Some Fundamental Groups in Arithmetic Geometry

Hélène Esnault, Freie Universität Berlin

Utah, 27-29-30 July 2015

Hélène Esnault, Freie Universität Berlin

Fundamental Groups

Utah, 27-29-30 July 2015 1 / 60

Thank you to

the organisers for the kind invitation, and much more generally for the friendly and efficient organisation of the whole conference. I can't speak for the first week, but can for the second one. It was wonderful. Thank you.

Thank you to

the organisers for the kind invitation, and much more generally for the friendly and efficient organisation of the whole conference. I can't speak for the first week, but can for the second one. It was wonderful. Thank you.

Thank you to

Moritz Kerz, Lars Kindler, Takeshi Saito and Atsushi Shiho for their constructive comments and remarks on the slides.

1 Deligne's conjectures: *l*-adic theory

2 Deligne's conjectures: crystalline theory

3 Malčev-Grothendieck theorem; Gieseker conjecture; de Jong conjecture

4 Relative 0-cycles

Hélène Esnault, Freie Universität Berlin

Theorem (Deligne '87)

 X/\mathbb{C} smooth connected variety, $r \in \mathbb{N}_{>0}$ given. Then there are finitely many rank r \mathbb{Q} -local systems which are direct factors of \mathbb{Q} -variations of polarisable pure Hodge structures of a given weight, definable over \mathbb{Z} .

Theorem (Deligne '87)

 X/\mathbb{C} smooth connected variety, $r \in \mathbb{N}_{>0}$ given. Then there are finitely many rank r \mathbb{Q} -local systems which are direct factors of \mathbb{Q} -variations of polarisable pure Hodge structures of a given weight, definable over \mathbb{Z} .

Example (Faltings' finiteness of abelian schemes on X, '83)

In general, this is a generalisation the version over ${\mathbb C}$ of Faltings' theorem.

Theorem (Deligne '12)

 X/\mathbb{F}_q smooth quasi-projective variety, $r \in \mathbb{N}_{>0}$ given; $D \subset \overline{X}$ an effective Cartier divisor of a normal compactification with support $\overline{X} \setminus X$, and $r \in \mathbb{N}_{>0}$ given. Then there are finitely many irreducible Weil (resp. étale) rank r lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaves with ramification bounded by D, up to twist with Weil (resp. étale) characters of \mathbb{F}_q . The number does not depend on the choice of ℓ .

Corollary (Deligne '07, Deligne's conjecture, Weil II, 1.2.10)

Given an étale lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf V with finite determinant, the subfield of $\overline{\mathbb{Q}}_{\ell}$ spanned by the EV of the Frobenii F_x at closed points $x \in |X|$ acting on $V_{\overline{x}}$ is a number field.

・ロト ・同ト ・ヨト ・ヨト

Theorem over \mathbb{C} is in fact a theorem on X of dimension 1: fixing a good compactification $\overline{X} \supset X$, with a s.n.c.d. at infinity, then a curve \overline{C} , complete intersection of ample divisors in \overline{X} in good position, fulfils the Lefschetz theorem

$$\pi_1^{\operatorname{top}}(\mathcal{C}:=X\cap ar{\mathcal{C}})\twoheadrightarrow \pi_1^{\operatorname{top}}(X).$$

Theorem over \mathbb{C} is in fact a theorem on X of dimension 1: fixing a good compactification $\overline{X} \supset X$, with a s.n.c.d. at infinity, then a curve \overline{C} , complete intersection of ample divisors in \overline{X} in good position, fulfils the Lefschetz theorem

$$\pi_1^{\mathrm{top}}(\mathcal{C} := X \cap \overline{\mathcal{C}}) \twoheadrightarrow \pi_1^{\mathrm{top}}(X).$$

For X of dimension ≥ 2 in char. p > 0, we do *not* have a Lefschetz theorem at disposal. So Theorem over \mathbb{F}_q does *not* reduce to X of dimension 1.

Theorem over \mathbb{C} is in fact a theorem on X of dimension 1: fixing a good compactification $\overline{X} \supset X$, with a s.n.c.d. at infinity, then a curve \overline{C} , complete intersection of ample divisors in \overline{X} in good position, fulfils the Lefschetz theorem

$$\pi_1^{\mathrm{top}}(\mathcal{C}:=X\cap ar{\mathcal{C}})\twoheadrightarrow \pi_1^{\mathrm{top}}(X).$$

For X of dimension ≥ 2 in char. p > 0, we do *not* have a Lefschetz theorem at disposal. So Theorem over \mathbb{F}_q does *not* reduce to X of dimension 1.

Yet one has:

Theorem (Drinfeld '11)

Let $\bar{X} \supset X$ be a projective normal compactification of X smooth over a field $k, \Sigma \subset \bar{X}$ be closed of codimension ≥ 2 such that $(\bar{X} \setminus \Sigma)$ and $(\bar{X} \setminus \Sigma) \cap (\bar{X} \setminus X)$ are smooth, $\bar{C} \subset \bar{X} \setminus \Sigma$ be a smooth projective curve, complete intersection of ample divisors, meeting $\bar{X} \setminus X$ transversally. Then

$$\pi_1^t(C = \overline{C} \cap X) \twoheadrightarrow \pi_1^t(X).$$

Theorem (Drinfeld '11)

Let $\bar{X} \supset X$ be a projective normal compactification of X smooth over a field $k, \Sigma \subset \bar{X}$ be closed of codimension ≥ 2 such that $(\bar{X} \setminus \Sigma)$ and $(\bar{X} \setminus \Sigma) \cap (\bar{X} \setminus X)$ are smooth, $\bar{C} \subset \bar{X} \setminus \Sigma$ be a smooth projective curve, complete intersection of ample divisors, meeting $\bar{X} \setminus X$ transversally. Then

$$\pi_1^t(C = \overline{C} \cap X) \twoheadrightarrow \pi_1^t(X).$$

No need of a good compactification.

Theorem (Drinfeld '11)

Let $\bar{X} \supset X$ be a projective normal compactification of X smooth over a field k, $\Sigma \subset \bar{X}$ be closed of codimension ≥ 2 such that $(\bar{X} \setminus \Sigma)$ and $(\bar{X} \setminus \Sigma) \cap (\bar{X} \setminus X)$ are smooth, $\bar{C} \subset \bar{X} \setminus \Sigma$ be a smooth projective curve, complete intersection of ample divisors, meeting $\bar{X} \setminus X$ transversally. Then

$$\pi_1^t(C = \overline{C} \cap X) \twoheadrightarrow \pi_1^t(X).$$

No need of a good compactification.

Proof.

Bertini to get that restriction to C of connected finite étale cover of X is connected, tameness and transversality to keep smoothness, thus irreducibility.

7 / 60

If $\overline{X} \setminus X$ is a s.n.c.d. compactification, Kindler *enhances* the theorem: if $\overline{S} \subset \overline{X}$ is a smooth projective surface, complete intersection of divisors in good position, then

$$\pi_1^t(S = \overline{S} \cap X) \xrightarrow{\cong} \pi_1^t(X).$$

Theorem (Wiesend '06, Drinfeld '11)

Over X *quasi-projective smooth over* \mathbb{F}_q *, with* $S \subset |X|$ *finite:*

- 1) let V be an irreducible $\overline{\mathbb{Q}}_{\ell}$ -Weil or -étale lisse sheaf, then there is a smooth curve $C \to X$ with $S \subset |C|$, such that $V|_C$ is irreducible;
- 2) let $H \subset \pi_1(X)$ be an open normal subgroup, then there is a smooth curve $C \to X$ with $S \subset |C|$, such that $\pi_1(C) \twoheadrightarrow \pi_1(X)/H$.

Theorem (Wiesend '06, Drinfeld '11)

Over X *quasi-projective smooth over* \mathbb{F}_q *, with* $S \subset |X|$ *finite:*

- 1) let V be an irreducible $\overline{\mathbb{Q}}_{\ell}$ -Weil or -étale lisse sheaf, then there is a smooth curve $C \to X$ with $S \subset |C|$, such that $V|_C$ is irreducible;
- 2) let $H \subset \pi_1(X)$ be an open normal subgroup, then there is a smooth curve $C \to X$ with $S \subset |C|$, such that $\pi_1(C) \twoheadrightarrow \pi_1(X)/H$.

Proof.

Uses Hilbert irreducibility à la Wiesend.

Corollaries of the wild Lefschetz theorems: weights and companions

Corollary (Drinfeld '11, Deligne's conjecture in Weil II, 1.2.10)

- 1) if det(V) is torsion, then V has weight 0;
- if V is an irreducible Weil lisse Q
 _ℓ-sheaf with determinant of finite order, and σ ∈ Aut(Q
 _ℓ/Q), there is an irreducible Weil lisse Q
 _ℓ-sheaf V_σ, called the σ-companion of V, with determinant of finite order, such that the characteristic polynomials f_V, f_{V_σ} ∈ Q
 _ℓ[t] of the local Frobenii F_x satisfy f_{V_σ} = σ(f_V).

