^{2} x\right\} .
$$

As T is a unit on $Y_{0}^{\prime} \cap Y_{1}^{\prime}, \alpha_{0 \mid Y_{0}^{\prime} \cap Y_{1}^{\prime}}$ is the sum of the normal Steinberg symbol $\{1-T x, T\}$ and of the Loday symbol $\{1-T x, T x\}$. The later is zero as it is zero on $Y_{0}^{\prime} \cap Y_{1}^{\prime} \cap(T x \neq 0)$ where it is a Steinberg symbol, and it is uniquely determined by its restriction on $Y_{0}^{\prime} \cap Y_{1}^{\prime} \cap(T x \neq 0)$.

Therefore $\alpha_{0 \mid Y_{0} \cap Y_{1}}=\alpha_{1 \mid Y_{0} \cap r_{1}}$ where $\alpha_{1} \in Y_{1}^{\prime}$ is the Steinberg symbol $\{1-T x, T\}$. Similarly, as T^{\prime} is a unit on $Y_{0}^{\prime} \cap Y_{2}^{\prime}$, one has $\alpha_{0 \mid Y_{0 \cap Y_{2}}}=\alpha_{2 \mid \mathbf{x}_{0 \cap} \cap Y_{2}}$ where $\alpha_{2} \in K_{2}\left(Y_{2}^{\prime}\right)$ is the Steinberg symbol $-\left\{1-T^{\prime} y, T^{\prime \prime}\right\}$. One computes in the same way that

$$
\alpha_{1 \mid Y_{1 \cap Y_{2}}}=\alpha_{2 \mid Y_{1 \cap Y_{2}}} \in K_{2}\left(Y_{1}^{\prime} \cap Y_{2}^{\prime}\right) .
$$

Define $\alpha \in H^{0}\left(Y^{\prime}, \mathscr{K}_{2 \mathrm{Y}}\right)$ to be α_{i} on Y_{i}^{\prime}.
In $K_{2}\left(Y_{0}^{\prime} \cap Y_{1}^{\prime}\right)$ one has $\beta_{0| |_{0 \cap Y_{1}}}=\left\{1-(T x)^{2},\left(T^{2} x\right)^{2}\right\}$.
Similarly as before, $\beta_{0 \mid{ }_{\boldsymbol{r}_{0} \cap r_{1}}}$ is equal to the Steinberg symbol

$$
\left\{1-(T x)^{2}, T^{2}\right\} \in K_{2}\left(Y_{0}^{\prime} \cap Y_{1}^{\prime}\right),
$$

restriction of the Lorelei symbol $\beta_{1}=\left\{1-(T x)^{2}, T^{2}\right\} \in K_{2}\left(Y_{1}^{\prime}\right)$.
One also has $\beta_{0 \mid \mathrm{rb}_{0} \mathrm{r}_{2}}=\beta_{2 \mid \mathrm{r}_{0}^{\prime} \mathrm{r}_{0}}$ where $\beta_{2} \in K_{2}\left(Y_{2}^{\prime}\right)$ is the Loday symbol $-\left\{1-\left(T^{\prime} y\right)^{2}, T^{\prime 2}\right\}$, and $\beta_{1 \mid \mathrm{Y}_{1} \cap Y_{2}}=\beta_{2 \mid \mathrm{Y}_{1} \cap Y_{2}}$ in $K_{2}\left(Y_{1}^{\prime} \cap Y_{2}^{\prime}\right)$. Define $\beta \in H^{0}\left(Y^{\prime}, \mathscr{K}_{2 Y}\right)$ to be β_{i} on Y_{1}^{\prime}.
B) One has $\pi^{*} \mathscr{I}_{0} /$ torsion $=\mathcal{O}_{Y}(-E)$ with $E=E_{1}+E_{2}, E_{i}^{2}=-2$ and $E_{1} \cap E_{2}=: p$. One has $\pi^{*} \Omega_{X}^{2} /$ torsion $=m_{p} \Omega_{Y}^{2}(-E)$, where m is the maximal ideal of p. Moreover, as $\pi^{*} \Omega_{X}^{2}$ /torsion is generated by global sections and $(X, 0)$ is a rational singularity, one has $R^{1} \pi_{*}\left(\pi^{*} \Omega_{x}^{2} /\right.$ torsion $)=0$. If $\sigma: Z \rightarrow Y$ is the blow up of p with exceptional line F, one has

$$
\mathscr{F}_{\mathrm{an}}=\sigma^{*} \pi^{*} \Omega_{X}^{2} / \text { torsion }=\sigma^{*} \Omega_{Y}^{2}(-E) \otimes \mathcal{O}_{Z}(-F) .
$$

