$p ext{-}\text{CURVATURE}$ of CONNECTIONS, GEOMETRICITY and INTEGRALITY of LOCAL SYSTEMS

by Hélène Esnault, FU Berlin

On a X be a smooth complex irreducible variety, one considers complex linear systems V, that is conjugacy classes of irreducible linear representations

$$\pi_1^{\mathrm{top}}(X,x) \to GL(r,\mathbb{C})$$

of the topological fundamental group. Equivalently, via the Riemann-Hilbert correspondence [Del70], one considers algebraic regular singular integrable connections (E, ∇) associated to V, so in particular $E_{\rm an}^{\nabla_{\rm an}} = V$. Among those are the geometric ones.

From now on, all V's and (E, ∇) 's are assumed to be irreducible.

Definition 1. V, equivalently (E, ∇) , is *geometric* if and only if there is a dense Zariski open subvariety $U \hookrightarrow X$, there is a smooth projective morphism $g: Y \to U$ such that $V|_U$ is a subquotient as a local system of $R^ng_*\mathbb{C}$ for some natural number n

We call the local system $R^n g_* \mathbb{C}$ a Gauß-Manin local system.

Remark 2. Gauß-Manin local systems are defined over \mathbb{Z} thus geometric local systems are defined over the algebraic integers $\overline{\mathbb{Z}}$.

A geometric local system is in particular a variation of Hodge structures. As the category of variations of Hodge structures is semi-simple [Del71], V is geometric if and only if it is a direct factor of a $R^n q_* \mathbb{C}$ as in the definition.

Definition 3. V, equivalently (E, ∇) , is *finite* if and only it is geometric and g in Definition 1 is finite.

If $V \neq 0$ this implies that n = 0 and in addition, as $\pi_1^{\text{top}}(U, x) \to \pi_1^{\text{top}}(X, x)$ is surjective, that one can take g finite as above on U = X. A general problem is the following:

Problem 4. Characterize the geometric, resp. finite V (equivalently (E, ∇)).

The most general answer is given by the p-curvature conjecture. Let X_S be a model of X over a scheme S of finite type over \mathbb{Z} , which we shall assume to be smooth over \mathbb{Z} , over which (E, ∇) has a model $(E, \nabla)_S$. So in particular E_s is a vector bundle. For any closed point $s \in S$ the p-curvature of $(E, \nabla)_s$ is well defined

$$\psi((E,\nabla)_s): E_s \to F_s^*\Omega^1_{X_s'} \otimes_{\mathcal{O}_{X_s}} E_s.$$

Here $F_s: X_s \to X_s'$ is the relative Frobenius. Then by Cartier descent, one has the following ([Kat70]).

- 1) $\psi((E,\nabla)_s)$ is nilpotent if and only if there is a filtration Fil on $(E,\nabla)_s$ such that $gr^{\mathrm{Fil}}(E,\nabla)_s$ is generated by flat sections.
- 2) In particular, $\psi((E, \nabla)_s)$ is zero if and only if $(E, \nabla)_s$ is generated by flat sections, or equivalently if and only if there is a coherent vector bundle E'_s on X'_s such that $(E, \nabla)_s = (F_s^* E'_s, \nabla_{\operatorname{can}})$ where $\nabla_{\operatorname{can}} = 1 \otimes d$ on $F_s^* E'_s = F_s^{-1} E'_s \otimes_{F^{-1} \mathcal{O}_{X'_s}} \mathcal{O}_{X_s}$.

1

- Conjecture 5 (Grothendieck's *p*-curvature conjecture). 1) (E, ∇) is geometric if and only if its *p*-curvatures are nilpotent on all closed points *s* of a dense open $S^0 \hookrightarrow S$.
 - 2) (E, ∇) is finite if and only if its *p*-curvatures are zero on all closed points *s* of a dense open $S^0 \hookrightarrow S$.

Historically, Grothendieck's p-curvature conjecture was formulated only via 2) and has been discussed and made public by Katz, see [Kat72], [Kat82]. The only complete known result is in rank 1, for which the conjectures 1) and 2) are equivalent and are proven in [Chu85]. Even if we do not touch extensions in this note, let us mention [And04] in which 2) is proven for successive extensions of rank 1 connections, [Kat72] in which 2) is proven for Gauß-Manin connections.

