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Roots of unity and rational numbers

Question

Let a be a complex number, a 6= 0. How do we recognize whether a is a
root of unity, that is satisfies an equation of the form

an = 1

for some natural number n?

Answer

Well, write a = exp(2π
√
−1b) for some complex number b. Then b

should be a rational number.

Too elementary!

Let us ask further, what makes the complex number a a root of unity, or
equivalently the complex number b a rational number?
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Kronecker’s analytic answer

Theorem

Among the complex numbers a which satisfy an equation of the form
an + c1an−1 + . . .+ cn = 0 for some integers ci ∈ Z, the roots of unity are
those for which all the complex solutions have absolute value 1.

We could equivalently say: If a ∈ OK , the ring of integers of a number field K ,

then a ∈ µ∞, the group of roots of unity, if and only if for all complex

embeddings ι : K ↪→ C, |ι(a)| = 1.

One needs ci ∈ Z
If a is algebraic, but not integral, the theorem does not hold. For example,
we know there are more Weil numbers of weight 0 than roots of unity, e.g.

a = 3+4
√
−1

5 , a is algebraic of degree 2, has norm 1 with respect to the two
embeddings, but is not a root of unity.
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Kronecker’s arithmetic answer

Theorem

Among the complex numbers b which satisfy an equation of the form
bm + q1bn−1 + . . .+ qm = 0 for some rational numbers qi ∈ Q, the
rational numbers are those for which for all prime numbers p not dividing
the denominators of the qi , the mod p reduction of b satisfies

(b mod p)p = (b mod p).

We could equivalently say: If b ∈ K , a number field, then it lies in the ring OK ,S

of integers except at finitely many places S ; then

b ∈ Q ⊂ K , the prime field of K

if and only if for almost all prime numbers p,

(b mod pOK ,S) ∈ Fp ⊂ OK ,S/pOK ,S , the prime field of the residue ring .
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A Linear Differential Equation

Let us show that the Question above is equivalent to a question on rank
one linear differential equations on the affine line minus a point.

• Let X := C \ {0} be the complex affine line minus the origin, with
parameter t.

• Linear differential equation

(?) df = b · f · dt

t
.

• Solve in f , an analytic multivalued function on X .
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A Linear Differential Equation

• Solution: f = λ · tb, for some λ ∈ C; 1-dimensional vector space over C
near any point.

• Monodromy: γ : exp(2π
√
−1θ), θ ∈ [0, 1]; follow solution f around

t = 1 along the loop γ, so from θ = 0 to θ = 1. It transforms f to
exp(2π

√
−1b)f = af . So the local system is defined by:

ρ : Z · γ = π1(X )→ C×, γ 7→ a.

• The datum of the local system ρ is equivalent to the datum of the linear
differential equation (?): this is an instance of the Riemann-Hilbert
correspondence, here valid as the solutions have moderate growth at
infinity, or equivalently, (?) is regular singular.
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Kronecker’s theorems expressed with linear differential
equations: analytic side

• Then the solution f is algebraic over the field of rational functions C(t)
if and only if the monodromy a is a root of unity (”if” is clear, ”only if”
discussed later).

• Note: to say |a| = 1 is to say that the monodromy is unitary, i.e.
π1(X )→ U(1) = S1 ⊂ C× = GL(1,C). And to say a is integral is to say
that a ∈ GL(1,OK ), where K is a number field and OK is its ring of
integers (called ‘number ring’).

Analytic characterization

The linear differential equation (?) has finite monodromy if and only if the
monodromy is both unitary and defined over a number ring.

Hélène Esnault, Freie Universität Berlin Finite monodromy Sackler Lectures, Nov. 2016 9 / 34



Kronecker’s theorems expressed with linear differential
equations: analytic side

• Then the solution f is algebraic over the field of rational functions C(t)
if and only if the monodromy a is a root of unity (”if” is clear, ”only if”
discussed later).
• Note: to say |a| = 1 is to say that the monodromy is unitary, i.e.
π1(X )→ U(1) = S1 ⊂ C× = GL(1,C). And to say a is integral is to say
that a ∈ GL(1,OK ), where K is a number field and OK is its ring of
integers (called ‘number ring’).

Analytic characterization

The linear differential equation (?) has finite monodromy if and only if the
monodromy is both unitary and defined over a number ring.