Corollaries of the wild Lefschetz theorems: weights and companions

Corollary (Drinfeld '11, Deligne's conjecture in Weil II, 1.2.10)

- 1) if det(V) is torsion, then V has weight 0;
- if V is an irreducible Weil lisse Q
 _ℓ-sheaf with determinant of finite order, and σ ∈ Aut(Q
 _ℓ/Q), there is an irreducible Weil lisse Q
 _ℓ-sheaf V_σ, called the σ-companion of V, with determinant of finite order, such that the characteristic polynomials f_V, f_{V_σ} ∈ Q
 _ℓ[t] of the local Frobenii F_x satisfy f_{V_σ} = σ(f_V).

Proof.

Reduce the problem to curves. Then consequence of Lafforgue's Langlands duality:

- 1) existence of weights on curves;
- 2) existence of companions on curves.

Theorem (Kerz-S.Saito '14)

Let X be a smooth quasi-projective variety over a perfect field k, let $X \subset \overline{X}$ be a projective s.n.c.d. compactification, D be an effective divisor with support in $\overline{X} \setminus X$. Define $\pi_1^{ab}(X, D)$ by the condition that a character $\chi : \pi_1(X) \to \mathbb{Q}/\mathbb{Z}$ factors through $\pi_1^{ab}(X, D)$ iff the Artin conductor of χ pulled-back to any curve $C \to X$ is bounded by the pull-back of D via $\overline{C} \to \overline{X}$. Then Lefschetz holds: for $i : \overline{Y} \subset \overline{X}$ very very ample and in good position w.r.t. $\overline{X} \setminus X$, one has:

$$\dot{h}_*:\pi^{\mathrm{ab}}_1(Y,ar{Y}\cap D) o\pi^{\mathrm{ab}}_1(X,D)$$

is an isomorphism if dim $Y \ge 2$, surjective if dim Y = 1.

60

Corollary of Abelian Lefschetz theorem: abelian finiteness over \mathbb{F}_q

Corollary (Raskind '92, this formulation by Kerz-S.Saito '14)

 $k = \mathbb{F}_q$, then $\operatorname{Ker}(\pi_1^{\operatorname{ab}}(X, D) \to \pi_1^{\operatorname{ab}}(k))$ is finite. (So in particular, this implies Deligne's finiteness for sums of rank 1 lisse sheaves).

Corollary of Abelian Lefschetz theorem: abelian finiteness over \mathbb{F}_q

Corollary (Raskind '92, this formulation by Kerz-S.Saito '14)

 $k = \mathbb{F}_q$, then $\operatorname{Ker}(\pi_1^{\operatorname{ab}}(X, D) \to \pi_1^{\operatorname{ab}}(k))$ is finite. (So in particular, this implies Deligne's finiteness for sums of rank 1 lisse sheaves).

Proof.

Reduce to curves via de Jong's alterations (in the more general case \bar{X} is a normal compactification) plus the Theorem and apply then CFT.

Right fundamental group with ramification bounded by a $\mathbb{Q}_{\geq 0}\text{-divisor}$

Questions

One has the notion of a lisse étale $\overline{\mathbb{Q}}_{\ell}$ -sheaf $\pi_1(X) \to \operatorname{Aut}(V)$ with ramification bounded by D, a positive \mathbb{Q} -divisor (Hu-Yang: does not need a good compactification; as for Drinfeld's Lefschetz theorem for $\pi_1^t(X)$). How does one define a quotient $\pi_1(X) \twoheadrightarrow \pi_1(X, D)$ generalising $\pi_1^{\mathrm{ab}}(X, D)$? Then one could ask for a Lefschetz theorem $\pi_1(C, D_C) \twoheadrightarrow \pi_1(X, D)$ for a suitable curve C which would reflect Deligne's finiteness theorem.

1 Deligne's conjectures: ℓ -adic theory

2 Deligne's conjectures: crystalline theory

3 Malčev-Grothendieck theorem; Gieseker conjecture; de Jong conjecture

4 Relative 0-cycles

X smooth geometrically connected over a perfect field k, W := W(k) the ring of Witt vectors, K = Frac(W) its field of fractions.

X smooth geometrically connected over a perfect field k, W := W(k) the ring of Witt vectors, K = Frac(W) its field of fractions. One defines the crystalline sites X/W_n as PD-thickenings $(U \hookrightarrow T/W_n, \delta)$, coverings coming from $U \subset X$ Zariski; X smooth geometrically connected over a perfect field k, W := W(k) the ring of Witt vectors, K = Frac(W) its field of fractions. One defines the crystalline sites X/W_n as PD-thickenings $(U \hookrightarrow T/W_n, \delta)$, coverings coming from $U \subset X$ Zariski; X/W as limit. • category of *crystals* (i.e. sheaves of $\mathcal{O}_{X/W}$ -modules of finite presentation, with transition maps which are isomorphisms) $\operatorname{Crys}(X/W)$, which is *W*-linear;

- category of *crystals* (i.e. sheaves of $\mathcal{O}_{X/W}$ -modules of finite presentation, with transition maps which are isomorphisms) $\operatorname{Crys}(X/W)$, which is *W*-linear;
- Q-linearisation $Crys(X/W)_Q$ =category of *isocrystals*, which is K-linear, tannakian;

- category of *crystals* (i.e. sheaves of $\mathcal{O}_{X/W}$ -modules of finite presentation, with transition maps which are isomorphisms) $\operatorname{Crys}(X/W)$, which is *W*-linear;
- Q-linearisation $Crys(X/W)_Q$ =category of *isocrystals*, which is K-linear, tannakian;
- absolute Frobenius F acts on $Crys(X/W)_{\mathbb{Q}}$;

- category of *crystals* (i.e. sheaves of $\mathcal{O}_{X/W}$ -modules of finite presentation, with transition maps which are isomorphisms) Crys(X/W), which is *W*-linear;
- Q-linearisation $Crys(X/W)_Q$ =category of *isocrystals*, which is K-linear, tannakian;
- absolute Frobenius F acts on $Crys(X/W)_{\mathbb{Q}}$;

• largest full subcategory on which every object is F^{∞} -divisible is $\operatorname{Conv}(X/K) \subset \operatorname{Crys}(X/W)_{\mathbb{Q}}$, the K-tannakian subcategory of *convergent* isocrystals (Berthelot-Ogus); (Ogus defines the site of enlargements from X/W, then convergent isocrystals are crystals of $\mathcal{O}_{X/K}$ -modules of finite presentation).

・ロト ・得ト ・ヨト ・ヨト

•
$$F - \operatorname{Conv}(X/K) \to \operatorname{Conv}(X/K), \ (\mathcal{E}, \Phi : F^*\mathcal{E} \xrightarrow{\cong} \mathcal{E}) \mapsto \mathcal{E};$$

Hélène Esnault, Freie Universität Berlin

- $F \operatorname{Conv}(X/K) \to \operatorname{Conv}(X/K), \ (\mathcal{E}, \Phi : F^*\mathcal{E} \xrightarrow{\cong} \mathcal{E}) \mapsto \mathcal{E};$
- $F \operatorname{Conv}(X/K) \mathbb{Q}_p$ -linear tannakian;

•
$$F - \operatorname{Conv}(X/K) \to \operatorname{Conv}(X/K), \ (\mathcal{E}, \Phi : F^*\mathcal{E} \xrightarrow{\cong} \mathcal{E}) \mapsto \mathcal{E};$$

• $F - \operatorname{Conv}(X/K) \mathbb{Q}_p$ -linear tannakian;

•
$$F - \operatorname{Overconv}(X/K) \xrightarrow{\text{fully faithful Kedlaya}} F - \operatorname{Conv}(X/K);$$

•
$$F - \operatorname{Conv}(X/K) \to \operatorname{Conv}(X/K), \ (\mathcal{E}, \Phi : F^*\mathcal{E} \xrightarrow{\cong} \mathcal{E}) \mapsto \mathcal{E};$$

- $F \operatorname{Conv}(X/K) \mathbb{Q}_p$ -linear tannakian;
- $F \operatorname{Overconv}(X/K) \xrightarrow{\text{fully faithful Kedlaya}} F \operatorname{Conv}(X/K);$

• F – Overconv(X/K) consists of those E which have "unipotent local monodromy" after alteration (Kedlaya);

 \bullet Brieskorn over $\mathbb{C} \colon$ Gauß-Manin connections have quasi-unipotent local monodromies;

- \bullet Brieskorn over \mathbb{C} : Gauß-Manin connections have quasi-unipotent local monodromies;
- so become unipotent after a surjective finite cover of X, possibly ramified (Kawamata's trick);
- \bullet Brieskorn over $\mathbb{C}\colon$ Gauß-Manin connections have quasi-unipotent local monodromies;
- so become unipotent after a surjective finite cover of X, possibly ramified (Kawamata's trick);
- Grothendieck over \mathbb{F}_q : lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaves have quasi-unipotent local monodromies (action of local inertia $\mathbb{Z}_{\ell}(1)$).

• Kedlaya over k (not necessarily perfect): $\mathcal{E} \in F - \text{Overconv}(X/K)$ has 'unipotent monodromy' (in a suitable sense) at infinity after an alteration (uses André-Kedlaya-Mebkhout local result).