Remark 6. If 1) resp. 2) are true, then if (E, ∇) has nilpotent p-curvatures, then $(E, \nabla)_K$, the restriction of (E, ∇) to X_K , with $\operatorname{Spec}(K) \to X_S$ a p-adic point, is invariant under Frobenius. Here the Frobenius pull-back of $(E, \nabla)_K$ is well defined, even if the Frobenius does not lift to X_K , as the p-curvature is nilpotent.

Remark 7. If 2) is true, then if (E, ∇) has vanishing *p*-curvatures, then (E_s, ∇_s) is not only a connection but is also a D_{X_s} -module.

Theorem 8. ([EK18]) If X is projective, (E, ∇) has vanishing p-curvatures, and $(E_s, \nabla)_s$ is a D_{X_s} -module with Tannaka group of order prime to p for infinitely many p's, then (E, ∇) is finite.

Remark 9. The *p*-curvature conjecture implies in particular that if (E, ∇) has nilpotent, resp. vanishing *p*-curvatures as in Conjecture 5, the monodromy representation ρ^{σ} defined as the underlying monodromy representation $\rho: \pi_1^{\text{top}}(X, x) \to GL(r, \mathbb{C})$ post-composed by $\sigma^*: GL(r, \mathbb{C}) \to GL(r, \mathbb{C})$ coming from an automorphism σ of \mathbb{C} , has associated connection $(E, \nabla)^{\sigma}$ with nilpotent, resp. vanishing *p*-curvatures.

We define the following notion.

Definition 10. (E, ∇) has absolute nilpotent, resp. vanishing p-curvature if and only if for all σ , there is a dense open $S^{\sigma} \hookrightarrow S$ such that for all closed point $s \in S^{\sigma}$, $\psi((E, \nabla)_s)$ is nilpotent, resp. vanishing.

So we can subdivide Conjecture 5 as follows.

- **Conjecture 11.** A) (E, ∇) has nilpotent, resp. vanishing *p*-curvatures if and only if it has absolute nilpotent, resp. absolute vanishing *p*-curvatures.
 - B) Absolute p-curvature conjecture: 1) (E, ∇) is geometric if and only if it has absolute nilpotent p-curvatures.
 - 2) (E, ∇) is finite if and only if it has absolute vanishing *p*-curvatures.

Theorem 12 ([EG18]). Let X be smooth projective. Then cohomologically rigid finite determinant (E, ∇) 's with absolute vanishing p-curvature are finite.

Here a rigid connection, equivalently a rigid local system, is an isolated point of the de Rham moduli, resp. Betti moduli constructed by Simpson in [Sim94]. It is cohomologically rigid if it is a smooth isolated point (i.e. $H^1(X, \mathcal{E}nd^0(\rho)) = H^1(X, \mathcal{E}nd^0(E, \nabla)) = 0$.)

But Simpson conjectures more generally that rigid systems are all geometric.

Conjecture 13 (Simpson's geometricity conjecture). If V has finite determinant and quasi-unipotent monodromies at infinity, and is rigid, then V is geometric.

Here (cohomologically) rigid means that V is an isolated (a smooth isolated) point of the stack of finite type parametrizing such rigid local systems with fixed determinant and given conjugacy classes of monodromy at infinity (see [EG18]).

- **Remarks 14.** 1) Simpson's conjecture implies that if V as in the conjecture is rigid, then the p-curvatures of (E, ∇) are absolutely nilpotent.
 - 2) Simpson's conjecture implies that if V as in the conjecture is rigid, then (E, ∇) restricted to X_K , with $\operatorname{Spec}(K) \to X_S$ a p-adic point is invariant under some power of Frobenius.
 - 3) Simpson's conjecture implies that if V as in the conjecture is rigid, then it is integral.
- **Theorem 15** ([EG18], [EG18b]). 1) If V has quasi-unipotent monodromies at infinity, has finite determinant, and is cohomologically rigid, then V is integral.
 - 2) If X is projective, and V has finite determinant and is rigid, then it has absolute nilpotent p-curvatures, and $(E, \nabla)_K$ is invariant under some power of Frobenius.