Hélène Esnault, Freie Universität Berlin Finite monodromy Sackler Lectures, Nov. 2016 9 / 34



Kronecker’s theorems expressed with linear differential
equations: analytic side

• Then the solution f is algebraic over the field of rational functions C(t)
if and only if the monodromy a is a root of unity (”if” is clear, ”only if”
discussed later).
• Note: to say |a| = 1 is to say that the monodromy is unitary, i.e.
π1(X )→ U(1) = S1 ⊂ C× = GL(1,C). And to say a is integral is to say
that a ∈ GL(1,OK ), where K is a number field and OK is its ring of
integers (called ‘number ring’).

Analytic characterization

The linear differential equation (?) has finite monodromy if and only if the
monodromy is both unitary and defined over a number ring.

Hélène Esnault, Freie Universität Berlin Finite monodromy Sackler Lectures, Nov. 2016 9 / 34



Kronecker’s theorems expressed with linear differential
equations: arithmetic side

• Then the solution f is algebraic over the field of rational functions C(t)
if and only if b is a rational number (again ”if” clear and ”only if”
discussed later).

• Note: solution (f mod p) is a finite expansion f =
∑

i λi t
i for λi in

(OK ,S mod p) satisfying

(
∑

iλi t
i−1) =

bλ0
t

+ (
∑
i 6=0

bλi t
i−1)

• Compute: f solution if and only if b = 0, or λ0 = 0 and b = i ∈ (Z mod
p) \ {0} for some i .
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Kronecker’s theorems expressed with linear differential
equations: arithmetic side

• We conclude: b ∈ Q if and only if the solution (f mod p) exists for
almost all p.

• Discussion ”only if”: b ∈ Q is equivalent to f = tb (and thus to f = λtb, ∀λ ∈ C)
being algebraic over C(t).

• Easy direction: if b = n
m ,m, n ∈ Q, (n,m) = 1, the minimal equation of

f is (Xm − tn) ∈ C(t)[X ] as this is an irreducible polynomial. Vice-versa:
an algebraic equation (tb)N + ϕ1(t)(tb)N−1 + . . .+ ϕ0(t) = 0 with
ϕi (t) ∈ C(t) implies that b ∈ Q.

Arithmetic characterization

The linear differential equation (?) has algebraic solutions if and only if it
is defined over a number field K , and for almost all p, it has a full set of
solutions modulo p.
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Generalization of the analytic theorem

• We can reinterpret Kronecker’s analytic theorem as follows: writing∏
(ι) : K ↪→ VC for an r -dimensional vector space over C, where r equals

the number of real embeddings plus twice the number of complex
embeddings, and OK as a lattice VZ ⊂ VC, then
O×K ⊂ GL(VZ) ⊂ GL(VC). The condition |ι(a)| = 1 ∀ι says
a ∈ diag(S1 × . . .× S1) ∩ GL(r ,VZ) ⊂ GL(VC).

• In GL(VC) endowed with the complex topology, the subgroup
diag(S1 × . . .× S1) is compact, while the subgroup GL(r ,VZ) is discrete.

• Thus diag(S1 × . . .× S1) ∩ GL(r ,VZ) is finite.

• Thus a is a root of unity.
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Generalization of the analytic theorem

Theorem (Nobody’s theorem, it is obvious: same topological
argument)

Let X be a complex manifold, ρ : π1(X )→ GL(r ,C) be a local system.
Then it has finite monodromy if it is definable over Z and is unitary.

• Later on, we shall interpret unitary local systems as polarizable variations
of Hodge structure of weight 0. We keep this in mind.
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Restricted formulation of Grothendieck’s p-curvature
conjecture

Grothendieck’s p-curvature conjecture, restricted formulation

Let X be a smooth variety defined over a number field K . Then a system
of linear differential equations M has algebraic solutions if and only if it
has a full set of solutions modulo p for almost all p.

• This is the precise generalization of the ’Arithmetic Formulation’ of
Kronecker’s theorem translated for (X ,M) = (Gm, (?)).

Small historical remark by Yves André

The problem of characterizing which linear differential equations have
algebraic solutions goes back to Fuchs (1875), followed by Schwarz,
Jordan, Poincaré...Landau ”Eine Anwendung des Eisensteinschen Satzes
auf die Theorie der Gausschen Differentialgleichung” (Crelle (1904)).
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More precise formulation

• We should be more precise.

• To say that (M mod p) has a full set of solutions means the following.