• Kedlaya over k (not necessarily perfect): $\mathcal{E} \in F - \text{Overconv}(X/K)$ has 'unipotent monodromy' (in a suitable sense) at infinity after an alteration (uses André-Kedlaya-Mebkhout local result).

There are blow-ups at infinity: analog to resolution of turning points over $\mathbb C$ (Kedlaya/T. Mochizuki).

• Kedlaya over k (not necessarily perfect): $\mathcal{E} \in F - \text{Overconv}(X/K)$ has 'unipotent monodromy' (in a suitable sense) at infinity after an alteration (uses André-Kedlaya-Mebkhout local result).

There are blow-ups at infinity: analog to resolution of turning points over $\mathbb C$ (Kedlaya/T. Mochizuki).

• From the definition:

On X proper, F - Overconv(X/K) = F - Conv(X/K).

The various categories of isocrystals under consideration IV

• Over \mathbb{F}_q , $q = p^s$, define $F_{\mathbb{F}_q} = F^s - \text{Overconv}(X/K)$, so $K = \text{Frac}W(\mathbb{F}_q)$ -linear; abuse of notations F - Overconv(X/K).

The various categories of isocrystals under consideration IV

- Over \mathbb{F}_q , $q = p^s$, define $F_{\mathbb{F}_q} = F^s \operatorname{Overconv}(X/K)$, so
- $K = \operatorname{Frac} W(\mathbb{F}_q)$ -linear; abuse of notations $F \operatorname{Overconv}(X/K)$.
- *L*-linearisation, for $K \subset L \subset \overline{\mathbb{Q}}_p$, $L \to \overline{\mathbb{Q}}_p$, defines the category $F \operatorname{Overconv}(X/K)_{\overline{\mathbb{Q}}_p}$.

Irreducible objects in F – Overconv $(X/K)_{\bar{\mathbb{Q}}_n}$ with finite determinant;

Irreducible objects in F – Overconv $(X/K)_{\bar{\mathbb{Q}}_p}$ with finite determinant; are analog to irreducible lisse $\bar{\mathbb{Q}}_{\ell}$ -sheaves with finite determinant;

Irreducible objects in F – $Overconv(X/K)_{\bar{\mathbb{Q}}_p}$ with finite determinant; are analog to irreducible lisse $\bar{\mathbb{Q}}_{\ell}$ -sheaves with finite determinant; Upon bounding ramification at infinity (correct notion for F – $Overconv(X/K)_{\bar{\mathbb{Q}}_p}$?),

Irreducible objects in F – $\operatorname{Overconv}(X/K)_{\overline{\mathbb{Q}}_p}$ with finite determinant; are analog to irreducible lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaves with finite determinant; Upon bounding ramification at infinity (correct notion for F – $\operatorname{Overconv}(X/K)_{\overline{\mathbb{Q}}_p}$?), are analog over \mathbb{C} to irreducible \mathbb{Q} -variations of polarisable pure Hodge structures of pure weight definable over \mathbb{Z} .

Crystalline version (petits camarades cristallins) on curves

Theorem (Abe, Crystalline version of Lafforgue's theorem '13)

Let X be a smooth curve over \mathbb{F}_q . Then

- 1) an irreducible overconvergent $\overline{\mathbb{Q}}_p$ -*F*-isocrystal with finite determinant is ι -pure of weight 0;
- 2) an irreducible lisse $\overline{\mathbb{Q}}_{\ell}$ étale sheaf with finite determinant has an overconvergent $\overline{\mathbb{Q}}_{p}$ -F-isocrystal companion and vice-versa.

No wild Lefschetz theorem for *F*-overconvergent isocrystals

In particular

No wild Lefschetz theorem for F-overconvergent isocrystals

In particular

1) one does not know whether irreducible *F*-isocrystals with finite determinant are ι -pure of weight 0 on X smooth quasi-projective variety over \mathbb{F}_q ;

No wild Lefschetz theorem for F-overconvergent isocrystals

In particular

- 1) one does not know whether irreducible *F*-isocrystals with finite determinant are ι -pure of weight 0 on X smooth quasi-projective variety over \mathbb{F}_q ;
- a fortiori, one does not have a number field capturing the EV of F<sub>F_{q(x)} acting on the stalks at closed points Spec F_{q(x)};
 </sub>

No wild Lefschetz theorem for F-overconvergent isocrystals

In particular

- 1) one does not know whether irreducible *F*-isocrystals with finite determinant are ι -pure of weight 0 on X smooth quasi-projective variety over \mathbb{F}_q ;
- a fortiori, one does not have a number field capturing the EV of F<sub>F_{q(x)} acting on the stalks at closed points Spec F_{q(x)};
 </sub>
- 3) nor does one have a crystalline version of Deligne's finiteness theorem.

No wild Lefschetz theorem for F-overconvergent isocrystals

In particular

- 1) one does not know whether irreducible *F*-isocrystals with finite determinant are ι -pure of weight 0 on X smooth quasi-projective variety over \mathbb{F}_q ;
- a fortiori, one does not have a number field capturing the EV of F<sub>F_{q(x)} acting on the stalks at closed points Spec F_{q(x)};
 </sub>
- 3) nor does one have a crystalline version of Deligne's finiteness theorem.

So: no higher dimensional generalisation of Drinfeld/Deligne.

Theorem (Abe '13)

On X quasi-projective smooth over \mathbb{F}_q , ι -pure (or mixed, $\iota : \overline{\mathbb{Q}}_p \cong \mathbb{C}$) semi-simple objects in F – Overconv(X/K) are determined by their local EV at closed points.

Deligne's conjectures: ℓ-adic theory

2 Deligne's conjectures: crystalline theory

3 Malčev-Grothendieck theorem; Gieseker conjecture; de Jong conjecture

4 Relative 0-cycles

Rather than considering analogies between *some* irreducible complex local systems ('motivic' ones) with *some* lisse $\overline{\mathbb{Q}}_{\ell^-}$ sheaves (irreducible with finite determinant) over \mathbb{F}_q , and with *some* overconvergent $\overline{\mathbb{Q}}_{p^-} F$ isocrystals (irreducible with finite determinant), one can raise the

Rather than considering analogies between *some* irreducible complex local systems ('motivic' ones) with *some* lisse $\overline{\mathbb{Q}}_{\ell^-}$ sheaves (irreducible with finite determinant) over \mathbb{F}_q , and with *some* overconvergent $\overline{\mathbb{Q}}_{p^-} F$ isocrystals (irreducible with finite determinant), one can raise the

Question

what is the analog of complex local systems on X over \mathbb{C} for X over a perfect field of characteristic p > 0?

Infinitesimal site and crystals in characteristic 0

Infinitesimal site

X smooth over a char. 0 field k;

Infinitesimal site and crystals in characteristic 0

Infinitesimal site

X smooth over a char. 0 field k;

 X_{∞} : $U \hookrightarrow T$ infinitesimal thickening of a Zariski open U; coverings from the Us.

X smooth over a char. 0 field k;

 X_{∞} : $U \hookrightarrow T$ infinitesimal thickening of a Zariski open U; coverings from the Us.

{finitely presented crystals on X_{∞} } = {(E, ∇)}, E coherent sheaf and ∇ flat connection (thus E is locally free); *k*-linear category (assume here k = field of constants of X, i.e. X

geometrically connected over k);

Theorem (Malčev '40-Grothendieck '70)

X smooth over \mathbb{C} ; then $\pi_1^{\text{ét}}(X) = \{1\}$ implies there are no non-trivial crystals in the infinitesimal site (with regular singularities at infinity in case X is not projective).

Proof.

Use Riemann-Hilbert correspondence to translate to finite dimensional complex local systems.

Theorem (Malčev '40-Grothendieck '70)

X smooth over \mathbb{C} ; then $\pi_1^{\text{ét}}(X) = \{1\}$ implies there are no non-trivial crystals in the infinitesimal site (with regular singularities at infinity in case X is not projective).

Proof.

Use Riemann-Hilbert correspondence to translate to finite dimensional complex local systems.

Then $\pi_1^{\text{top}}(X(\mathbb{C}))$ is an abstract group of finite type, so $\rho : \pi_1^{\text{top}}(X(\mathbb{C})) \to GL(r, \mathbb{C})$ factors through $\rho_A : \pi_1^{\text{top}}(X(\mathbb{C})) \to GL(r, A)$, A/\mathbb{Z} of finite type, and $\rho = 1$ iff $\rho_A = 1$ iff $\rho_a : \pi_1^{\text{top}}(X(\mathbb{C})) \to GL(r, \kappa(a)) \forall$ closed point $a \in \text{Spec}(A)$. So { finite étale category } trivial implies { infinitesimal crystals } (regular singular) trivial.

So { finite étale category } trivial implies { infinitesimal crystals } (regular singular) trivial.

More modest question: analogs in char. p > 0 of this conservativity theorem? (*Terminology 'conservativity' borrowed from Ayoub's work*).

As in char. 0: X smooth over a char. p > 0 field k; X_{∞} : $U \hookrightarrow T$ infinitesimal thickening of a Zariski open U; coverings from the Us.