As $R^{1} \sigma_{*} \mathcal{O}_{z}(-F)=0$, one obtains

$$
\pi_{*} \sigma_{*}\left(\Omega_{\mathbb{Z}}^{2} / \mathscr{F}_{\mathrm{an}}\right)=\pi_{*}\left(\Omega_{\mathbf{Y}}^{2} / m \Omega_{\mathrm{r}}^{2}(-E)\right)=\mathbb{C}_{p} \oplus \mathbb{C}
$$

where \mathbb{C}_{p} is $\Omega_{Y}^{2}(-E) / m \Omega_{Y}^{2}(-E)$ and $\mathbb{C}=H^{0}\left(E, \omega_{E}(-E)\right)$.
C) We consider the map

$$
\begin{aligned}
& d \log =H^{0}\left(Y^{\prime}, \mathscr{K}_{2 Y^{\prime}}\right) \longrightarrow H^{0}\left(\pi\left(Y^{\prime}\right), \pi_{*} \Omega_{Y}^{2}\right) \\
& \| \\
& H^{0}\left(\pi\left(Y^{\prime}\right), \pi_{*} \mathscr{K}_{2 Y^{\prime}}\right) .
\end{aligned}
$$

One has

$$
\begin{gathered}
d \log \alpha=-\frac{d a \wedge d b}{1-a b}=-\frac{d x \wedge d T}{1-x T}=\frac{d y \wedge d T^{\prime}}{1-y T^{\prime}} \\
\frac{1}{4} d \log \beta=-a b \frac{d a \wedge d b}{1-(a b)^{2}}=-x T \frac{d x \wedge d T}{1-(x T)^{2}}=y T^{\prime} \frac{d y \wedge d T^{\prime}}{1-\left(y T^{\prime}\right)^{2}}
\end{gathered}
$$

On $Y_{0}^{\prime}, m \Omega_{Y}^{2}(-E)$ is generated by

$$
a^{2} b \frac{d a \wedge d b}{1-a b} \quad \text { and } \quad a b^{2} \frac{d a \wedge d b}{1-a b}
$$

Therefore $d \log \alpha, d \log \beta$ define two linearly independent elements of

$$
H^{0}\left(\pi\left(Y^{\prime}\right), \pi_{*}\left(\Omega_{Y}^{2} / m \Omega_{Y}^{2}(-E)\right)\right)
$$

(2.13) One may also consider the map

$$
\begin{equation*}
H^{q}(X, \mathscr{B}) \rightarrow H^{q}\left(Y, \mathscr{H}^{n-2}\left(E_{s}, \mathbb{C} / \mathbb{Z}(n)\right) / \mathscr{H}^{n-2}(Y, \mathbb{C} / \mathbb{Z}(n))\right) . \tag{2.3}
\end{equation*}
$$

Of course if $n=2$, and E_{s} is connected, the second group is trivial. In general I do not know how to compute it. This is related to finding good assumptions under which the conditions (2.7) are fulfilled.
(2.14) Levine [L] defines another presheaf on X. If U is a Zariski subset of X, such that a compactification \bar{U} exists with the property that $\bar{U}-U$ is supported by a Cartier divisor, he defines $\Omega_{0}(\log (\bar{U}-U))$ as those forms which have logarithmic growth along $\bar{V}-V$ where V and \bar{V} are as in (0.5). Further, he takes the cone of $\Omega_{\bar{D}}^{\bar{D}}(\log (\bar{U}-U))$ with values in the cone of $\mathbb{Z}(n)$ in the de Rham complex Ω_{U}.

As I kill the torsion of $\Omega_{0}(\log (\vec{O}-U))$ by taking a desingularization for which the Kähler differentials become locally free, "his" forms lift "mine". As I take the cone with values in $\mathbb{C} / \mathbb{Z}(n)$, which maps to $\Omega_{V} / \mathbb{Z}(n)$, "my" Betti part lifts "his". So one does not obtain a map in either direction.

Acknowledgement. I like to thank the Institut des Hautes Etudes Scientifiques for its hospitality during the preparation of this work.

References

[Be] Beilinson, A.: Higher regulators and values of L functions. Sov. Probl. Math. 24, Viniti Moscow (1984), transl. in Sov. Math. 30, 2036-2060 (1985)
[B 1] Bloch, S., Ogus, A.: Gersten's conjecture and the homology of schemes. Ann. Sci. Ec. Norm. Super., IV Ser. 7, 181-202 (1974)
[B 2] Bloch, S.: Lectures on algebraic cycles. Duke University Mathematics Series, Durham (1980)
[C] Collino, A.: A regulator map for surfaces with an isolated singularity. Preprint (1988)
[E 1] Esnault, H.: On the Loday symbol in the Deligne-Beilinson cohomology. K-Theory, Vol. 3, no. 1, 1-28 (1989)
[E 2] Esnault, H.: A note on the cycle map. MPI preprint (1988)
[EV] Esnault, H., Viehweg, E.: Deligne-Beilinson cohomology, in Beilinson's conjectures on special values of L-functions. Perspectives in Mathematics, Vol. 4, pp. 43-91. New York London: Academic Press 1988
[L] Levine, M.: Deligne-Beilinson cohomology for singular schemes. Preprint (1988)
[S] Srinivas, V.: K_{1} of the cone over a curve, J. Reine Angew. Math. 381, 37-50 (1987)

Received February 20, 1989

[^0]: * Supported by "Heisenberg Programm - DFG"