• Locally on U Zariski open in X with local coordinates (x1, . . . , xn), M is
defined by

(??) ∂xs fi =
r∑

j=1

aij fj ,

for s = 1, . . . , n, i , j = 1, . . . , r , aij regular functions. Then there are r

r -vectors of functions g j := (g j
1, . . . , g

j
r ), j = 1, . . . , r in (O(U) mod p)
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More precise formulation

• To say that (X ,M) is defined over a number field means X is defined by
algebraic equations with coefficients in a number field, K say, and (??) has
coefficients aij ∈ O(UK ).
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More complete formulation of Grothendieck’s p-curvature
conjecture

We wish to be free of the assumption that (X ,M) be defined over a
number field. It goes as follows. If not, that is if (X ,M) is only defined
over C, then it is indeed defined over a Z-algebra of finite type, R say,
which contains all the coefficients of the equations defining X , so
aij ∈ O(UR) in (??). One writes (X ,M) = (X ,M)R ⊗R C. For all
specializations R → K , where K is a number field, (called K -valued
points), (X ,M)⊗R K is defined over the number field K . For
specializations R → κ, where κ is a finite field, (called closed points),
(X ,M)⊗R κ is defined over a finite field.
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More complete formulation of Grothendieck’s p-curvature
conjecture

Grothendieck’s p-curvature conjecture, more general formulation

Let X be a smooth complex variety. Then a system of linear differential
equations M has algebraic solutions if and only if M ⊗R κ as a full set of
solutions for all closed points κ of a ring of definition R.
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Easy direction

Theorem (Easy direction)

If M has algebraic solutions, then M ⊗R κ has a full set of solutions for all
closed points κ of a ring of definition R.

Proof.

• There is an easy argument which relies on the notion of p-curvature
which we carefully avoided up to now (even though the conjecture carries
this name).

• One has to show that when we take the mod p reduction of a finite étale
cover Y → X which trivializes the differential equation MY , then the
solutions of the differential equation on (Y mod p) come from (X mod p).
The solutions on (Y mod p) form a bundle on the Frobenius twist of (Y
mod p), and because MY comes from M, this bundle comes from the
Frobenius twist of (X mod p). This bundle is the sheaf of solutions.
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Two examples of global problems and theorems
understood via localization/specialization, and local-global
considerations

Theorem of Minkowski-Hasse

Minkowski: if a quadratic form defined over Q has a real zero and zeros in
all the p-adic completions Qp of Q, then it has a zero on Q. (Hasse more
generally: replace Q by a number field, and R and Qp by the completion
at all places).

Differences

Minkowski-Hasse consider all the completions, Grothendieck considers
almost all non-archimedian specializations. Also, while a p-adic zero yields
a zero (mod p), it is true vice-versa only if the quadric has good reduction.
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Two examples of global problems and theorems understood
via localization/reduction, and local-global considerations

Theorem of Deligne-Sullivan

On X complex manifold, the C∞-vector bundle associated to a local
system ρ : πtop1 (X )→ GL(r ,A), where A is a finite type over Z, is trivial if
ρ⊗A κi , i = 1, 2, are trivial for two closed points with
char(κ1) 6= char(κ2).

Differences

We have here specializations, not localizations, but of the monodromy, not
of the underlying algebraic vector bundle; in addition, one needs only two
specializations.
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Two other classical examples

Additive version

Let XS be smooth over an open S of a number ring, ω be a regular
differential form. Then ω is d-exact if and only if it is mod p for almost all
p.

Multiplicative version

Let XS be smooth an open S of a number ring, ω be a regular differential
form. Then ω is d log-exact if and only if it is mod p for almost all p.

We shall see later that those last two statements are true as a corollary of
one of the rare instances where one has a solution to the conjecture.
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Number field condition

Theorem of André-Hrushovski

The more general formulation of Grothendieck’s p-curvature conjecture
reduces to the restricted formulation. More precisely: Let R be a ring of
finite type over Q. If MR ⊗R K has a full set of algebraic solutions for all
points with values in number fields K , then M itself has a full set of
algebraic solutions. So one may assume that (X ,M) is defined over a
number field.

Hrushovski: model theory

I’m incompetent to comment.
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Number field condition

André: pure algebraic geometry and group theory

• Camille Jordan’s theorem, proved in fact in connection with Fuchs’
problem (1878): any finite subgroup of GL(r ,C) has a normal abelian
subgroup of index bounded in term of r , thus independently of the
complex linear representations associated to the various complex
embeddings of K for the specializations M ⊗ K . .