As in char. 0: X smooth over a char. p > 0 field k; X_{∞} : $U \hookrightarrow T$ infinitesimal thickening of a Zariski open U; coverings from the Us.

 $\{\text{finitely presented crystals on } X_{\infty}\} = \{\mathcal{O}_X - \text{coherent } \mathcal{D}_X - \text{modules}\}$

As in char. 0: X smooth over a char. p > 0 field k; X_{∞} : $U \hookrightarrow T$ infinitesimal thickening of a Zariski open U; coverings from the Us.

{finitely presented crystals on X_{∞} } = { \mathcal{O}_X - coherent \mathcal{D}_X - modules} = {F - d.c.s.} (divided coherent sheaves) (Cartier isomorphism, Katz' theorem).

As in char. 0: X smooth over a char. p > 0 field k; X_{∞} : $U \hookrightarrow T$ infinitesimal thickening of a Zariski open U; coverings from the Us.

{finitely presented crystals on X_{∞} } = { \mathcal{O}_X - coherent \mathcal{D}_X - modules} = {F - d.c.s.} (divided coherent sheaves) (Cartier isomorphism, Katz' theorem).

k-linear category (assume here k = field of constants of X, i.e. X geometrically connected over k).

Gieseker's conjecture '75

On X projective smooth over $k = \bar{k}$ of char. p > 0, $\pi_1^{\text{ét}}(X) = \{1\}$ implies that there are no non-trivial crystals in the infinitesimal site.

Gieseker's conjecture '75

On X projective smooth over $k = \bar{k}$ of char. p > 0, $\pi_1^{\text{ét}}(X) = \{1\}$ implies that there are no non-trivial crystals in the infinitesimal site.

Theorem (E-Mehta '10)

Conjecture has a positive answer.

• X not proper: theory of *regular singular* crystals in the infinitesimal site developed by Kindler ('13), so that for those with finite monodromy, it coincides with the notion of *tame* quotient of $\pi_1^{\text{ét}}(X)$.

• X not proper: theory of *regular singular* crystals in the infinitesimal site developed by Kindler ('13), so that for those with finite monodromy, it coincides with the notion of *tame* quotient of $\pi_1^{\text{ét}}(X)$.

• Yet no ramification theory, so far.

• X not proper: theory of *regular singular* crystals in the infinitesimal site developed by Kindler ('13), so that for those with finite monodromy, it coincides with the notion of *tame* quotient of $\pi_1^{\text{ét}}(X)$.

• Yet no ramification theory, so far.

• So far no extension of the conservativity theorem, except for the tame abelian quotient (Kindler '13) and for X = smooth locus of a normal projective variety and $k = \overline{\mathbb{F}}_q$ (E-Srinivas '14, using an improvement of Grothendieck's LEF theorem by Bost, '14).
• $E \in F - d.c.s.$ implies $E \in Coh(X)$ is locally free. In fact, this is a Tannakian category over k.

• $E \in F - d.c.s.$ implies $E \in Coh(X)$ is locally free. In fact, this is a Tannakian category over k.

• $E \in F$ – d.c.s. implies $0 = c_{i,crys}(E) \in H^{2i}_{crys}(X/W)$, $i \ge 1$.

• $E \in F - d.c.s.$ implies $E \in Coh(X)$ is locally free. In fact, this is a Tannakian category over k.

• $E \in F$ – d.c.s. implies $0 = c_{i,crys}(E) \in H^{2i}_{crys}(X/W)$, $i \ge 1$.

• Bounded problem: a high enough Frobenius division of $E \in F - d.c.s.$ is a semi-stable vector bundle of slope 0 (whatever polarisation).

- $E \in F d.c.s.$ implies $E \in Coh(X)$ is locally free. In fact, this is a Tannakian category over k.
- $E \in F$ d.c.s. implies $0 = c_{i,crys}(E) \in H^{2i}_{crys}(X/W)$, $i \ge 1$.
- Bounded problem: a high enough Frobenius division of $E \in F d.c.s.$ is a semi-stable vector bundle of slope 0 (whatever polarisation).
- Thus they have moduli points in Langer's moduli of semi-stable pure sheaves with trivial numerical Chern classes.

- $E \in F d.c.s.$ implies $E \in Coh(X)$ is locally free. In fact, this is a Tannakian category over k.
- $E \in F$ d.c.s. implies $0 = c_{i,crys}(E) \in H^{2i}_{crys}(X/W)$, $i \ge 1$.
- Bounded problem: a high enough Frobenius division of $E \in F d.c.s.$ is a semi-stable vector bundle of slope 0 (whatever polarisation).
- Thus they have moduli points in Langer's moduli of semi-stable pure sheaves with trivial numerical Chern classes.
- Hrushovsky's theorem then guarantees the existence of a Frobenius invariant vector bundle on a specialization of X over $\overline{\mathbb{F}}_p$, which yields a non-trivial finite étale cover of this one.

The categories considered were already presented. Again we assume X projective smooth geometrically connected over k perfect of char. p > 0. We consider

The categories considered were already presented. Again we assume X projective smooth geometrically connected over k perfect of char. p > 0. We consider

• $k = \mathbb{F}_q$, *F*-convergent isocrystals F - Overconv(X/K) = F - Conv(X/K); The categories considered were already presented. Again we assume X projective smooth geometrically connected over k perfect of char. p > 0. We consider

- $k = \mathbb{F}_q$, *F*-convergent isocrystals
- $F \operatorname{Overconv}(X/K) = F \operatorname{Conv}(X/K);$
- k perfect, convergent isocrystals and isocrystals: $\operatorname{Conv}(X/K) \hookrightarrow \operatorname{Crys}(X/W)_{\mathbb{Q}}.$

de Jong's conjecture '10

On X projective smooth over k perfect of char. p > 0, $\pi_1^{\text{ét}}(X \otimes_k \bar{k}) = \{1\}$ implies that there are no non-trivial isocrystals.

de Jong's conjecture '10

On X projective smooth over k perfect of char. p > 0, $\pi_1^{\text{ét}}(X \otimes_k \bar{k}) = \{1\}$ implies that there are no non-trivial isocrystals.

Theorem (E-Shiho, '15)

Partial positive answer.

de Jong's conjecture '10

On X projective smooth over k perfect of char. p > 0, $\pi_1^{\text{ét}}(X \otimes_k \bar{k}) = \{1\}$ implies that there are no non-trivial isocrystals.

Theorem (E-Shiho, '15)

Partial positive answer.

In the sequel, we report on it, raising a few questions on the way.

Abelian case

 $\pi_1^{\text{\'et}}(X \otimes_k \bar{k}) = \{1\}$ implies $H^1(X, \mathcal{O}_{X/W}^{\times}) = 0$, thus rank 1 locally free crystals, and thus isocrystals, are trivial,

as well as $H^1(X/W) = 0$, thus successive extensions of trivial rank 1 crystals, thus isocrystals, are trivial.

Abelian case

 $\pi_1^{\text{ét}}(X \otimes_k \bar{k}) = \{1\}$ implies $H^1(X, \mathcal{O}_{X/W}^{\times}) = 0$, thus rank 1 locally free crystals, and thus isocrystals, are trivial,

as well as $H^1(X/W) = 0$, thus successive extensions of trivial rank 1 crystals, thus isocrystals, are trivial.

Thus the conjecture essentially predicts a relation between the "non-abelian" part of $\pi_1^{\text{ét}}(X)$ and irreducible isocrystals of higher rank.

Abelian case

 $\pi_1^{\text{ét}}(X \otimes_k \bar{k}) = \{1\}$ implies $H^1(X, \mathcal{O}_{X/W}^{\times}) = 0$, thus rank 1 locally free crystals, and thus isocrystals, are trivial,

as well as $H^1(X/W) = 0$, thus successive extensions of trivial rank 1 crystals, thus isocrystals, are trivial.

Thus the conjecture essentially predicts a relation between the "non-abelian" part of $\pi_1^{\text{ét}}(X)$ and irreducible isocrystals of higher rank.

At least when $p \ge 3$ it is so; for p = 2 those statements are less direct and follow from the whole proof.

Theorem (E-Shiho '15)

Let $f : Y \to X$ be a smooth projective morphism over X smooth projective over k perfect. If $\pi_1^{\text{ét}}(X \otimes_k \bar{k}) = \{1\}$, then the *F*-convergent isocrystal $R^i f_*$ is trivial in Conv(X/K).

Theorem (E-Shiho '15)

Let $f : Y \to X$ be a smooth projective morphism over X smooth projective over k perfect. If $\pi_1^{\text{ét}}(X \otimes_k \bar{k}) = \{1\}$, then the *F*-convergent isocrystal $R^i f_*$ is trivial in Conv(X/K).

Model of Proof

Assume f was an abelian scheme and $k = \mathbb{F}_q$. May assume X has a rational point x_0 . Then (argument of *Faltings*): $\pi_1^{\text{ét}}(X)$ acts on $R^i f_* \mathbb{Q}_\ell$ via $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_q)$, thus by the Honda-Tate theorem, all geometric fibres of f are isogeneous. Thus for all closed points $x \in |X|$, $H^1(Y_X/\operatorname{Frac} W(k(x))) = H^1(Y_{x_0}/K) \otimes_K \operatorname{Frac} W(k(x))$, thus the isocrystal $R^i f_*$ is trivial in $\operatorname{Conv}(X/K)$.