Another way to formulate 2) (without the absolute condition) is to say that $(E, \nabla)_K$ is an isocrystal with Frobenius structure. Using L. Lafforgue's theorem on curves ([Laf02]) together with its translation for overconvergent isocrystals with Frobenius structure ([Abe13]), this implies that if $C \hookrightarrow X$ is a curve such that $\pi_1^{\text{top}}(C, x) \to \pi_1^{\text{top}}(X, x)$ is surjective, then $(E, \nabla)|_{C_K}$ is geometric as an isocrystal.

Finally let us mention that on a smooth variety over a finite field, one has ℓ -to ℓ' companions as conjectured by Deligne [Del80] and proved by L. Lafforgue [Laf02] and Drinfeld [Dri12], p-to- ℓ companions ([AE16], see also [Ked18]), but we do not know how to construct p-to-p or ℓ -to-p companions, unless X has dimension 1 ([Abe13]). So we mention

Theorem 16 ([EG18b]). Cohomologically rigid connections on X projective, while restricted to X_s , have a full set of companions.

References

- [Abe13] Abe, T.: Langlands correspondence for isocrystals and existence of crystalline companions for curves, arXiv:1303.0662 (2013), appears in J. Am. Math. Soc.
- [AE16] Abe, T., Esnault, H.: A Lefschetz theorem for overconvergent isocrystals with Frobenius structure, preprint 2016, 21 pages, appears in the Annales de l'École Normale Supérieure, http://www.mi.fu-berlin.de/users/esnault/preprints/helene/ 123_abe_esn.pdf
- [And04] André, Y.: Sur la conjecture des p-courbures de Grothendieck-Katz et un problème de Dwork, in Geometric aspects of Dwork theory. Vol. I, II, 55–112, Walter de Gruyter (2004).
- [Bos01] Bost, J.-B.: Algebraic leaves of algebraic foliations over number fields, Publ. math. I.
 H. É. S. 93 (2001), 161–221.
- [Chu85] Chudnovsky, D, Chudnovsky, G.: Applications of Padé approximation to the Grothendieck conjecture on linear differential equations, in Number Theory, Lecture Notes in Math. 1135 (1985), 52–100.
- [Del70] Deligne, P.: Équations différentielles à points singuliers réguliers, Lecture Notes in Math. **163**, Springer-Verlag 1970.
- [Del71] Deligne, P.: Théorie de Hodge II, Publ. Math. IHES 40 (1971), 5–58.

- [Del80] Deligne, P.: La conjecture de Weil: II, Publ. math. de l'I.H.É.S. 52 (1980), 137-252.
- [Dri12] Drinfeld, V.: On a conjecture of Deligne, Moscow Math. J. 12 (2012) 3, 515–542.
- [EG18] Esnault, H., Groechenig, M.: Rigid connections and F-isocrystals, preprint 2018, 30 pages, http://www.mi.fu-berlin.de/users/esnault/preprints/helene/126_esn_gro.pdf
- [EG18b] Esnault, H., Groechenig, M.: Cohomologically rigid connections and integrality, preprint 2018, 13 pages, to appear in Selecta Mathematica, http://www.mi.fu-berlin.de/users/esnault/preprints/helene/128_esn_gro.pdf
- [EK18] Esnault, H., Kisin, M.: D-modules and finite monodromy, Selecta Mathematica, volume dedicated to Alexander Beilinson 24 (1) (2018), 217–232.
- [Kat70] Katz, N.: Nilpotent connections and the monodromy theorem; applications of a result of Turrittin, Publ. math. I.H.É.S 39 (1970), 175–232.
- [Kat72] Katz, N.: Algebraic Solutions of Differential Equations (p-curvature and the Hodge Filtration), Invent. math. 18 (1972), 1–118.
- [Kat82] Katz, N.: A conjecture in the arithmetic of differential equations, Bull. S.M.F. 110 (1982), 203–239.
- [Ked18] Kedaya, K.: Étale and crystalline companions, http://kskedlaya.org/papers/companions.pdf
- [Laf02] Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands, Invent. math. 346 (2010) 3, 641–668.
- [LS16] Langer, A., Simpson, C.: Rank 3 rigid representations of projective fundamental groups, https://arxiv.org/pdf/1604.03252.pdf (2016).
- [Sim92] Simpson, C.: Higgs bundles and local systems, Publ. math. Inst. Hautes Études Sci. 75 (1992), 5–95.
- [Sim94] Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety, Publ. math. Inst. Hautes Études Sci. 79 (1994), 47–129.