• This reduces the problem to the case where the monodromies are all
finite abelian groups.

• One uses algebraic geometry and the representability of the Pic-functor
to conclude.
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First Katz’ theorem: conditions at infinity

Theorem (Katz)

Let X be a smooth variety defined over a number field, let M be a system
of linear differential equations which has a full set of algebraic solutions
mod p for almost all p. Then after replacing X by a finite cover, M
extends to a good compactification. In other words, one may assume that
X is projective.

Hélène Esnault, Freie Universität Berlin Finite monodromy Sackler Lectures, Nov. 2016 25 / 34



Lefschetz’ and Belyi’s theorems

• The Lefschetz theorem reduces the problem to X being a smooth
projective curve, defined over a number field.

• Belyi’s theorem according to which smooth projective curves defined
over a number field ramify over the projective line P1 in three (rational)
points reduces the problem to X being P1 \ {0, 1,∞}, defined over a
number field.
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Résumé

To summarize:

Grothendieck’s p-curvature conjecture predicts:

(i) If X is a smooth projective curve defined over a number field, (M
mod p) has a full set of solutions for almost all p; or

(ii) if X = P1 \ {0, 1,∞} over a number field, (M mod p) has a full set of
solutions for almost all p;

then M has a full set of algebraic solutions.

Comment

(i) suggests perhaps the use of techniques of global algebraic geometry;
(ii) suggests perhaps the use of p-adic analysis.
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Second Katz’ theorem: Gauß-Manin connections and the
use of Nobody’s analytic theorem

Theorem (Katz)

Gauß-Manin connections verify Grothendieck’s p-curvature conjecture.

Method of proof

• By definition, the monodromy is integral, i.e. lies in GL(r ,Z), and in
some U(p, q) (up to conjugacy), as a variation of Hodge structure. Show:
in fact it is unitary, i.e. in U(r ,C), and apply Nobody’s theorem.

• To this: use geometry. Show “full sets of solutions mod p” implies
(F -filtration mod p) stable under the connection, thus stable to start with.
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Theorems of Honda, Chudnovsky-Chudnovsky, André:
p-adic analysis

Theorem (Honda, Chudnovsky-Chudnovsky, André)

Grothendieck’s p-curvature conjecture is true for M being a successive
extension of rank 1 connections.

Additive and multiplicative examples fall under this theorem

For any system: to have a full set of algebraic solutions is a property one
checks locally Zariski on X . Then the multiplicative example is precisely
the case of a rank 1 system of differential equations, while the additive
example if precisely the case of an extension of the trivial rank 1 system of
differential equations by itself.
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Theorems of Honda, Chudnovsky-Chudnovsky, André:
p-adic analysis

Method of proof

• Honda-Chudnovsky2: Dwork’s criterion for a p-adic function to be a
rational function;

• Extension by André: criterion for a p-adic function to be algebraic.

• Tannakian considerations.
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End of general knowledge/understanding

This is essentially all we know on Grothendieck’s p-curvature
conjecture, without reinforcing the assumptions.

The résumé suggested to try to use algebraic geometry and start with X
being a smooth projective curve. This is what we shall do in the next
lecture, based on joint work with Mark Kisin.
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Outlook

• A generalisation: M with algebraic solutions is a special instance of an
M which is a Gauß-Manin connection, that is of an M which comes from
the variation of Betti cohomology of a fibration Y → X over C. The case
of algebraic solutions is equivalent to Y → X finite.

• The generalization of the p-curvature conjecture is to say that
Gauß-Manin connections and their summands are characterized by their
p-curvatures as in the previous case, except that here one requires the M
on (X mod p) to be filtered so that the graded pieces have a full set of
solutions. Again the ’easy’ direction is known (and due to Deligne): if M
is a summand of a Gauß-Manin, then mod p for almost all p, M is filtered
with graded having a full set of solutions.
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Simpson

A very recent development is based on Simpson’s earlier conjecture: a
local system which is rigid (i.e. isolated in its moduli) should be a
summand of a Gauß-Manin connection. He proved this with Corlette in
full generality for SL(2)-local, and with various restrictions with Langer for
SL(3)-local systems.
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Outlook: a conjecture

Conjecture

Let (X ,M) be a system of linear differential equations on X smooth over
C. Assume M is simple, has quasi-nilpotent monodromies at infinity and is
rigid. Then there is S affine over Z and a model (XS ,MS) such that for all
s ∈ S , Ms is filtered and grMs has a full set of solutions.
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