《曰》《聞》《臣》《臣》 三臣

Proof.

Over $k = \mathbb{F}_q$, one replaces the motivic argument (Honda-Tate) by Abe' s Čebotarev's density theorem.

Proof.

Over $k = \mathbb{F}_q$, one replaces the motivic argument (Honda-Tate) by Abe' s Čebotarev's density theorem.

Yields triviality of the semi-simplification of $R^i f_*$ in Conv(X/K) after specialisation over \mathbb{F}_q .

Proof.

Over $k = \mathbb{F}_q$, one replaces the motivic argument (Honda-Tate) by Abe' s Čebotarev's density theorem.

Yields triviality of the semi-simplification of $R^i f_*$ in Conv(X/K) after specialisation over \mathbb{F}_q .

Apply base change to get it over k. Yields triviality of the semi-simplification of $R^i f_*$ in Conv(X/K) over k.

Thus $R^i f_* \in \operatorname{Conv}(X/K) \subset \operatorname{Crys}(X/W)_{\mathbb{Q}}$ is trivial, as we already saw that there are no non-trivial extensions.

From now on, we discuss the general case.

Lemma

X smooth over k perfect, $\mathcal{E} \in \operatorname{Crys}(X/W)_{\mathbb{Q}}$, there is a p-torsion-free $E \in \operatorname{Crys}(X/W)$ with $E_{\mathbb{Q}} = \mathcal{E}$, called a lattice.

Lemma

X smooth over k perfect, $\mathcal{E} \in \operatorname{Crys}(X/W)_{\mathbb{Q}}$, there is a p-torsion-free $E \in \operatorname{Crys}(X/W)$ with $E_{\mathbb{Q}} = \mathcal{E}$, called a lattice.

Proof.

Given any $E \in \operatorname{Crys}(X/W)$, with $E_{\mathbb{Q}} = \mathcal{E}$, the surjective maps $E/\operatorname{Ker}(p^{n+1}) \twoheadrightarrow E/\operatorname{Ker}(p^n)$ stabilise, as one sees locally on finitely many open affines U, as then $\operatorname{Crys}(U/W) \cong MIC(\hat{U}_W/W)^{qn}$, the quasi-nilpotent flat connections on a formal lift.

 \mathcal{E} is said to be *locally free* if it has a locally free lattice E, so $E_{\mathbb{Q}} = \mathcal{E}$, that is equivalently if E_X , the value of E on $X \hookrightarrow X$, viewed in $\operatorname{Coh}(X)$, is locally free.

Locally free lattices

 \mathcal{E} is said to be *locally free* if it has a locally free lattice E, so $E_{\mathbb{Q}} = \mathcal{E}$, that is equivalently if E_X , the value of E on $X \hookrightarrow X$, viewed in $\operatorname{Coh}(X)$, is locally free.

Question

Are all $\mathcal{E} \in \operatorname{Crys}(X/W)_{\mathbb{Q}}$ locally free?

A positive answer would ease the understanding of de Jong's conjecture.

Theorem (E-Shiho '15)

Let $E \in Crys(X/W)$ be a lattice.

- 1) If E is locally free, then $0 = c_{i,crys}(E_X) \in H^{2i}(X/W)$, $i \ge 1$.
- 2) If $E_{\mathbb{Q}} \in \operatorname{Conv}(X/K)$, then $0 = c_{i,\operatorname{crys}}(E_X) \in H^{2i}(X/K)$, $i \ge 1$.

Proof of the vanishing of the crystalline Chern classes of the value on X of lattices

Proof.

On 1): there are (at least) two ways;

Proof of the vanishing of the crystalline Chern classes of the value on X of lattices

Proof.

On 1): there are (at least) two ways;

Modified splitting principle: on $X \subset D \to \mathbb{P}_W$ PD-hull, one considers the quotient $\Omega_D^{\bullet} \to \overline{\Omega}_D^{\bullet}$ of DGAs defined by $dx^{[n]} = x^{[n-1]}dx$. This defines the quotient $\Omega_{\mathbb{P}(E_D)}^{\bullet} \to \overline{\Omega}_{\mathbb{P}(E_D)}^{\bullet}$ of DGAs by moding out by the 'same' kernel, where E_D is the value of E on $X \hookrightarrow D$. Let $\pi : \mathbb{P}(E_D) \to D$ be the principal bundle.

Proof of the vanishing of the crystalline Chern classes of the value on X of lattices

Proof.

On 1): there are (at least) two ways;

Modified splitting principle: on $X \subset D \to \mathbb{P}_W$ PD-hull, one considers the quotient $\Omega_D^{\bullet} \to \overline{\Omega}_D^{\bullet}$ of DGAs defined by $dx^{[n]} = x^{[n-1]}dx$. This defines the quotient $\Omega_{\mathbb{P}(E_D)}^{\bullet} \to \overline{\Omega}_{\mathbb{P}(E_D)}^{\bullet}$ of DGAs by moding out by the 'same' kernel, where E_D is the value of E on $X \hookrightarrow D$. Let $\pi : \mathbb{P}(E_D) \to D$ be the principal bundle. One shows ∇ on E_D defines a splitting $\overline{\Omega}_D^{\bullet} \to R\pi_*\overline{\Omega}_{\mathbb{P}(E_D)}^{\bullet} \xrightarrow{\tau} \overline{\Omega}_D^{\bullet}$, defining a partial connection on π^*E_D with value in $\pi^*\overline{\Omega}_D^1$, which is shown to respect $\mathcal{O}_{\mathbb{P}(E_D)}(1)$.

Proof of the vanishing of the crystalline Chern classes of the value on X of lattices II

Proof.

Equating \mathcal{O} and \overline{dR} -cohomology: for X smooth, define D_{\bullet} to be the simplicial scheme defined by $D_n = \text{PD-hull of the diagonal in } \mathbb{P}_W^{\times (n+1)}$. Then $H^i(X/W) = H^i_{dR}(D_{\bullet})(:= H^i(D_{\bullet}, \overline{\Omega}^{\bullet}_{D_{\bullet}})) = H^i_{\text{Zar}}(D_{\bullet}, \mathcal{O}).$

Proof of the vanishing of the crystalline Chern classes of the value on X of lattices II

Proof.

Equating \mathcal{O} and \overline{dR} -cohomology: for X smooth, define D_{\bullet} to be the simplicial scheme defined by $D_n = \text{PD-hull}$ of the diagonal in $\mathbb{P}_W^{\times (n+1)}$. Then $H^i(X/W) = H^i_{dR}(D_{\bullet})(:= H^i(D_{\bullet}, \overline{\Omega}^{\bullet}_{D_{\bullet}})) = H^i_{\text{Zar}}(D_{\bullet}, \mathcal{O})$. For E given, E_X defines $e: X_{\bullet} \to BGL(r)$, BGL(r) simplicial scheme, X_{\bullet} coming from a Čech simplicial scheme associated to local trivialisations of E_X .

Proof of the vanishing of the crystalline Chern classes of the value on X of lattices II

Proof.

Equating \mathcal{O} and \overline{dR} -cohomology: for X smooth, define D_{\bullet} to be the simplicial scheme defined by $D_n = \text{PD-hull}$ of the diagonal in $\mathbb{P}_W^{\times (n+1)}$. Then $H^i(X/W) = H^i_{dR}(D_{\bullet})(:=H^i(D_{\bullet},\bar{\Omega}_{D_{\bullet}}^{\bullet})) = H^i_{Zar}(D_{\bullet},\mathcal{O})$. For E given, E_X defines $e: X_{\bullet} \to BGL(r)$, BGL(r) simplicial scheme, X_{\bullet} coming from a Čech simplicial scheme associated to local trivialisations of E_X . Do a simplicial version \mathcal{D}_{\bullet} of the D_{\bullet} above. Then E has a value $E_{\mathcal{D}_{\bullet}}$. So $e^*: H^{2i}(BGL(r)/W) \to H^{2i}(X/W)$ factors through $H^{2i}(\mathcal{D}_{\bullet}/W) = H^{2n}(\mathcal{D}_{\bullet},\mathcal{O})$, thus e factors through $H^{2i}(BGL(r)/W) \to H^{2i}(BGL(r),\mathcal{O})$, which is trivial for $i \geq 1$.

・ロト ・得ト ・ヨト ・ヨト

Proof of the vanishing of the crystalline Chern classes of the value on X of lattices III

Proof.

2) Show, the class of E_X in $K_0(X)$, where E is a lattice of $\mathcal{E} \in \operatorname{Crys}(X/W)_{\mathbb{Q}}$, depends only on \mathcal{E} . Thus since $\mathcal{E} \in \operatorname{Conv}(X/K)$ is F^{∞} -divisible, $ch_{i,\operatorname{crys}}(E_X) \in H^{2i}(X/K)$ is $p^{i\infty}$ -divisible, thus = 0, thus $0 = c_{i,\operatorname{crys}}(E_X) \in H^{2i}(X/K)$.

Lemma

Assume $E \in \operatorname{Crys}(X/W)$ is a lattice, such that $\exists m \in \mathbb{N}_{\geq 0}$ such that $(F^m)^* E_X \in MIC(X/k)^{qn}$ is trivial. Then if $\pi_1^{\text{ét,ab}}(X \otimes_k \overline{k}) = \{1\}$, $E \in \operatorname{Crys}(X/W)$ is trivial.

Begin of Proof.

 $F^* : \operatorname{Crys}(X/W)_{\mathbb{Q}} \to \operatorname{Crys}(X/W)_{\mathbb{Q}}$ is fully faithful, so may assume E_X trivial.

Proof.

For D PD-hull of $X \subset \mathbb{P}_W$, with $D_n = D \otimes_W W_n$, has

$$\operatorname{Ker}(\operatorname{{\it MIC}}(D_{n+m}) o \operatorname{{\it MIC}}(D_n)) \cong \operatorname{{\it M}}(r \times r, \operatorname{H}^1_{\operatorname{{\it dR}}}(D_m)) \ 1 \leq^{\forall} m \leq n.$$
 (*)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

k

Proof.

For D PD-hull of $X \subset \mathbb{P}_W$, with $D_n = D \otimes_W W_n$, has

$$\operatorname{Ker}\left(\operatorname{{\it MIC}}(D_{n+m}) o \operatorname{{\it MIC}}(D_n)\right) \cong \operatorname{{\it M}}(r imes r, \operatorname{{\it H}}^1_{dR}(D_m)) \ 1 \leq^orall m \le n.$$
 (*)

 $\pi_1^{\text{ét,ab}}(X \otimes_k \bar{k}) = \{1\} \text{ implies } (F^a)^* H^1(X/k) = (F^a)^* H^1_{dR}(D_1) = 0 \ \exists a \in \mathbb{N} \text{ and}$ that such that $H^1_{dR}(D_n) \xrightarrow{0} H^1_{dR}(D_1) \ \forall n \geq^\exists N \in \mathbb{N}_{>0}$.

ŀ

Proof.

For D PD-hull of $X \subset \mathbb{P}_W$, with $D_n = D \otimes_W W_n$, has

$$\operatorname{Ker}(\operatorname{MIC}(D_{n+m}) \to \operatorname{MIC}(D_n)) \cong \operatorname{M}(r \times r, H^1_{dR}(D_m)) \ 1 \leq^{\forall} m \leq n.$$
 (*)

 $\pi_1^{\text{\'et,ab}}(X \otimes_k \bar{k}) = \{1\} \text{ implies } (F^a)^* H^1(X/k) = (F^a)^* H^1_{dR}(D_1) = 0 \exists a \in \mathbb{N} \text{ and}$ that such that $H^1_{dR}(D_n) \xrightarrow{0} H^1_{dR}(D_1) \forall n \geq^{\exists} N \in \mathbb{N}_{>0}$. Applying (*) to $(n,m) = (1,1), (2,1), \dots, (N-1,1)$, we conclude that there is $b \in \mathbb{N}$ depending only on X such that $((F^b)^* E)_{D_N}$ is trivial. Replace E by $(F^b)^* E$, may assume E_{D_N} is trivial.

Applying (*) to (n, m) = (2N, N) we conclude $E_{D_{N+1}} = \text{image } E_{D_{2N}}$ via $M(r \times r, H^1(D_N)) \rightarrow M(r \times r, H^1(D_1))$, is trivial.

- ロ ト - (同 ト - (回 ト -) 回 -)

ŀ

Proof.

For D PD-hull of $X \subset \mathbb{P}_W$, with $D_n = D \otimes_W W_n$, has

$$\operatorname{Ker}(\operatorname{{\it MIC}}(D_{n+m}) o \operatorname{{\it MIC}}(D_n)) \cong \operatorname{{\it M}}(r imes r, \operatorname{{\it H}}^1_{dR}(D_m)) \ 1 \leq^{\forall} m \leq n.$$
 (*)

 $\begin{aligned} &\pi_1^{\text{\'et,ab}}(X\otimes_k\bar{k})=\{1\} \text{ implies } (F^a)^*H^1(X/k)=(F^a)^*H^1_{dR}(D_1)=0 \ \exists a\in\mathbb{N} \text{ and} \\ &\text{that such that } H^1_{dR}(D_n) \xrightarrow{0} H^1_{dR}(D_1) \ \forall n\geq^\exists N\in\mathbb{N}_{>0} \ . \\ &\text{Applying } (\star) \text{ to } (n,m)=(1,1),(2,1),\ldots,(N-1,1), \text{ we conclude that there is} \\ &b\in\mathbb{N} \text{ depending only on } X \text{ such that } ((F^b)^*E)_{D_N} \text{ is trivial. Replace } E \text{ by } (F^b)^*E, \\ &\text{may assume } E_{D_N} \text{ is trivial.} \\ &\text{Applying } (\star) \text{ to } (n,m)=(2N,N) \text{ we conclude } E_{D_{N+1}}=\text{ image } E_{D_{2N}} \text{ via} \\ &M(r\times r,H^1(D_N))\to M(r\times r,H^1(D_1)), \text{ is trivial.} \end{aligned}$

One continues, etc.

46 / 60
Theorem (E-Shiho '15)

Let X be smooth projective over $k = \bar{k}$ of char. p > 0. Let \mathcal{E} be $\in \operatorname{Conv}(X/K)$ or be locally free in $\operatorname{Crys}(X/W)_{\mathbb{Q}}$. If $\pi_1^{\text{ét}}(X) = \{1\}$, $\mu_{\max}(\Omega_X^1) < N(r)$ for a certain positive number N(r) discussed below, and the irreducible constituents of the Jordan-Hölder filtration of \mathcal{E} have rank $\leq r$, then \mathcal{E} is trivial.

 $N(1) = \infty$, so complete theorem for extension of rank 1 isocrystals;

Theorem (E-Shiho '15)

Let X be smooth projective over $k = \bar{k}$ of char. p > 0. Let \mathcal{E} be $\in \operatorname{Conv}(X/K)$ or be locally free in $\operatorname{Crys}(X/W)_{\mathbb{Q}}$. If $\pi_1^{\text{ét}}(X) = \{1\}$, $\mu_{\max}(\Omega_X^1) < N(r)$ for a certain positive number N(r) discussed below, and the irreducible constituents of the Jordan-Hölder filtration of \mathcal{E} have rank $\leq r$, then \mathcal{E} is trivial.

 $N(1) = \infty$, so complete theorem for extension of rank 1 isocrystals; N(2) = 2, N(3) = 1, N(r) = 1/M(r), $M(r) = \max \operatorname{lcm}(a, b)$, $a, b \ge 1$, $a + b \le r$.

Restriction on \mathcal{E} -in $\operatorname{Conv}(X/K)$ or locally free- comes from the fact that the vanishing of the crystalline Chern classes of E_X is proven under this assumption.

Theorem (E-Shiho '15)

Let X be smooth projective over $k = \bar{k}$ of char. p > 0. Let \mathcal{E} be $\in \operatorname{Conv}(X/K)$ or be locally free in $\operatorname{Crys}(X/W)_{\mathbb{Q}}$. If $\pi_1^{\text{ét}}(X) = \{1\}$, $\mu_{\max}(\Omega_X^1) < N(r)$ for a certain positive number N(r) discussed below, and the irreducible constituents of the Jordan-Hölder filtration of \mathcal{E} have rank $\leq r$, then \mathcal{E} is trivial.

 $N(1) = \infty$, so complete theorem for extension of rank 1 isocrystals; N(2) = 2, N(3) = 1, N(r) = 1/M(r), $M(r) = \max \operatorname{lcm}(a, b)$, $a, b \ge 1$, $a + b \le r$.

Restriction on \mathcal{E} -in $\operatorname{Conv}(X/K)$ or locally free- comes from the fact that the vanishing of the crystalline Chern classes of E_X is proven under this assumption. The rôle of the stability assumptions will become clear in the proof.

• As in the proof of the triviality of the crystals on the infinitesimal site, one has to bound the problem.

• As in the proof of the triviality of the crystals on the infinitesimal site, one has to bound the problem.

• One proves a Langton type theorem: starting with \mathcal{E} irreducible, there is a lattice E such that $E_X \in MIC(X/k)$ is semi-stable, so yields a point of Langer's moduli M of semi-stable connections on pure sheaves with vanishing Chern classes.

• As in the proof of the triviality of the crystals on the infinitesimal site, one has to bound the problem.

• One proves a Langton type theorem: starting with \mathcal{E} irreducible, there is a lattice E such that $E_X \in MIC(X/k)$ is semi-stable, so yields a point of Langer's moduli M of semi-stable connections on pure sheaves with vanishing Chern classes.

• Using vanishing of crystals in the infinitesimal site (Theorem E-Mehta), and quasi-projectivity of M, one concludes that if $(F^a)^* E_X$ was semi-stable for a large enough but finite, then $(F^a)^* E_X$ would be trivial. So the lifting lemma would finish the proof.

• As in the proof of the triviality of the crystals on the infinitesimal site, one has to bound the problem.

• One proves a Langton type theorem: starting with \mathcal{E} irreducible, there is a lattice E such that $E_X \in MIC(X/k)$ is semi-stable, so yields a point of Langer's moduli M of semi-stable connections on pure sheaves with vanishing Chern classes.

• Using vanishing of crystals in the infinitesimal site (Theorem E-Mehta), and quasi-projectivity of M, one concludes that if $(F^a)^* E_X$ was semi-stable for a large enough but finite, then $(F^a)^* E_X$ would be trivial. So the lifting lemma would finish the proof.

• The slope assumption enables one to assume semi-stability of $(F^a)^* E_X$ for a certain $a \ge 0$.

Deligne's conjectures: *l*-adic theory

2 Deligne's conjectures: crystalline theory

3 Malčev-Grothendieck theorem; Gieseker conjecture; de Jong conjecture

4 Relative 0-cycles

SGA 4,5, IV Thm.1.2.: Let A be an henselian discrete valuation ring (d.v.r.), with residue field k of characteristic p > 0. Let X/A be a scheme, (n, p) = 1. Then if X/A is proper, one has *base change*, that is the restriction homomorphism $H^i_{\text{ét}}(X, \mathbb{Z}/n) \xrightarrow{\text{rest}} H^i_{\text{ét}}(Y, \mathbb{Z}/n)$ is an isomorphism, where $Y = X \otimes_A k$.

SGA 4,5, IV Thm.1.2.: Let A be an henselian discrete valuation ring (d.v.r.), with residue field k of characteristic p > 0. Let X/A be a scheme, (n, p) = 1. Then if X/A is proper, one has *base change*, that is the restriction homomorphism $H^i_{\text{ét}}(X, \mathbb{Z}/n) \xrightarrow{\text{rest}} H^i_{\text{ét}}(Y, \mathbb{Z}/n)$ is an isomorphism, where $Y = X \otimes_A k$.

Question

What is a motivic version of the base change theorem?

SGA 4,5, IV Thm.1.2.: Let A be an henselian discrete valuation ring (d.v.r.), with residue field k of characteristic p > 0. Let X/A be a scheme, (n, p) = 1. Then if X/A is proper, one has *base change*, that is the restriction homomorphism $H^i_{\text{ét}}(X, \mathbb{Z}/n) \xrightarrow{\text{rest}} H^i_{\text{ét}}(Y, \mathbb{Z}/n)$ is an isomorphism, where $Y = X \otimes_A k$.

Question

What is a motivic version of the base change theorem?

Theorem (Kerz-E-Wittenberg '15)

Answer for relative 0-cycles.

イロト イポト イヨト イヨト 三日

SGA 4,5, IV Thm.1.2.: Let A be an henselian discrete valuation ring (d.v.r.), with residue field k of characteristic p > 0. Let X/A be a scheme, (n, p) = 1. Then if X/A is proper, one has *base change*, that is the restriction homomorphism $H^i_{\text{ét}}(X, \mathbb{Z}/n) \xrightarrow{\text{rest}} H^i_{\text{ét}}(Y, \mathbb{Z}/n)$ is an isomorphism, where $Y = X \otimes_A k$.

Question

What is a motivic version of the base change theorem?

Theorem (Kerz-E-Wittenberg '15)

Answer for relative 0-cycles.

In the sequel, we report in it, raising a few questions on the way.

イロト イポト イヨト イヨト 三日

Examples

• Let X/A be a K3-surface, with $k = \overline{k}$ and A large enough so $NS(X_{\overline{K}})$ is defined over $K = \operatorname{Frac}(A)$. Then $NS(X_K) \to NS(Y)$ is an injection of torsion-free lattices of possibly different (Néron-Severi) ranks, e.g. assume Y is supersingular! Thus composite $\operatorname{Pic}(X)/n \xrightarrow{\operatorname{rest. surj.}} \operatorname{Pic}(X_K)/n \xrightarrow{\operatorname{sp}} \operatorname{Pic}(Y)/n$, which is the restriction homomorphism to the special fiber, can't be surjective.

Examples

• Let X/A be a K3-surface, with $k = \overline{k}$ and A large enough so $NS(X_{\overline{K}})$ is defined over $K = \operatorname{Frac}(A)$. Then $NS(X_K) \to NS(Y)$ is an injection of torsion-free lattices of possibly different (Néron-Severi) ranks, e.g. assume Y is supersingular! Thus composite $\operatorname{Pic}(X)/n \xrightarrow{\operatorname{rest. surj.}} \operatorname{Pic}(X_K)/n \xrightarrow{\operatorname{sp}} \operatorname{Pic}(Y)/n$, which is the restriction homomorphism to the special fiber, can't be surjective.

• Rosenschon-Srinivas '07 produced examples of 3-dimensional X_K , K a p-adic field with $CH^2(X_K)/n$ infinite, thus $CH^2(X)/n$ infinite for a regular model X/A as $CH^2(X)/n \xrightarrow{\text{rest. surj.}} CH^2(X_K)/n$; yet $CH^2(Y)/n$ is finite thus restriction $CH^2(X)/n \to CH^2(Y)/n$ can't be injective.

・ロト ・得ト ・ヨト ・ヨト

Examples

• Let X/A be a K3-surface, with $k = \overline{k}$ and A large enough so $NS(X_{\overline{K}})$ is defined over $K = \operatorname{Frac}(A)$. Then $NS(X_K) \to NS(Y)$ is an injection of torsion-free lattices of possibly different (Néron-Severi) ranks, e.g. assume Y is supersingular! Thus composite $\operatorname{Pic}(X)/n \xrightarrow{\operatorname{rest. surj.}} \operatorname{Pic}(X_K)/n \xrightarrow{\operatorname{sp}} \operatorname{Pic}(Y)/n$, which is the restriction homomorphism to the special fiber, can't be surjective.

• Rosenschon-Srinivas '07 produced examples of 3-dimensional X_K , K a p-adic field with $CH^2(X_K)/n$ infinite, thus $CH^2(X)/n$ infinite for a regular model X/A as $CH^2(X)/n \xrightarrow{\text{rest. surj.}} CH^2(X_K)/n$; yet $CH^2(Y)/n$ is finite thus restriction $CH^2(X)/n \to CH^2(Y)/n$ can't be injective.

• So restriction neither surjective nor injective.

・ロト ・得ト ・ヨト ・ヨト

Half way: from 'motivic' cohomology on X to étale cohomology on Y

So if we keep this direct (naïve ?) formulation, we should *exclude from the study relative cycles of positive dimension*.

Half way: from 'motivic' cohomology on X to étale cohomology on Y

So if we keep this direct (naïve ?) formulation, we should *exclude from the study relative cycles of positive dimension*.

For relative 0-cycles one has

Theorem (Sato-S.Saito '10)

Assume A excellent, henselian discrete valuation ring, with finite or separably closed residue field k of characteristic p > 0. Assume X/A projective, irreducible strict normal crossings (s.n.c.) scheme (so X in particular is regular) of relative dimension d. Then the cycle map $c_X : CH_1(X)/n \to H^{2d}_{\text{ét}}(X, \mathbb{Z}/n(d))$ is an isomorphism. Sato-Saito's theorem deals with the *cycle map* c_X . We want to lift this information to an information of the following kind, possibly enlarging the range of applicability for more general A and k:

Sato-Saito's theorem deals with the *cycle map* c_X . We want to lift this information to an information of the following kind, possibly enlarging the range of applicability for more general A and k:

Formulation of the problem II

There are a priori two ways to think:

1) We keep the cycle group $CH_1(X)/n$ and have to define a cycle group C(Y)/n and the restriction ρ and show it is an isomorphism;

- 1) We keep the cycle group $CH_1(X)/n$ and have to define a cycle group C(Y)/n and the restriction ρ and show it is an isomorphism;
- 2) We replace $CH_1(X)/n$ by motivic cohomology $H^{2d}_{mot}(X, \mathbb{Z}/n(d))$ and define $\mathcal{C}(Y)/n$ to be motivic cohomology $H^{2d}_{mot}(Y, \mathbb{Z}/n(d))$; then one hopes functoriality defines ρ and one hopes that one can show it is an isomorphism.

- 1) We keep the cycle group $CH_1(X)/n$ and have to define a cycle group C(Y)/n and the restriction ρ and show it is an isomorphism;
- 2) We replace $CH_1(X)/n$ by motivic cohomology $H^{2d}_{mot}(X, \mathbb{Z}/n(d))$ and define $\mathcal{C}(Y)/n$ to be motivic cohomology $H^{2d}_{mot}(Y, \mathbb{Z}/n(d))$; then one hopes functoriality defines ρ and one hopes that one can show it is an isomorphism.

On the other hand, one conjectures $CH_1(X) = H^{2d}_{mot}(X, \mathbb{Z}(d))$ for the (A, k) we shall consider.

- 1) We keep the cycle group $CH_1(X)/n$ and have to define a cycle group C(Y)/n and the restriction ρ and show it is an isomorphism;
- 2) We replace $CH_1(X)/n$ by motivic cohomology $H^{2d}_{mot}(X, \mathbb{Z}/n(d))$ and define $\mathcal{C}(Y)/n$ to be motivic cohomology $H^{2d}_{mot}(Y, \mathbb{Z}/n(d))$; then one hopes functoriality defines ρ and one hopes that one can show it is an isomorphism.

On the other hand, one conjectures $CH_1(X) = H^{2d}_{mot}(X, \mathbb{Z}(d))$ for the (A, k) we shall consider.

In fact we mix the two viewpoints: we want to construct a restriction homomorphism $\rho: CH_1(X)/n \to H^{2d}_{\mathrm{mot}}(Y, \mathbb{Z}(d))/n$,

- 1) We keep the cycle group $CH_1(X)/n$ and have to define a cycle group C(Y)/n and the restriction ρ and show it is an isomorphism;
- 2) We replace $CH_1(X)/n$ by motivic cohomology $H^{2d}_{mot}(X, \mathbb{Z}/n(d))$ and define $\mathcal{C}(Y)/n$ to be motivic cohomology $H^{2d}_{mot}(Y, \mathbb{Z}/n(d))$; then one hopes functoriality defines ρ and one hopes that one can show it is an isomorphism.

On the other hand, one conjectures $CH_1(X) = H^{2d}_{mot}(X, \mathbb{Z}(d))$ for the (A, k) we shall consider.

In fact we mix the two viewpoints: we want to construct a restriction homomorphism $\rho: CH_1(X)/n \to H^{2d}_{mot}(Y, \mathbb{Z}(d))/n$, which is then an isomorphism

- 1) We keep the cycle group $CH_1(X)/n$ and have to define a cycle group C(Y)/n and the restriction ρ and show it is an isomorphism;
- 2) We replace $CH_1(X)/n$ by motivic cohomology $H^{2d}_{mot}(X, \mathbb{Z}/n(d))$ and define $\mathcal{C}(Y)/n$ to be motivic cohomology $H^{2d}_{mot}(Y, \mathbb{Z}/n(d))$; then one hopes functoriality defines ρ and one hopes that one can show it is an isomorphism.

On the other hand, one conjectures $CH_1(X) = H^{2d}_{mot}(X, \mathbb{Z}(d))$ for the (A, k) we shall consider.

In fact we mix the two viewpoints: we want to construct a restriction homomorphism $\rho: CH_1(X)/n \to H^{2d}_{mot}(Y, \mathbb{Z}(d))/n$, which is then an isomorphism and lifts the base change isomorphism.

イロト イポト イヨト イヨト 三日

3

 (\star)

Theorem

Theorem (Kerz-E-Wittenberg '15)

- Let Y be a strict normal crossings variety of dimension d defined over a perfect field k. Then there is a description of H^{2d}_{mot}(Y, ℤ[¹/_p](d)) as a quotient of ℤ[Ysm] by explicit relations, and H^{2d}_{mot}(Y, ℤ[¹/_p](d)) = H^d_{Nis}(Y, K^M_d)[¹/_p].
- 2) Assume A excellent henselian d.v.r., with perfect char. p > 0 residue field, and X/A be a projective s.n.c. scheme. Then the following holds.
 - i) If A has equal char. then $CH_1(X)/n = H^d_{Nis}(X, \mathcal{K}^M_d/n)$ (Kerz' theorem), ρ is then defined via restriction on \mathcal{K}^M_d and one has (\star) ;
 - ii) If k is finite or algebraically closed, one has (\star) ;
 - iii) If ((d-1)!, n) = 1, in particular if d = 2, one has (\star) .

56 / 60

On Proofs

Proof.

Ad 1): uses localisation in motivic cohomology on Y, then duality to relate $H^{2d}_{c,\text{mot}}(Y^{\text{sm}}, \mathbb{Z}/n(d))$ with Suslin homology = $\mathbb{Z}[Y^{\text{sm}}]/(\mathcal{R}I)$, $\mathcal{R}I$ spanned by certain (C, g), $C \subset Y$ integral 1-dimensional subscheme not contained in Y^{sing} , g rational function which is a unit generically and equal to 1 along Y^{sing} .

On Proofs

Proof.

Ad 1): uses localisation in motivic cohomology on Y, then duality to relate $H_{c,\text{mot}}^{2d}(Y^{\text{sm}}, \mathbb{Z}/n(d))$ with Suslin homology = $\mathbb{Z}[Y^{\text{sm}}]/(\mathcal{R}I)$, $\mathcal{R}I$ spanned by certain (C,g), $C \subset Y$ integral 1-dimensional subscheme not contained in Y^{sing} , g rational function which is a unit generically and equal to 1 along Y^{sing} .

Result: $H^{2d}_{\text{mot}}(Y, \mathbb{Z}/n(d)) = \mathbb{Z}[Y^{\text{sm}}]/(\mathcal{R}I, \mathcal{R}II)$, with $\mathcal{R}II$ spanned by (C, g), C simple n.c. curve and g unit along Y^{sing} .

Ad 2): ρ uniquely defined by writing $CH_1(X)$ as a quotient of $Z_1^g(X) \subset Z_1(X)$ spanned by A-flat 1-cycles which intersect Y in Ysm. i) A equal char.: one uses Kerz' theorem showing $CH_1(X)/n = H^d(X_{\text{Nis}}, \mathcal{K}_{X,d}^M)$ to define ρ ;

Ad 2): ρ uniquely defined by writing $CH_1(X)$ as a quotient of $Z_1^g(X) \subset Z_1(X)$ spanned by A-flat 1-cycles which intersect Y in Ysm. i) A equal char.: one uses Kerz' theorem showing $CH_1(X)/n = H^d(X_{\text{Nis}}, \mathcal{K}_{X,d}^M)$ to define ρ ; ii) k finite or algebraically closed: one uses étale cohomology and the Kato

conjecture proven by Kerz-S.Saito to define ρ ;

Ad 2): ρ uniquely defined by writing $CH_1(X)$ as a quotient of $Z_1^g(X) \subset Z_1(X)$ spanned by A-flat 1-cycles which intersect Y in Ysm. i) A equal char.: one uses Kerz' theorem showing $CH_1(X)/n = H^d(X_{\text{Nis}}, \mathcal{K}_{X,d}^M)$ to define ρ ; ii) k finite or algebraically closed: one uses étale cohomology and the Kato conjecture proven by Kerz-S.Saito to define ρ ; iii) ((d-1)!, n) = 1: one uses a Grothendieck-Riemann-Roch type argument to define ρ .

Ad 2): ρ uniquely defined by writing $CH_1(X)$ as a quotient of $Z_1^g(X) \subset Z_1(X)$ spanned by A-flat 1-cycles which intersect Y in Ysm. i) A equal char.: one uses Kerz' theorem showing $CH_1(X)/n = H^d(X_{\text{Nis}}, \mathcal{K}_{X,d}^M)$ to define ρ ; ii) k finite or algebraically closed: one uses étale cohomology and the Kato conjecture proven by Kerz-S.Saito to define ρ ; iii) ((d-1)!, n) = 1: one uses a Grothendieck-Riemann-Roch type argument to define ρ .

In all cases, once ρ is defined, one uses geometry to show it is an isomorphism.

Corollary

- If k is finite, then CH₀(X_K)/n is finite (already a consequence of Sato-S.Saito);
- 2) A = k[[t]], k p-adic field, then $CH_0(X_K)/n$ is finite.

Proof.

Ad 1): This is the link to the first lectures: Class Field Theory plus the Kato conjecture enable one to show finiteness of C(Y)/n. One then applies the theorem.

Corollary

- If k is finite, then CH₀(X_K)/n is finite (already a consequence of Sato-S.Saito);
- 2) A = k[[t]], k p-adic field, then $CH_0(X_K)/n$ is finite.

Proof.

Ad 1): This is the link to the first lectures: Class Field Theory plus the Kato conjecture enable one to show finiteness of C(Y)/n. One then applies the theorem.

Ad 2): One uses again the Kato conjecture (and a result of Forré).
Questions

• What would be a (conjectural) formulation for cycles of higher relative dimension?

э

Questions

• What would be a (conjectural) formulation for cycles of higher relative dimension?

• For K a *p*-adic field, for which motivic cohomology groups of X_K does one have finiteness, and for those for which one does not have finiteness, does one have meaningful quotients which are finite?

Questions

• What would be a (conjectural) formulation for cycles of higher relative dimension?

• For K a *p*-adic field, for which motivic cohomology groups of X_K does one have finiteness, and for those for which one does not have finiteness, does one have meaningful quotients which are finite?

• What about mod p, and what about replacing Y by its thickenings Y_m ? Assuming Gersten conjecture for Milnor K-theory on X one has a restriction homomorphism $CH_1(X)/n \rightarrow \varprojlim_m H^d_{Nis}(Y_m, \mathcal{K}^M_d/n)$ (possibly pdivides n) and one could ask, when A is the ring of integers of a number field, whether the prosystem is constant. This is related to Colliot-Thélène's conjecture on the structure $CH_0(X_K)$, which should be of the shape \mathbb{Z} (for the degree) + a finite group + a free lattice over \mathbb{Z}_p + a divisible group.

э

60 / 60

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >