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E1-degeneration of
the irregular Hodge filtration

By Hélène Esnault at Berlin, Claude Sabbah at Palaiseau and Jeng-Daw Yu at Taipei

With an appendix by Morihiko Saito at Kyoto

Abstract. For a regular function f on a smooth complex quasi-projective variety,
J.-D. Yu introduced in [35] a filtration (the irregular Hodge filtration) on the de Rham complex
with twisted differential dC df , extending a definition of Deligne in the case of curves. In this
article, we show the degeneration atE1 of the spectral sequence attached to the irregular Hodge
filtration, by using the method of [26]. We also make explicit the relation with a complex intro-
duced by M. Kontsevich and give details on his proof of the corresponding E1-degeneration,
by reduction to characteristic p, when the pole divisor of the function is reduced with normal
crossings. In Appendix E, M. Saito gives a different proof of the E1-degeneration.
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Introduction

Let U be a smooth complex algebraic curve and let X be a smooth projectivization of it.
Let f W X ! P1 be a rational function which is regular on U and let .V; Vr/ be an alge-
braic bundle with connection on U such that Vr has a regular singularity at each point of the
divisor D D X X U . Assuming that the monodromy of .V; Vr/ is unitary, Deligne defines
in [6] a filtration on the twisted de Rham cohomology H�dR.U;r/, where r WD Vr C df IdV .
He shows various properties of it, among which E1-degeneration of the associated spectral
sequence. This is the first occurrence of a filtration having some kind of Hodge properties in
the realm of connections with irregular singularities.

Taking the opportunity of the recently defined notion of polarized twistor D-module, the
second author has extended in [26] the construction of Deligne, and shown theE1-degeneration
property correspondingly, for the case where .V; Vr/ underlies a variation of polarized complex
Hodge structure on the curve U .

On the other hand, the third author has extended in [35] the construction of such a filtra-
tion in higher dimensions for .V; Vr/ D .OU ; d/ and any regular function f W U ! A1, by
using a projectivization of U with a normal crossing divisor D at infinity. He succeeded to
prove the degeneration at E1 in various special cases.

It is then a natural question to ask whether or not the generalized Deligne filtration as
defined by Yu has the property that the induced spectral sequence on the hypercohomology of
the twisted de Rham complex degenerates in E1.

This question has a positive answer. This is our main theorem (Theorem 1.2.2).
Approximately at the same time the preprint [35] was made public, and independently

of Deligne’s construction, but in the setting of a function f W X ! P1, Kontsevich introduced
in letters to Katzarkov and Pantev [13] a family of complexes .��f ; udC vdf /, .u; v/ 2 C2,
and sketched a proof of the independence of the hypercohomology with respect to u; v, giving
rise in particular to the E1-degeneration property (see also the recent preprint [11]). We give
details on the proof sketched by Kontsevich in Section 1.5 and Appendix D. However the
method suggested by Kontsevich requests the pole divisor P D f �1.1/ to be reduced, an
annoyance, as this property is not stable under blow up along the divisor, while the result
is. In Section 1.3, we give details on the relation between two kinds of filtered complexes,
namely .��f ; dC df / with the stupid filtration, and .��X .logD/.�P /; dC df / equipped with
the filtration introduced by the third author in [35]. In particular, due to the results in [35], our
Theorem 1.2.2 implies the E1-degeneration property for .��f ; dC df /. The E1-degeneration
for other values u; v follows by already known arguments. On the other hand, the degeneration
property for the Kontsevich complex .��f ; dC df / would implies the E1-degeneration of our
Theorem 1.2.2 for integral values of the filtration introduced in [35]. (Cf. Section 1.5.)

More recently, M. Saito proposed a new proof of the E1-degeneration for .��f ; d/ which
relies on older results of Steenbrink [32,33]. His proof gives a new proof of our Theorem 1.2.2
for integral values of the filtration introduced in [35]. Moreover, when P is reduced, he is also
able to give an interpretation of the hypercohomology of this complex in term of the Beilinson
functor applied to the complex Rj�CU , j W U ,! X . This is explained in Appendix E by
M. Saito.

In conclusion, the methods of Kontsevich and Saito focus first on the complex .��f ; d/,
for which they extend known properties in Hodge theory. These methods give then results for
the complex .��f ; dC df / by applying standard techniques not relying on Hodge theory, as
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explained in Appendix C. On the other hand, by applying Theorem 1.2.2, the proof of which
relies on the Fourier–Laplace transformation and twistor D-modules, one treats the complex
.��f ; dC df / first, and specializes to the complex .��f ; d/.

Let us quote P. Deligne [6, Note, p. 175]: “Le lecteur peut se demander à quoi peut servir
une filtration ‘de Hodge’ ne donnant pas lieu à une structure de Hodge.”

Deligne suggests that this Hodge filtration could control p-adic valuations of Frobenius
eigenvalues. This is related to the work of Adolphson and Sperber [1] bounding from below
the L-polygon of a convenient non-degenerate polynomial defined over Z by a Hodge polygon
attach to it, that they expect to be related to the limiting mixed Hodge structure at infinity of
the polynomial. Appendix E should give the relation between the expectation of Deligne and
that of Adolphson and Sperber.

In [12], Kontsevich defines the category of extended motivic-exponential D-modules on
smooth algebraic varieties over a field k of characteristic zero as the minimal class which con-
tains all DX -modules of the type .OX ; dC df / for f 2 O.X/ and is closed under extensions,
sub-quotients, push-forwards and pull-backs. When k D C, the natural question is to define
a Hodge filtration. Our work may be seen as a first step towards it.

For some Fano manifolds (or orbifolds), one looks for the mirror object as regular func-
tion f W X ! P1 (Landau–Ginzburg potential). Kontsevich [13] conjectures that the Hodge
numbers of the mirror Fano manifold (or orbifold) can be read on some “Hodge filtration” of
the cohomology Hk

dR.X; dC df /. This filtration should be nothing but the irregular Hodge
filtration.

1. The irregular Hodge filtration in the normal crossing case

1.1. Setup and notation. LetX be a smooth complex projective variety with its Zariski
topology and let f W X ! P1 be a morphism. We will denote by A1t (resp. A1t 0) an affine chart
of P1 with coordinate t (resp. t 0) so that t 0 D 1=t in the intersection of the two charts. Let U
be a nonempty Zariski open set of X such that

� f induces a regular function fjU W U ! A1t ,
� D WD X X U is a normal crossing divisor.

Let us denote by P the pole divisor f �1.1/. Then the associated reduced divisor Pred has
normal crossings and is the union of some of the components ofD. The union of the remaining
components ofD is denoted byH (“horizontal” components). We have a commutative diagram

U

fjU
��

� � j
// X

f
��

A1 �
�

// P1.

For each k > 0, we will denote by �kX the sheaf of differential k-forms on X , by �kX .logD/
that of differential k-forms with logarithmic poles alongD and by�kX .�D/ that of differential
k-forms with arbitrary poles along D. Given any real number ˛, Œ˛P � will denote the divisor
supported on Pred having multiplicity Œ˛ei � on the component Pi of Pred, if ei denotes the
corresponding multiplicity of P . We will then set

�kX .logD/.Œ˛P �/ WD OX .Œ˛P �/˝OX �
k
X .logD/:
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When considering the various de Rham complexes on X , we will use the analytic topol-
ogy and allow local analytic computations as indicated below. However, all filtered complexes
are already defined in the Zariski topology, and standard GAGA results (cf. [3, Section II.6.6])
allow one to compare both kinds of hypercohomology on the projective variety X , so the
results we obtain concerning hypercohomology also hold in the Zariski topology. We will not
be more explicit on this point later.

Given any complex point of f �1.1/, there exist
� an analytic neighborhood �` ��m ��p of this point with coordinates

.x; y; z/ D .x1; : : : ; x`; y1; : : : ; ym; z1 : : : ; zp/;

� e D .e1; : : : ; e`/ 2 .Z>0/
`,

with the following properties:
� f .x; y; z/ D x�e WD

Q`
iD1 x

�ei
i ,

� D D
S`
iD1¹xi D 0º [

Sm
jD1¹yj D 0º, Pred D

S`
iD1¹xi D 0º.

In this local analytic setting, we will set g.x; y; z/ D 1=f .x; y; z/ D xe . The divisor H
has equation

mY
jD1

yj D 0:

Finally, we set n D dimX .
Set O D C¹x; y; zº and D D Ohàx; ày ; àzi to be the ring of linear differential operators

with coefficients in O, together with its standard increasing filtration F�D by the total order
with respect to àx; ày ; àz:

(1.1.1) FpD D
X

j˛jCjˇ jCj j6p

Oà˛xà
ˇ
y à


z ;

where we use the standard multi-index notation with ˛ 2 N`, etc. Similarly we will denote
by OŒt 0� the ring of polynomials in t 0 with coefficients in O and by D Œt 0�hàt 0i the corresponding
ring of differential operators.

Consider the left D-modules

O.�Pred/ D OŒx�1�;

O.�H/ D OŒy�1�;

O.�D/ D OŒx�1; y�1�

with their standard left D-module structure. They are generated respectively by 1=
Q`
iD1 xi ,

1=
Qm
jD1 yj and 1=

Q`
iD1 xi

Qm
jD1 yj as D-modules. We will consider on these D-modules

the increasing filtration F� defined as the action of F�D on the generator:

FpO.�Pred/ D
X
j˛j6p

O � à˛x
�
1
ıY`

iD1
xi

�
D

X
j˛j6p

Ox�˛�1;

FpO.�H/ D
X
jˇ j6p

O � àˇy
�
1
ıYm

jD1
yj

�
D

X
jˇ j6p

Oy�ˇ�1;

FpO.�D/ D
X

j˛jCjˇ j6p

O � à˛xà
ˇ
y

�
1
ıY`

iD1
xi
Ym

jD1
yj

�
D

X
j˛jCjˇ j6p

Ox�˛�1y�ˇ�1;
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so that Fp D 0 for p < 0. These are the “filtrations by the order of the pole” in [3, (3.12.1),
p. 80], taken in an increasing way. Regarding O.�H/ as a D-submodule of O.�D/, we have

FpO.�H/ D FpO.�D/ \O.�H/

and similarly for O.�Pred/. On the other hand it clearly follows from the formulas above that

(1.1.2) FpO.�D/ D
X

qCq06p

FqO.�H/ � Fq0O.�Pred/;

where the product is taken in O.�D/.

1.2. The irregular Hodge filtration. Our main object is the twisted meromorphic
de Rham complex

.�
�

X .�D/;r/ D ¹OX .�D/
r
��! �1X .�D/

r
��! � � �

r
��! �nX .�D/º; r D dC df:

This complex is equipped with the irregular Hodge filtration defined in [35]: this is the decreas-
ing filtration indexed by R (with possible jumps only at rational numbers) defined by the
formula

F Yu;�.�
�

X .�D/;r/ D F
�.r/(1.2.1)

WD

°
OX .Œ��P �/C

r
��! �1X .logD/.Œ.1 � �/P �/C

r
��! � � �

r
��! �nX .logD/.Œ.n � �/P �/C

±
;

where, for � 2 R,

�kX .logD/.Œ�P �/C D

´
�kX .logD/.Œ�P �/ if � > 0;
0 otherwise:

We will also consider the associated increasing filtration

F Yu
� .�

�

X .�D/;r/ WD F
Yu;��.�

�

X .�D/;r/;

and, for each ˛ 2 Œ0; 1/, the decreasing (resp. increasing) Z-filtration F Yu;�
˛ (resp. F Yu

˛C�) de-
fined by

F Yu;p
˛ .�

�

X .�D/;r/ WD F
Yu;�˛Cp.�

�

X .�D/;r/ D F
Yu
˛�p.�

�

X .�D/;r/

(resp. F Yu
˛Cp.�

�

X .�D/;r/). The filtration exhausts the subcomplex

.�
�

X .logD/.�Pred/;r/ ,�! .�
�

X .�D/;r/:

The quotient complex is quasi-isomorphic to zero, according to [35, Corollary 1.4]. We refer
to [35, Corollary 1.4] for a detailed study of this filtered complex and its hypercohomology.
Let us only recall that, setting gr�F D F

�=F>�, the graded OX -complex gr�
F Yu.r/ is supported

on Pred for � 62 Z and is quasi-isomorphic to 0 for � 6 0 (cf. [35, Corollary 1.4]). Our main
objective is to prove in general (cf. Section 3.4) the conjecture made in [35], and already proved
there in various particular cases.
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Theorem 1.2.2. For each ˛ 2 Œ0; 1/, the spectral sequence of hypercohomology of
the filtered complex F Yu;p

˛ .��X .�D/;r/ (p 2 Z) degenerates at E1, that is, for each � 2 R
and k 2 N, the morphism

H k.X; F Yu;�.r// �! H k.X; .�
�

X .�D/;r// DW H
k
dR.U;r/

is injective.

The image of this morphism is denoted by F Yu;�Hk
dR.U;r/ and does not depend on

the choice of the projective morphism f W X ! P1 extending fjU W U ! A1 satisfying the
properties of the setup above (cf. [35, Theorem 1.8]). We thus have

(1.2.3) gr�F Yu H
k
dR.U;r/ D H

k.X; gr�F Yu.r//;

and F Yu;�Hk
dR.U;r/ D H

k
dR.U;r/ for � 6 0.

Let us recall that this filtration was introduced (and the corresponding E1-degeneration
was proved) by Deligne [6], in the case where U is a curve and where the twisted de Rham
complex is also twisted by a unitary local system. The generalization to the case of a variation
of a polarized Hodge structure on a curve was considered in [26].

1.3. The Kontsevich complex. M. Kontsevich has considered in [13] the complexes
.��f ; udC vdf / for u; v 2 C, where

�
p

f
D ¹! 2 �

p
X .logD/ j df ^ ! 2 �pC1X .logD/º

D ker¹�pX .logD/
df
��! �

pC1
X .logD/.P /=�pC1X .logD/º:

Note that we have
�0f D OX .�P /; �nf D �

n
X .logD/;

and
�
p

f
D ker¹�pX .logD/

r
��! �

pC1
X .logD/.P /=�pC1X .logD/º;

since d�pX .logD/ � �pC1X .logD/, hence

r.�
p

f
/ � �

pC1

f
:

Moreover, in the local analytic setting of Section 1.1, using that df D f � d logf and setting
x0 D .x2; : : : ; x`/, one checks that

�
p

f
D C¹x; y; zº �

dxe

xe
^

p̂�1
²

dx0

x0
;

dy
y
; dz

³
(1.3.1)

CC¹x; y; zºxe
�

p̂
²

dx0

x0
;

dy
y
; dz

³
;

so in particular �p
f

is OX -locally free of finite rank.
The following result was conjectured by M. Kontsevich [13]:

Theorem 1.3.2. For each k > 0, the dimension of H k.X; .��f ; udC vdf // is inde-
pendent of u; v 2 C and is equal to dimHk

dR.U;r/. In particular,

the spectral sequence Ep;q1 D H q.X;�
p

f
/) H pCq.X; .�

�

f ; d//(1.3.2�)
degenerates at E1.
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The finite dimensionality ofH q.X;�
p

f
/ for each pair p; q implies that (1.3.2�) is equiv-

alent to
dimH k.X; .�

�

f ; d// D dimH k.X; .�
�

f ; 0// for each k.

We will explain two kinds of proofs of this theorem in Section 1.5.

� The argument sketched by Kontsevich in [13,14] starts by reducing the proof to (1.3.2�)
(cf. Proposition 1.5.3 whose proof is detailed in Appendix C). Then, when P D Pred, the
method of Deligne–Illusie [7] is used for proving (1.3.2�) (cf. Appendix D for details on
this proof).

� In Appendix E, Morihiko Saito provides a direct proof of (1.3.2�) without the restricting
assumption P D Pred.

� On the other hand, we will apply Theorem 1.2.2 (with ˛ D 0 but without the restricting
assumptionP D Pred) in order to get theE1-degeneration for the differentialr D dCdf .
We then apply Proposition 1.5.1.

Remark 1.3.3. A consequence of Theorem 1.2.2 for ˛ D 0, or equivalently of Theo-
rem 1.3.2, is the equality

dimH k.X; .�
�

f .�Pred/; df // D dimHk
dR.U;r/;

which is due to Barannikov and Kontsevich (cf. [23, Corollary 0.6] and [19, Corollary 4.27]).

1.4. Comparison of the filtered twisted meromorphic de Rham complex and the
filtered Kontsevich complex. For any coherent sheaf F and for � 2 R, we will use the
notation F .Œ�P �/ for OX .Œ�P �/˝ F . We define then

�kf .�/ WD ker
�
�kX .logD/.Œ�P �/(1.4.1)

df
��! �kC1X .logD/.Œ.�C 1/P �/=�kC1X .logD/.Œ�P �/

�
D ker

�
�kX .logD/.Œ�P �/

r
��! �kC1X .logD/.Œ.�C 1/P �/=�kC1X .logD/.Œ�P �/

�
;

where the second equality follows from

d.�kX .logD/.Œ�P �// � �kC1X .logD/.Œ�P �/:

Since r.�k
f
.�// � �kC1

f
.�/, we can also consider the complex

.�
�

f .�/;r/ WD .�
0
f .�/

r
��! �1f .�/

r
��! � � � /

together with its stupid filtration

�p.�
�

f .�/;r/ WD .�
p

f
.�/

r
��! �

pC1

f
.�/

r
��! � � � /Œ�p�:

For � 6 �0 we thus have natural morphisms of filtered complexes

.�
�

f .�/;r; �
p/ �! .�

�

f .�
0/;r; �p/:
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For any � 2 R, define

.F 0.�/;r/ D
�
OX .Œ��P �/

r
��! �1X .logD/.Œ.1 � �/P �/

�! � � � �! �kX .logD/.Œ.k � �/P �/ �! � � �
�
:

Then for any � 6 �0 the natural inclusion

.F 0.�0/;r/ �! .F 0.�/;r/

is a quasi-isomorphism ([35, Proposition 1.3]).

Proposition 1.4.2. Fix � 2 R. Consider the filtration �p on F 0.��/ defined by

�p D

8<:F
0.��/ if p 6 0,

.�
p
X .logD/.Œ�P �/

r
��! �

pC1
X .logD/.Œ.1C �/P �/ ��! � � � /Œ�p� if p > 0:

Then the natural inclusion

.�
�

f .�/;r; �
p/ �! .F 0.��/;r; �p/ .p 2 Z/

is a filtered quasi-isomorphism. The same holds true if one replaces the connection r by the
left multiplication with df in both complexes.

Proof. Since both filtrations satisfy �p; �p D 0 for p > dimX and are constant for
p 6 0, it is enough to prove the isomorphism at the graded level, that is, to prove that the
vertical morphism of complexes below is a quasi-isomorphism:

0 // �
p

f
.�/

��

// 0

��

// � � �

0 // �
p
X .logD/.Œ�P �/ r // �pC1X .logD/.Œ.�C 1/P �/=�pC1X .logD/.Œ�P �/ // � � � .

According to (1.4.1), this amounts to showing that the second row has zero cohomology in
degrees > p C 1. This follows from [35, Proposition 1.3], which implies that the complex

� � � �! �
p
X .logD/.Œ�P �/=�pX .logD/.Œ.� � 1/P �/

r
��! �

pC1
X .logD/.Œ.�C 1/P �/=�pC1X .logD/.Œ�P �/ �! � � �

is quasi-isomorphic to zero.
Since r D df on the graded objects grp� and grp� , the second assertion can be proved by

the same argument.

Corollary 1.4.3. The two inclusions

.�
�

f ;r/ �! .�
�

f .�Pred/;r/ and .�
�

f ; df / �! .�
�

f .�Pred/; df /

are quasi-isomorphisms of complexes on X , as well as the inclusion

.�
�

f .�Pred/;r/ �! .�
�

X .�D/;r/:
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Proof. Forgetting the filtrations in Proposition 1.4.2, one obtains the vertical quasi-
isomorphisms in the commutative diagram

.��f ; ?/
//

o

��

.��f .mP /; ?/

o

��

.F 0.0/; ?/
� // .F 0.�m/; ?/.

Here the arrows are natural inclusions, ? D r or df , and m is any non-negative integer. Since

�kf .�Pred/ D
[
m

�kf .mP /;

the first assertion follows. The second assertion is proved as in [23, Section 3.2], since

�
�

f .�Pred/ D �
�

X .logH/.�Pred/;

as follows from the expression (1.3.1).

Remark 1.4.4. We have

H k.X;�
�

X .�D/;r/ D H
k
dR.U;r/:

Let us recall (cf. [23, Remark 04]) that, if we set

Y D f �1.A1/ D X X Pred;

then dimHk
dR.U;r/ is equal to the dimension of the .k � 1/-st hypercohomology of the van-

ishing cycles of fjY W Y ! A1 with coefficients in the complex R��CU , where � W U ,! Y

denotes the inclusion.
On the other hand, in Theorem E.3 of Appendix E, M. Saito gives, when P D Pred,

an identification of the complex .��f ; d/ with the Beilinson complex attached to Rj�CU , and
therefore with the nearby cycle complex gRj�CU (recall that g D 1=f ) of f along f �1.1/.

Corollary 1.4.5. For any ˛ 2 Œ0; 1/, the natural inclusions

.�
�

f .˛/;r; �
p/ �! .F 0.r/; F p˛ / �! F Yu;p

˛ .�
�
.�D/;r/ .p 2 Z/

are quasi-isomorphisms of filtered complexes on X . Here (cf. (1.2.1))

F p˛ .F
0.r// D

´
F 0.r/ if p 6 0,

F�˛Cp.r/ if p > 1:

Proof. That the second arrow is a quasi-isomorphism is the statement of [35, Corol-
lary 1.4]. The first one follows from Proposition 1.4.2. Indeed in this case we have

�p D

´
F 0.�˛/

�
 � F 0.r/ if p 6 0;

F
p
˛ if p > 1,

as desired.
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Corollary 1.4.6. For ˛ 2 Œ0; 1/, the hypercohomology H k.X; .��f .˛/;r// does not
depend on the choice of the smooth compactification X of U such that X X U has normal
crossings.

Proof. Forgetting the filtration in Corollary 1.4.5, we have

H k.X; .�
�

f .˛/;r// ' H
k.X; F Yu;�˛.r//

and the assertion follows from [35, Theorem 1.8].

Remark 1.4.7. The statement of Corollary 1.4.6 is also a consequence of Proposi-
tion 3.2.3 below, through the various identifications that we make in Sections 1.5–1.7.

From the properties of the filtration F Yu (cf. Section 1.2) we obtain, as a consequence of
Theorem 1.2.2:

Corollary 1.4.8 (of Theorem 1.2.2). For ˛ 2 Œ0; 1/ fixed, and for p; q > 0, we haveM
�2Œ�˛Cp;�˛CpC1/

gr�F Yu H
pCq
dR .U;r/ ' grp

F Yu
˛
H
pCq
dR .U;r/ ' H q.X;�

p

f
.˛//

and therefore a decomposition Hk
dR.U;r/ '

L
pCqDkH

q.X;�
p

f
.˛//.

Proof. Observe that the right-hand term is theE1-term in the spectral sequence attached
to .��f .˛/;r; �

p/, hence that of the spectral sequence attached to F Yu;p
˛ .��.�D/;r/, accord-

ing to Corollary 1.4.5, which is equal to the middle term, according to Theorem 1.2.2.

Remark 1.4.9. It is a natural question to ask for a geometric interpretation of the
cohomology H q.X;�

p

f
.˛//. When ˛ D 0 and P D Pred, such an interpretation is furnished

by Theorem E.3 in Appendix E. On the other hand, when D D Pred, it is natural to expect that
the complex .�f ; dC df / is quasi-isomorphic to the L2 complex on X X Pred with the same
differential and relative to a complete metric on X XD which is equivalent to the Poincaré
metric near each point of D. The corresponding Hodge decomposition should be proved as
in [9] (we owe this L2 interpretation to T. Mochizuki).

1.5. Relation between Theorem 1.2.2 for ˛ D 0 and Theorem 1.3.2.

Proof that Theorem 1.2.2 for ˛ D 0 implies Theorem 1.3.2.

Proposition 1.5.1. If dimH k.X; .��
cf
; dC d.cf /// D dimH k.X; .��

cf
; 0// for all k

and any c 2 C�, then the conclusion of Theorem 1.3.2 holds.

Proof. For u; v ¤ 0, we have �k
f
D �k

vf=u
, and thus

dimH k.X; .�
�

f ; udC vdf // D dimH k.X; .�
�

vf=u; dC d.vf=u///

D dimH k.X; .�
�

vf=u; 0// (assumption for vf=u)

D dimH k.X; .�
�

f ; 0//:
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We will now treat the case v D 0, u ¤ 0, that is, we will prove the equality

dimH k.X; .�
�

f ; d// D dimH k.X; .�
�

f ; 0//:

The case v ¤ 0, u D 0 is obtained similarly. We will use a standard semi-continuity argument.
On the one hand, Hk.X; .��f ; d// being the abutment of the spectral sequence attached

to the filtered complex �p.��f ; d/, we have

(1.5.2) dimH k.X; .�
�

f ; d// 6 dimH k.X; .�
�

f ; 0// for all k;

the latter term being equal to dimH k.X; .��f ;r//, according to the assumption for f . Let us
show the equality by considering the complex .��f Œ� �; dX C �df /, where � is a new variable
and dX differentiates with respect toX only. Since each�p

f
is OX -coherent (even locally free),

each
H q.X;�

p

f
Œ� �/ D CŒ� �˝C H

q.X;�
p

f
/

is a free CŒ� �-module of finite type, and thus each

H k
� WD H

k.X; .�
�

f Œ� �; dX C �df //

is a CŒ� �-module of finite type, by a spectral sequence argument with respect to the stupid
filtration �p. We claim first:

� dimC.�/C.�/˝CŒ�� H
k
� D dimH k.X; .��f ;r//.

Indeed, since ��f Œ� � is CŒ� �-free and sinceH k
� has finite type over CŒ� �, we have

CŒ� �=.� � v/˝CŒ�� H
k
� D H

k.X; .�
�

f ; dC vdf //

for v general enough. We know that the dimension of the latter space is independent of v ¤ 0
and equal toH k.X; .��f ;r// by the first part of the proof, hence the assertion.

Let us now consider the long exact sequence

� � � �! H k
�

�
��! H k

� �! H k.X; .�
�

f ; d// �! � � � :

We will prove for all k:

.1/k “� at the level > k is injective”,

.2/k H
k.X; .��f ; d// D H

k
� =�H

k
� ,

.3/k dimH k.X; .��f ; d// D dimH k.X; .��f ;r//,

by showing .1/kC1) .2/k ) .3/k ) .1/k . Note that .3/k is the desired equality.
The assertion .1/kC1 implies that H k

� ! H k.X; .��f ; d// is onto, and thus .2/k holds,
so

dimH k.X; .�
�

f ; d// > dimC.�/C.�/˝CŒ�� H
k
� D dimH k.X; .�

�

f ;r//;

where the latter equality holds by the claim above. Hence (1.5.2) implies .3/k and thus, local-
izing at � D 0, CŒ� �.0/ ˝CŒ�� H

k
� is CŒ� �.0/-free, so .1/k holds.

Since .1/k holds for k large, it holds for all k, as well as .3/k .

In order to obtain Theorem 1.3.2 from Theorem 1.2.2 for ˛ D 0, it remains to apply
Corollary 1.4.8 with ˛ D 0 (which uses Theorem 1.2.2), together with Corollary 1.4.3, to cf
for any c 2 C�.
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Proof that (1.3.2�) implies Theorem 1.3.2 and Theorem 1.2.2 for ˛ D 0.

Proposition 1.5.3 (Kontsevich [13]). For all k we have

dimH k.X; .�
�

f ; d// D dimHk
dR.U;r/:

The proof of Proposition 1.5.3 is postponed to Appendix C. It does not use any Hodge-
theoretic argument. If we assume condition (1.3.2�) for f , it holds for cf for all c 2 C�

since ��
cf
D ��f . Then, according to Proposition 1.5.3 and Corollary 1.4.3, we obtain

dimH k.X; .�
�

cf ; dC d.cf /// D dimH k.X; .�
�

cf ; 0//;

which is equivalent to Theorem 1.2.2 for ˛ D 0, according to Corollary 1.4.5, and on the other
hand implies the other statements of Theorem 1.3.2 according to Proposition 1.5.1.

1.6. Deligne’s filtration: The D-module approach. In this subsection, the results will
be of a local nature, and we will make use of the local setting of Section 1.1.

First construction. Let us denote by E1=g the O-module O.�Pred/ with the twisted
D-module structure, so that the corresponding flat connection is r D dC d.1=g/. We will
denote by e1=g the generator 1, in order to make clear the twist of the connection on the
O-module O.�Pred/. The behavior of the connection with respect to the filtration F�O.�Pred/

(defined in Section 1.1) is as follows:

r.FpO.�Pred// � �
1
x;y;z.logPred/˝ .FpO.�Pred//.P / � �

1
x;y;z ˝ .FpC1O.�Pred//.P /:

For each ˛ 2 Œ0; 1/ and all p 2 N, we consider the increasing filtration by coherent
O-submodules indexed by N defined as

(1.6.1) F˛Cp.E
1=g/ WD FpO.�Pred/.Œ.˛ C p/P �/˝ e1=g ;

where Œ.˛ C p/P � is the integral part of .˛ C p/P , that is, locally defined by

xŒe.˛Cp/� D xŒe˛�gp;

and we set
F˛Cp.E

1=g/ D 0 for p 2 Z<0.

We therefore get a filtration F�.E1=g/ indexed by R, with F�.E1=g/ D 0 for� < 0 and jumps
for � 2 Q>0 at most.

We will mainly work with E1=g.�H/, which is equal to O.�D/ as an O-module. Its
filtration is defined, in a way analogous to (1.1.2), by

(1.6.2) F˛Cp.E
1=g.�H// WD

X
qCq06p

FqO.�H/ � F˛Cq0.E
1=g/;

where the product is taken in O.�D/.
In both cases, these filtrations satisfy the Griffiths transversality property with respect to

the connection r on E1=g or on E1=g.�H/, that is, they are F -filtrations with respect to the
standard order filtration on D .
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Second construction, step one: Adjunction of a variable. We shall denote by M 0 the
D-module-theoretic push-forward of .O.�H/; d/ by the graph inclusion of g. If t 0 denotes
the new coordinate produced by this inclusion, M 0 is a left D Œt 0�hàt 0i-module. Let us make it
explicit. We consider a new variable � 0, and we have by definition

M 0 D C¹x; y; zºŒy�1; � 0� as a C¹x; y; zº-module:

It will be convenient to denote by ı the element 1=
Qm
jD1 yj of M 0. The remaining part of the

left action of D Œt 0�hàt 0i is defined as follows on ı (and extended to M 0 by using Leibniz rule):

(1.6.3)

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

àt 0ı D � 0ı;
t 0ı D gı D xeı;

àxi ı D �
àg
àxi

� 0ı D �eix
e�1i � 0ı;

àyj ı D �
1

yj
ı;

àzkı D 0:

We note that .O.�H/; d/, as a left D-module, is recovered as the cokernel of the injective
morphism of left D-modules àt 0 WM 0 !M 0 with the induced D-module structure.

Denote byE1=t
0

the left D Œt 0�hàt 0i-module C¹x; y; z; t 0ºŒt 0�1�e1=t
0

whose generator e1=t
0

satisfies
àt 0e1=t

0

D �.1=t 02/e1=t
0

:

The twisted D Œt 0�hàt 0i-module M 0 ˝E1=t
0

is the left D Œt 0�hàt 0i-module

M 0 ˝E1=t
0

D C¹x; y; zºŒx�1; y�1; � 0�.ı ˝ e1=t
0

/ as a C¹x; y; zº-module:

We have used here that, with respect to the CŒt 0�-action on M 0 defined above, we have

CŒt 0; t 0�1�˝CŒt 0�M
0
DM 0Œ1=g� D C¹x; y; zºŒx�1; y�1; � 0�:

The remaining part of the left action of D Œt 0�hàt 0i is defined as follows on the generator
ı ˝ e1=t

0

(and extended to M 0 ˝E1=t
0

by using Leibniz rule):

(1.6.4)

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

àt 0.ı ˝ e1=t
0

/ D .� 0 � g�2/.ı ˝ e1=t
0

/ D .� 0 � x�2e/.ı ˝ e1=t
0

/;

t 0.ı ˝ e1=t
0

/ D g.ı ˝ e1=t
0

/ D xe.ı ˝ e1=t
0

/;

àxi .ı ˝ e1=t
0

/ D �
àg
àxi

� 0.ı ˝ e1=t
0

/ D �eix
e�1i � 0.ı ˝ e1=t

0

/;

àyj .ı ˝ e1=t
0

/ D �
1

yj
.ı ˝ e1=t

0

/;

àzk .ı ˝ e1=t
0

/ D 0:

Due to the previous formulas, the decomposition

M 0 ˝E1=t
0

D

M
k>0

O.�D/� 0k.ı ˝ e1=t
0

/

can be transformed to a decomposition

M 0 ˝E1=t
0

D

M
k>0

O.�D/àkt 0.ı ˝ e1=t
0

/;

which shows thatM 0˝E1=t
0

is a free O.�D/Œàt 0 �-module of rank one with generator ı˝e1=t
0

.



184 Esnault, Sabbah and Yu, E1-degeneration of the irregular Hodge filtration

Let � denote the inclusion associated to the graph of g. The D Œt 0�hàt 0i-module

�CE
1=g.�H/ WD

M
k

E1=g.�H/˝ àkt 0ı

is also a free O.�D/Œàt 0 �-module of rank one with generator .1˝ e1=g ˝ ı/.
The unique O.�D/Œàt 0 �-linear isomorphism

�CE
1=g.�H/

�
�!M 0 ˝E1=t

0

sending .1˝ e1=g ˝ ı/ to ı ˝ e1=t
0

is in fact D Œt 0�hàt 0i-linear. Let us check for instance that
it is àxi -linear:

àxi .1˝ e1=g ˝ ı/ D �
àg=àxi
g2

˝ e1=g ˝ ı �
àg
àxi
˝ e1=g ˝ àt 0ı

7�! �
àg=àxi
g2

ı ˝ e1=t
0

� àt 0
�
àg
àxi

ı ˝ e1=t
0

�
D �� 0
àg
àxi

ı ˝ e1=t
0

D àxi .ı ˝ e1=t
0

/;

according to (1.6.4).
It is then clear that, on the other hand, one recovers E1=g.�H/ from M 0 ˝E1=t

0

as its
push-forward by the projection � along the t 0 variable. So we find

M 0 ˝E1=t
0

' �CE
1=g.�H/;(1.6.5)

E1=g.�H/ D �C.M
0
˝E1=t

0

/ D cokerŒàt 0 WM 0 ˝E1=t
0

�!M 0 ˝E1=t
0

�:(1.6.6)

Second construction, step two: The Deligne filtration. For the sake of simplicity, the
filtrations will be taken increasing. One can consider them as decreasing by changing the sign
of the indices.

Let F�M 0 be the filtration F�D Œt 0�hàt 0i � ı on M 0. It is the filtration by deg� 0 C ordH ,
where ordH is the order of the pole alongH such that ordH ı D 0. Let V�M 0 be the Kashiwara–
Malgrange V -filtration with respect to the function t 0 (see, e.g., [28, Section 3.1] or Section 2.2
below). We will only consider the steps V˛M 0 for ˛ 2 Œ0; 1/ (the jumps possibly occur at most
at ˛ 2 Œ0; 1/ \Q). The normalization condition is that t 0àt 0 C ˛ is nilpotent when induced
on grV˛ M

0.
The natural generalization of the D-module-theoretic Deligne filtration defined in

[26, Section 6.b] is (in the increasing setting), for each ˛ 2 Œ0; 1/, and any p 2 Z:

(1.6.7) F Del
˛Cp.M

0
˝E1=t

0

/ D

pX
kD0

àkt 0 t
0�1..Fp�kM

0
\ V˛M

0/˝ e1=t
0

/:

We have F Del
˛Cp.M

0 ˝E1=t
0

/ D 0 if ˛ C p < 0. Note also that

F Del
˛ .M 0 ˝E1=t

0

/ D t 0�1.F0M
0
\ V˛.M

0/˝ e1=t
0

/:

For each ˛ 2 Œ0; 1/, it is easily checked that the filtration F Del
˛Cp.M

0 ˝E1=t
0

/ (p 2 Z) is an
F -filtration for D Œt 0�hàt 0i, i.e., satisfies

FqD Œt 0�hàt 0i � F Del
˛Cp.M

0
˝E1=t

0

/ � F Del
˛CpCq.M

0
˝E1=t

0

/;
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where FqD Œt 0�hàt 0i consists of operators of total order6 q (with respect to àx; ày ; àz; àt 0). The
jumps possibly occur at most at ˛ C p 2 Q>0 and we have

(1.6.8) F Del
˛Cp.M

0
˝E1=t

0

/ D àt 0F Del
˛Cp�1.M

0
˝E1=t

0

/C t 0�1.FpM
0
\V˛M

0/˝e1=t
0

:

Indeed by definition,

àt 0F Del
˛Cp�1.M

0
˝E1=t

0

/ D
X
k>0

àkC1t 0 t 0�1..Fp�1�kM
0
\ V˛M

0/˝ e1=t
0

/

D

X
k>1

àkt 0 t
0�1..Fp�kM

0
\ V˛M

0/˝ e1=t
0

/:

Proposition 1.6.9. The filtration F Del
�
.M 0 ˝E1=t

0

/ is exhaustive, and the injective
D-linear morphism àt 0 WM 0˝E1=t

0

!M 0˝E1=t
0

strictly shifts the Deligne filtration (1.6.7)
by one, that is, for all ˛ 2 Œ0; 1/ and all p 2 Z,

F Del
˛CpC1.M

0
˝E1=t

0

/ \ àt 0.M 0 ˝E1=t
0

/ D àt 0F Del
˛Cp.M

0
˝E1=t

0

/:

Proof. For the first point, let us denote by V�M 0Œt 0�1� the Kashiwara–Malgrange filtra-
tion of M 0Œt 0�1� (without twist) with respect to the function t 0. For � < 1 we have

V�M
0Œt 0�1� D V�M

0;

while for � > 1 we have
V�M

0Œt 0�1� D t 0�Œ��V��Œ��M
0:

For each�, àt 0 � t 0�2 sends V�M 0Œt 0�1� to V�C2M 0Œt 0�1� and the graded morphism is also that
induced by �t 0�2, hence is an isomorphism. It follows that any m 2M 0Œt 0�1� can be written
as a finite sum

P
k.àt 0 � t 0�2/kt 0�1mk with mk 2 V˛kM

0, and ˛k 2 Œ0; 1/. Set ˛ D maxk ˛k
and replace each ˛k with ˛. Since the filtration F�M 0 is exhaustive, there exists some p such
that mk 2 Fp�kM 0 \ V˛M 0 for each k. Therefore,

m˝ e1=t
0

2 F Del
˛Cp.M

0
˝E1=t

0

/:

For the strictness assertion, according to (1.6.8) and forgetting the E1=t
0

factor, it is
enough to prove that, for all ˛ 2 Œ0; 1/ and all p 2 Z,

t 0�1.FpC1M
0
\ V˛M

0/ \ .àt 0 � t 0�2/.M 0Œt 0�1�/ � .àt 0 � t 0�2/t 0�1.FpM 0 \ V˛M 0/;

or, by using the standard commutation rule, that

.FpC1M
0
\ V˛M

0/ \ .àt 0 � t 0�1 � t 0�2/.M 0Œt 0�1�/ � .àt 0 � t 0�1 � t 0�2/.FpM 0 \ V˛M 0/:

We will check separately that

� m0 2 V˛M
0 and m0 D .àt 0 � t 0�1 � t 0�2/m implies m 2 V˛�2.M 0/ � V˛M 0,

� m0 2 FpC1M
0 and m0 D .àt 0 � t 0�1 � t 0�2/m implies m 2 FpM 0.

On the one hand, the operator àt 0 � t 0�1 � t 0�2 induces for each � an isomorphism

grV��2.M
0Œt 0�1�/

�
�! grV� .M

0Œt 0�1�/;

so the first assertion is clear.
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On the other hand, using the identification M 0Œt 0�1� D C¹x; y; zºŒx�1; y�1; � 0�1=y as
a left C¹x; y; zº-module, with the F -filtration induced by “degree in � 0 C pole order in y”, the
operator àt 0 � t 0�1 � t 0�2 sends a term 'k.x; y; z/�

0k (k > 0) to

'k.x; y; z/ �

�
� 0.kC1/ C

X
j6k

�X
`>0

cj;`x
�`e

�
� 0j
�

for some coefficients cj;` 2 N (due to the commutation rule between t 0�1 and àt 0). If

m D

qX
kD0

'k�
0k
2M 0Œt 0�1�

is such that

m0 WD .àt 0 � t 0�1 � t 0�2/m D
qC1X
kD0

'0k�
0k

belongs to FpC1M 0, then 'q D '0qC1 belongs to C¹x; y; zºŒy�1� and its pole order relative
to y is 6 .p C 1/ � .q C 1/ D p � q, so 'q� 0q 2 FpM 0. By decreasing induction on q, one
concludes that m 2 FpM 0.

Definition 1.6.10 (of F Del
�
.E1=g.�H//). The Deligne filtration F Del

�
.E1=g.�H// (in-

dexed by R) on E1=g.�H/ is the image filtration of F Del
�
.M 0 ˝E1=t

0

/ by (1.6.6).

Here are some properties of F Del
� .E1=g.�H//:

� We have

F Del
� .E1=g.�H// D 0 for � < 0

and the jumps possibly occur at most at � 2 Q>0.

� For a fixed ˛ 2 Œ0; 1/ and p 2 N, F Del
˛Cp.E

1=g.�H// is an F�D-filtration, i.e.,

FqD � F Del
˛Cp.E

1=g.�H// � F Del
˛CpCq.E

1=g.�H//:

� By (1.6.6),

F Del
˛Cp.E

1=g.�H// D image.t 0�1.FpM 0 \ V˛M 0/˝ e1=t
0

/:

Indeed, this directly follows from (1.6.8).

On the other hand, the push-forward �CE1=g.�H/ comes naturally equipped with a push-
forward filtration

F˛Cp.�CE
1=g.�H// WD

M
k>0

F˛Cp�k.E
1=g.�H//˝ àkt 0ı(1.6.11)

with F�.E1=g.�H// defined by (1.6.2). This defines a filtration F�.M 0 ˝E1=t
0

/ according
to (1.6.5).
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Comparison of both filtrations onM 0 ˝E1=t0 and E1=g.�H/.

Proposition 1.6.12. For each ˛ 2 Œ0; 1/ and each p 2 Z, we have

F˛Cp.M
0
˝E1=t

0

/ D F Del
˛Cp.M

0
˝E1=t

0

/ cf. (1.6.11) and (1.6.7);

F˛Cp.E
1=g.�H// D F Del

˛Cp.E
1=g.�H// cf. (1.6.2) and Definition 1.6.10:

Proof. We will prove the first equality, since the second one obviously follows. We need
here an explicit expression of FpM 0 \ V˛M 0. We will recall the computation already made
in [20] for the pure case (H D ¿) and recalled and generalized to the mixed case in [22, Pro-
position 4.19], where the notation ı0 is used for the present notation ı. It would also be possible
to use [31, Proposition 3.5], but the computation is written there for right D-modules, so one
should first express this computation for left modules. Note also that it is enough to consider
p 2 N, since both filtrations are identically zero if p 6 �1.

We will use the notation

b D .b1; : : : ; b`/ 2 Z`; jbjC D
X
i

max¹0; biº;

c D .c1; : : : ; cm/ 2 Zm; jcjC D
X
j

max¹0; cj º:

Then, by (1.6.2), we have

(1.6.13) F˛Cp.E
1=g.�H// D

X
jbjCCjcjC6p

y�c�1x�b�1x�Œe˛�g�pCjcjC �O:

On the other hand, for a D .a1; : : : ; a`/ 2 Z`, let us set

P˛;a.s/ D ca;˛

Ỳ
iD1

aiY
kDŒei˛�C1

.s C k=ei /; with ca;˛ 2 C such that P˛;a.�˛/ D 1;

taking into account the convention that a product indexed by the empty set is equal to 1. Let us
also set (recall that dˇe WD �Œ�ˇ�)

I˛.a/ D ¹i j ai D dei˛eº � ¹1; : : : ; rº; J.c/ D ¹j j cj D 0º:

Then, by embedding M 0 in M 0Œx�1�, an element of V˛M 0 can be written in a unique way as
the result of the action of some polynomials in t 0àt 0 on some elements of M 0Œx�1� as follows:X

a>de˛e

X
c>0

X
`>0

.t 0àt 0 C ˛/`P˛;a�1.t
0àt 0/ha;c;`.xI˛.a/; yJ.c/; z/y

�cx�at 0ı;

with xI˛.a/ D .xi /i2I˛.a/, yJ.c/ D .yj /j2J.c/, ha;c;` 2 O only depends on the indicated vari-
ables.1) The filtration F�M 0 \ V˛M 0 is the filtration by the degree in t 0àt 0 plus the pole order
in y. In other words, an element of V˛M 0 written as above belongs to FpM 0 \ V˛M 0 if and
only if

ha;c;` 6� 0 H) `C jcjC C degP˛;a�1 6 p;
1) A condition on ha;c;` is mistakenly added in [22]; it is irrelevant.
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that is, if we set bi D ai � 1 � Œei˛�,

`C jcjC C jbjC 6 p:

Note also that the condition ai > dei˛e implies ai > Œei˛� > 0. By using the standard com-
mutation relations, an element of t 0�1.FpM 0 \ V˛M 0/ can thus be written in a unique way as

(1.6.14)
X

a>de˛e

X
c>0

X
`>0

.àt 0 t 0 C ˛/`P˛;a�1.àt 0 t 0/ha;c;`.xI˛.a/; yJ.c/; z/y
�cx�aı;

with the same conditions on a; c and ha;c;`.
We will use the following identity in DX Œt

0; t 0�1�hàt 0i:

.àt 0 t 0/k D a
.k/
0 .t 0/t 0�k C � � � C .àt 0 � t 0�2/j t 0j�ka

.k/
j .t 0/(1.6.15)

C � � � C .àt 0 � t 0�2/ka
.k/

k
.t 0/;

for some polynomials a.k/j .t 0/ 2 CŒt 0�, with a.k/0 .0/ D 1. This identity can be checked easily.
Then a similar identity, with coefficients still denoted by a.k/j .t 0/, holds for any polynomial of
degree k in àt 0 t 0, and moreover a.k/0 .0/ ¤ 0.

Let us first prove the inclusion

t 0�1.FpM
0
\ V˛M

0/˝ e1=t
0

� F˛Cp.M
0
˝E1=t

0

/:

According to (1.6.15) we have

Œ.àt 0 t 0/ky�cx�aı�˝ e1=t
0

D

X
j

a
.k/
j .g/gj�ky�cx�a

˝ e1=g ˝ àjt 0ı:

If such a term occurs in (1.6.14), we have k C jcjC 6 p, hence j � k > �.p � j /C jcjC and,
recalling that ı D y�1, we conclude that the j -th coefficient belongs to F˛Cp�jE1=g.�H/,
after (1.6.13), hence the desired inclusion, according to (1.6.11).

Conversely, let us prove that

F˛CpE
1=g.�H/˝ ı � t 0�1.FpM

0
\ V˛M

0/˝ e1=t
0

C àt 0F˛Cp�1.M 0 ˝E1=t
0

/:

Set b D a � 1 � Œe˛� as above. Then F˛CpE1=g.�H/˝ ı is generated by elements of the
form

m D y�cx�ag�pCjcjCe1=g ˝ ı

with jbjC C jcjC 6 p. Setting ` D p � .jbjC C jcjC/, formula (1.6.15) applied to the poly-
nomial .àt 0 t 0 C ˛/`P˛;a�1.àt 0 t 0/ of degree p � jcjC gives

m˝ e1=t
0

D cŒ.àt 0 t 0 C ˛/`P˛;a�1.àt 0 t 0/y�cx�aı�˝ e1=t
0

mod àt 0F˛Cp�1.M 0 ˝E1=t
0

/;

for some nonzero constant c.

1.7. Comparison of Yu’s filtration and Deligne’s filtration on the twisted de Rham
complex. We will introduce three definitions (1.7.1), (1.7.2) and (1.7.3) of a filtered twisted
meromorphic de Rham complex. Corollary 1.7.6 will show that they give filtered quasi-iso-
morphic complexes, by using Propositions 1.7.4 and 1.6.9.
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The filtered twisted logarithmic de Rham complex [35]. Let .��x;y;z.logD/; d/ be
the logarithmic de Rham complex (logarithmic with respect to D), so that in particular

�0x;y;z.logD/ D O:

We set, for any ˛ 2 Œ0; 1/ and p 2 Z,

F Yu
˛Cp DR.E1=g.�H// WD ¹0 �! �0x;y;z.logD/.Œ.˛ C p/P �/C(1.7.1)

r
��! �1x;y;z.logD/.Œ.˛ C p C 1/P �/C

r
��! � � � º

(this is the increasing version of (1.2.1)).

The filtered twisted meromorphic de Rham complex. Let us consider the usual
twisted de Rham complex

¹0 �! E1=g.�H/
r
��! �1x;y;z ˝E

1=g.�H/
r
��! � � �

r
��! �nx;y;z ˝E

1=g.�H/ �! 0º:

The filtration naturally induced by F Del
� .E1=g.�H// (as defined by (1.6.2) or equivalently by

Definition 1.6.10, according to Proposition 1.6.12) is by definition

F Del
� .DR.E1=g.�H/// WD ¹0 �! F Del

� E1=g.�H/(1.7.2)

�! �1x;y;z ˝ F
Del
�C1E

1=g.�H/

�! � � � �! �nx;y;z ˝ F
Del
�CnE

1=g.�H/ �! 0º:

The filtered twisted meromorphic de Rham complex with a variable added. We
define the filtration F Del

� DR.M 0 ˝E1=t
0

/ on the twisted de Rham complex DR.M 0 ˝E1=t
0

/

by a formula analogous to (1.7.2), by using basically F Del
� .M 0 ˝E1=t

0

/ as defined by (1.6.7):

F Del
� .DR.M 0 ˝E1=t

0

// WD ¹0 �! F Del
� .M 0 ˝E1=t

0

/(1.7.3)

�! �1x;y;z;t 0 ˝ F
Del
�C1.M

0
˝E1=t

0

/ �! � � � º:

Comparison of the filtered complexes. Notice first that, for all three complexes, we
have F� DR D 0 for � < �n (where n is the dimension of the underlying space), so that in the
decreasing setting, F � DR D 0 for � > n.

Proposition 1.7.4. For each ˛ 2 Œ0; 1/ and each po 2 Z, the natural inclusion of com-
plexes

F Yu
˛Cpo

DR.E1=g.�H// ,�! F Del
˛Cpo

DR.E1=g.�H//

is a quasi-isomorphism.

Sketch of proof. The question is local, and we can use the local setting of Section 1.1.
According to Proposition 1.6.12, we can use (1.6.2) to compute F Del

˛C�DR.E1=g.�H//, that
we will then simply denote by F˛C�DR.E1=g.�H//. By expressing both filtered complexes
as the external tensor product of complexes with respect to the variables x on the one hand
and y; z on the other hand, we are reduced to consider both cases separately. Moreover, the
y; z-case is that considered by Deligne [3, Proposition II.3.13], so we will focus on the x-case,
assuming that there are no y; z variables. We are therefore led to proving that the following
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morphism of complexes is a quasi-isomorphism:

�0x.logPred/.Œ.˛ C po/P �/C
r //

��

� � ��kx.logPred/.Œ.˛ C po C k/P �/C � � �

��

.FpoOx.�Pred//�
0
x.Œ.˛ C po/P �/

r // � � � .FpoCkOx.�Pred//�
k
x.Œ.˛ C po C k/P �/ � � � .

By multiplying the k-th degree term of each complex by xŒ.˛CpoCk/e�, the differential r from
the k-th to the .k C 1/-st degree is replaced by

ık.po/ D x
edC d log x�e

C xed log xŒ.˛CpoCk/e�;

and we are reduced to showing the quasi-isomorphism when p D po:

�>�p
�
�0x.logPred/

ı0.po/
������! � � �

ık�1.po/
������! �kx.logPred/

ık.po/
������! � � �

�
o

��

FpOx.�Pred/
ı0.po/
������! � � �

ık�1.po/
������! FpCk�

k
x.�Pred/

ık.po/
������! � � �

where we now use the standard (increasing) pole order filtration on��x.�Pred/, and �>� denotes
the stupid filtration. We will show the quasi-isomorphism for all p, and for that purpose it will
be enough to show that the graded complexes are quasi-isomorphic. For the upper complex, the
graded differential is zero, while for the lower complex, it is equal to d log x�e . We can then
argue as in the proof of [3, Proposition II.3.13] (second reduction) to reduce to the case ` D 1,
where the graded quasi-isomorphism is easy to check.

Remark 1.7.5. Moreover, one can consider the sub-complex F Yu
0 DR.E1=g.�H//with

the induced filtration (cf. [35, Corollary 1.4]). Then the natural inclusion

F Yu
min.�;0/ DR.E1=g.�H// ,�! F Yu

� DR.E1=g.�H//

is a quasi-isomorphism for each � 2 Q. This reduces to considering F Yu
� DR.E1=g.�H//

with � 6 0, that is, F �.r/ with � > 0.

The identification of the Koszul complex K�.E1=g.�H/; àx; ày ; àz/ as the cokernel of
the termwise injective morphism

àt 0 W K
�
.M 0 ˝E1=t

0

; àx; ày ; àz/ �! K
�
.M 0 ˝E1=t

0

; àx; ày ; àz/

gives a quasi-isomorphism

DR.M 0 ˝E1=t
0

/ ' K
�
.M 0 ˝E1=t

0

; àx; ày ; àz; àt 0/
�
�! K

�
.E1=g.�H/; àx; ày ; àz/Œ�1� ' DR.E1=g.�H//Œ�1�:

Given a filtered complex F�C �, we denote by .F�C
�/Œk� the filtered complex F��kC

�Ck .
From Propositions 1.7.4 and 1.6.9 we get:

Corollary 1.7.6. We have

F Yu
�

DR.E1=g.�H// ' F Del
�

DR.E1=g.�H// ' .F Del
�

DR.M 0 ˝E1=t
0

//Œ1�:
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2. Preliminaries to a generalization of Deligne’s filtration

2.1. Filtered D-modules and RF D-modules.

Filtered D-modules. Let Y be a complex manifold and let F�DY denote the filtration
of DY by the order of differential operators. Let .M;F�M/ be a filtered holonomic DY -module,
that is, a holonomic DY -module M equipped with a good filtration, i.e.,

FkDYFpM � FkCpM

with equality for p sufficiently large (locally on Y ) and any k. Let z denote a new variable and
let

RFDY WD

M
p2N

FpDY z
p

denote the Rees ring of the filtered ring .DY ; F�DY /. This is a sheaf of OY Œz�-algebras gener-
ated by z‚Y . In any coordinate chart, the coordinate vector fields zày will be denoted by Äy .

Given a DY -module M equipped with an F�DY -filtration F�M, the Rees module

RFM WD
M
p

FpM � z
p

is a graded RFDY -module. The filtration F�M is said to be good if and only if RFM is
RFDY -coherent. Conversely, given a coherent RFDY -module, it is of the form RFM for
some coherent DY -module equipped with a good filtration .M; F�M/ if and only if it is
a graded RFDY -module and it has no CŒz�-torsion (the latter property is called strictness).
If we regard a DY -module as a OY -module equipped with an integrable connection r, we can
regard an RFDY -module as a OY Œz�-module equipped with an integrable z-connection zr.

Exponential twist. In the following, X will be a complex manifold and we will con-
sider holonomic D-modules M on Y D X � P1. For example, given a holomorphic function
f W X ! P1 and a holonomic DX -module N, we will consider the push-forward M D if;CN

of N by the graph inclusion if W X ,! X � P1. As in Section 1.1, we will consider P1 as
covered by two charts A1t and A1t 0 in such a way that1D ¹t 0 D 0º.

We denote by
q W X � P1 �! P1

the projection and we will simply denote by1 the divisorX � ¹1º inX � P1. Let us consider
the localization �M D OX�P1.�1/˝O

X�P1
M

of M, which is a holonomic DX�P1-module by a theorem of Kashiwara. We also regard it as an
OX�P1.�1/-module with integrable connectionr. Let M˝Eq be the OX�P1.�1/-module �M
equipped with the integrable connectionr C dq (cf. Section 1.6 for the similar notationE1=g ).
It is also a holonomic DX�P1-module.

Let us now consider these constructions for a filtered DX�P1-module .M; F�M/. We set

Fp�M D OX�P1.�1/˝O
X�P1

FpM

(this is not OX�P1-coherent). We then have

RF �M D OX�P1.�1/Œz�˝O
X�P1 Œz�

RFM DW .RFM/.�1/:
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We consider the OX�P1 Œz�-module OX�P1.�1/Œz� equipped with the integrable z-con-
nection zdC zdq, that we still denote by Eq (although it is equal to EqŒz�). We then define
RFM˝ Eq as RF �M equipped with the integrable z-connection zr C zdq.

2.2. Strict specializability along a hypersurface. The notion of V -filtration will play
an important role for the construction of the Deligne filtration. We will distinguish two notions
for a filtered DX�P1-module M: the notion of strict specializability of .M; F�M/ as a filtered
DX�P1-module [28], and that of strict specializability ofRFM as anRFDX�P1-module [24].
If one uses the definition as stated in [28, Section 3.2] for .M; F�M/, one does not recover
exactly that given in [24, Definition 3.3.8] for RFM. This is why we will strengthen that of
[28, Section 3.2], and we will show that mixed Hodge modules in the sense of [31] also satisfy
the strengthened condition.

Specialization of a filtered DX�P1-module. Let X be a complex manifold and let
.M; F�M/ be a filtered holonomic D-module on X � P1. Since M is holonomic, it admits
a Kashiwara–Malgrange filtration V�M along X � ¹1º indexed by AC Z, for some finite
set A � C equipped with some total order. We will not care about the choice of such an order
by assuming thatA � R, and equipped with the induced order. This assumption will be enough
for our purpose. We can extend in a trivial way the filtration as a filtration indexed by R, with
only possible jumps atAC Z at most. The normalization we use for the Kashiwara–Malgrange
filtration is that t 0àt 0 C ˛ is nilpotent on grV˛ M WD V˛M=V<˛M, for each ˛ 2 AC Z (so there
will be a shift with the convention in [28] and [24]).

Definition 2.2.1 (cf. [28, equation (3.2.1)]). Let .M; F�M/ be a filtered holonomic
DX�P1-module. We say that .M; F�M/ is strictly specializable and regular along X � ¹1º if
the following hold:

(i) Compatibility conditions in [28, Section 3.2.1]:

(a) for each ˛ < 1 and each p,

t 0 W FpM \ V˛M
�
�! FpM \ V˛�1M;

(b) for each ˛ > 0,

àt 0 W Fp grV˛ M
�
�! FpC1 grV˛C1M:

(ii) For each ˛ 2 R, the filtration F�M induces on each grV˛ M a good filtration (with respect
to F�DX�¹1º).

We refer to [28, Section 3.2] for the consequences of (i). By definition, for a polariz-
able Hodge module [28] or more generally a (graded-polarizable) mixed Hodge module [31],
.M; F�M/ is strictly specializable and regular along X � ¹1º in the sense of Definition 2.2.1.

Specialization of an RF DX�P1-module. Let us consider the increasing filtration
V�.RFDX�P1/ indexed by Z, which is constant equal to RFDX�A1 in the chart with coordi-
nate t , and for which, in the chart with coordinate t 0, the function t 0 has degree �1, the vector
field Ät 0 has degree 1, and OX Œz� and z‚X have degree zero.
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Definition 2.2.2 (cf. [24, Definition 3.3.8]). Let M be a coherent RFDX�P1-module
(e.g., M D RFM as above).

(i) We say that M is strictly specializable along X � ¹1º if there exists a finite set A � R
and a good V -filtration of M (good with respect to V�.RFDX�P1/) indexed by AC Z,
such that

(a) each graded module grV˛ M is strict, i.e., it has no CŒz�-torsion,
(b) on each grV˛ M, the operator t 0Ät 0Cz˛ D z.t 0àt 0C˛/ is nilpotent (the normalization

is shifted by one with respect to [24], for later convenience),
(c) the map t 0 W V˛M! V˛�1M is an isomorphism for ˛ < 1,
(d) the map Ät 0 W grV˛ M! grV˛C1M is an isomorphism for ˛ > 0.

(ii) We then say (cf. [24, Section 3.1.d]) that M is regular along X � ¹1º if, for any ˛ 2 R,
the restriction of V˛M to some neighborhood ofX�¹1º is coherent overRFDX�P1=P1

(and not only over RF V0DX�P1 D V0RFDX�P1).

Remarks 2.2.3. (i) This definition gives a subcategory of that considered in [24, Sec-
tion 3.3] (cf. also [17, Chapter 14], [18, Chapter 22]), as we implicitly assume that t 0Ät 0 acting
on grV˛ M has the only eigenvalue z˛ with ˛ 2 R, so that we will in fact implicitly assume that
˛ 2 R if grV˛ M ¤ 0. However, this subcategory is enough for our purpose.

(ii) Such a filtration is unique (cf. [24, Lemma 3.3.4]).
(iii) Conditions (i) (c) and (i) (d) from Definition 2.2.2 are not the conditions given in

[24, Definition 3.3.8 (1b, c)], but are equivalent to them, according to [24, Remark 3.3.9 (2)].

Proposition 2.2.4. Assume that .M; F�M/ underlies a polarizable Hodge module [28]
or more generally a (graded-polarizable) mixed Hodge module [31]. ThenRFM is strictly spe-
cializable and regular alongX�¹1º in the sense of Definition 2.2.2. Moreover, the V -filtration
V�.RFM/ of RFM as an RFDX�P1-module is equal to RF V�M, where we have set

RF V˛M D
M
p

.FpM \ V˛M/z
p:

Proof. We first note that, according to [28, Corollary 3.4.7], if .M; F�M/ is as in Defi-
nition 2.2.1, then it also satisfies

(ii)0 for each ˛ 2 R, the filtration F�M induces in the neighborhood of X � ¹1º on each
V˛M a good filtration with respect to F�DX�P1=P1 .

For each ˛ 2 R, let us set U˛RFM WD RF .V˛M/ with FpV˛M WD FpM \ V˛M. This
is a V -filtration since RF V0DX�P1 D V0.RFDX�P1/. Moreover, we have

grU˛ RFM D RF grV˛ M;

hence grU˛ RFM is strict, i.e., has no CŒz�-torsion. So Definition 2.2.2 (i) (a) is fulfilled.
Note that RF V˛M is left invariant by zt 0àt 0 DW t 0Ät 0 , and that t 0Ät 0 C ˛z is nilpotent

on RF grV˛ M since t 0àt 0 C ˛ is so on grV˛ M. Therefore, we get Definition 2.2.2 (i) (b).
We also note that (ii)0 implies that each U˛RFM is V0.RFDX�P1/-coherent. Moreover,

Definition 2.2.1 (i) implies Definition 2.2.2 (i) (c)–(i) (d) which, together with the coherence
of U˛RFM, implies the goodness property of this V -filtration. By the uniqueness of the
V -filtration, we conclude that U�RFM D V�RFM.
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Lastly, (ii)0 means that the restriction of V˛RFM to a neighborhood of X � ¹1º is
RFDX�P1=P1-coherent for each ˛, which is the regularity property in Definition 2.2.2 (ii).

2.3. Partial Laplace exponential twist of RF DX�P1-modules. Let .M; F�M/ be
a filtered DX�P1-module. We will usually denote by .M;F�M/ its restriction to X �A1t , that
we regard as a filtered DX Œt �hàt i-module, and by .M 0; F�M 0/ its restriction to X �A1t 0 , that
we regard as a filtered DX Œt

0�hàt 0i-module. The Laplace exponential twist FM of RFM that
we define below is an intermediate step to define the partial Laplace transform of RFM, but
we will not need to introduce the latter.

We consider the affine line yA1 with coordinate � . The varieties

X � P1 and Z D X � P1 � yA1

are equipped with a divisor (still denoted by)1. We denote by p the projectionZ ! X � P1.
Let M be a left RFDX�P1-module, e.g., M D RFM. We denote by �M the localized

module RFDX�P1.�1/˝RFD
X�P1

M, e.g.,�M D RF �M
as defined in Section 2.1. Then pC�M is a left RFDZ.�1/-module.

Denote by pC�M˝E t�=z or, for short, by FM, the RFOZ.�1/-module pC�M equipped
with the twisted action of RFDZ described by the exponential factor: the RFDX -action is
unchanged, and, for any local section m of M,

� on X �A1t � yA
1,

Ät .m˝ E t�=z/ D Œ.Ät C �/m�˝ E t�=z;(2.3.1)

Ä� .m˝ E t�=z/ D tm˝ E t�=z;

� on X �A1t 0 �
yA1,

Ät 0.m˝ E t�=z/ D Œ.Ät 0 � �=t 02/m�˝ E t�=z;(2.3.2)

Ä� .m˝ E t�=z/ D m=t 0 ˝ E t�=z :

Lemma 2.3.3. The left multiplication by � � z is injective on FM and the cokernel is
identified with M ˝ Et (that is, M ˝OX Œz� E

t Œz� equipped with its natural z-connection or,
equivalently, �M equipped with the twisted z-connection).

Proof. We can realize pC�M algebraically as CŒ� �˝C
�M as an OX Œz; � �-module, with

the twisted Ät ; Ät 0 ; Ä� -action as above. Then the first statement is obvious by considering the
filtration with respect to the degree in � , and the second statement is obtained by replacing �
with z in (2.3.1) and (2.3.2).

2.4. Partial Laplace exponential twist and specialization of RF DX�P1-modules.
Let .M; F�M/ be a filtered holonomic DX�P1-module which underlies a mixed Hodge module
and let M be theRFDX�P1-module defined as M D RFM. Then M is a strictly specializable
and regular alongX�¹1º in the sense of Definition 2.2.2, according to Proposition 2.2.4. It fol-
lows from [25, Proposition 4.1 (ii)] that FM is strictly specializable and regular along � D 0.
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We will denote by V �
�

FM the corresponding V -filtration. Let us recall the main steps for
proving the strict specializability and the regularity in the present setting, which is simpler
than the general one considered in loc. cit., since the eigenvalues of the monodromy at infinity
have absolute value equal to one (and more precisely, are roots of unity).

On the one hand, for ˛ 2 .0; 1�, one identifies grV
�

˛
FM (an RFDX�P1-module) with

the push-forward, by the inclusion i1 W X � ¹1º ,! X � P1, of grV˛�1RFM (cf. proof of
[25, Proposition 4.1 (ii) (6) and (ii) (7)]), whose strictness follows from the first part of our
Proposition 2.2.4.

On the other hand, let us denote by Mmin the minimal extension of M along X � ¹1º.
This is also a mixed Hodge module: if j W X �A1 ,! X � P1 denotes the inclusion, we
have Mmin D imageŒjŠj �M! j�j

�M� in the category of mixed Hodge modules (cf. [31]).
Moreover, RFMmin corresponds to the minimal extension of RFM, in the sense of [24, Defi-
nition 3.4.7]. Then the proof of [25, Proposition 4.1 (ii) (8)] identifies grV

�

0
FM to a successive

extension of the objects grV
�

1
FM, RFMmin, i1;C ker Nt 0 and i1;C coker Nt 0 , where Nt 0 is the

nilpotent part of the monodromy on grV0 RFMmin D grV0 RFM, and all these components are
known to be strict, by the discussion of first part for the first one, and by the very definition of
mixed Hodge modules for the rest.

Let us emphasize at this point that, according to the previous result and the second part of
Proposition 2.2.4, for each ˛ 2 .0; 1�, grV

�

˛
FM is identified with the Rees module of a filtered

D-module underlying, up to a shift of the filtration, a direct summand of a mixed Hodge mod-
ule (recall that, for .M; F�M/ underlying a mixed Hodge module,

L
˛2.0;1�.grV˛ M; F� grV˛ M/

also underlies a mixed Hodge module). The same property holds if ˛ D 0, as explained in
Appendix B.

Lastly, the V -filtration of FM along � D 0 is given by an explicit formula from the
V -filtration of M along t 0 D 0 (see the proof of [25, Proposition 4.1 (ii)]). For our purpose,
we have the formula already used in the proof of [26, Proposition 6.10], when considering the
chart A1t 0 :

V �˛ .
FM/

jX�A1
t0
�yA1 D

X
k>0

.1˝ zàt 0 � � ˝ t 0�2/k.CŒ� �˝C t
0�1RF V

t 0

˛ M
0/; ˛ 2 Œ0; 1/;

where we have indicated as an exponent the variable with respect to which the V -filtration is
taken. In the chart A1t , we simply have

V �˛ .
FM/

jX�A1t�yA
1 D

FM
jX�A1t�yA

1 ; ˛ 2 Œ0; 1/:

We note that, according to Lemma 2.3.3, left multiplication by � � z is injective on V �˛ .
FM/.

3. A generalization of Deligne’s filtration

We keep the notation as in Section 2.1. Our purpose in this section is to prove:

Theorem 3.0.1. For each filtered holonomic DX�P1-module .M; F�M/ one can define
canonically and functorially an F�DX�P1-filtration F Del

�
.M˝ Eq/.

(i) If the module .M; F�M/ underlies a mixed Hodge module, then F Del
�
.M˝ Eq/ is a good

F�DX�P1-filtration.



196 Esnault, Sabbah and Yu, E1-degeneration of the irregular Hodge filtration

(ii) For each morphism ' W .M1; F�M1/! .M2; F�M2/ underlying a morphism of mixed
Hodge modules, the corresponding morphism

'q W .M1 ˝ Eq; F Del
� .M1 ˝ Eq// �! .M2 ˝ Eq; F Del

� .M2 ˝ Eq//

is strictly filtered.

(iii) For .M; F�M/ underlying a mixed Hodge module, the spectral sequence attached to the
hypercohomology of the filtered de Rham complex F Del

�
DR.M˝ Eq/ degenerates atE1.

3.1. Definition of Deligne’s filtration. Assume that .M; F�M/ is a filtered holonomic
DX�P1-module. We recall that M˝ Eq D �M as an OX�P1-module. We will implicitly use
the description of .M; F�M/ as a pair consisting of a filtered DX Œt �hàt i-module .M;F�M/

and a filtered DX Œt
0�hàt 0i-module .M 0; F�M 0/ with the standard identification. We define, for

˛ 2 Œ0; 1/ and p 2 Z,

F Del
˛Cp.M˝ Eq/

jX�A1t
D FpMjX�A1t

D FpM;(3.1.1)

F Del
˛Cp.M˝ Eq/

jX�A1
t0
D

X
k>0

àkt 0 t
0�1Œ.Fp�kM

0
\ V˛M

0/˝E1=t
0

�;

and the last term is included in FpM
0.�1/: recall from the general properties of the

Kashiwara–Malgrange filtration (cf., e.g., [20, 28]) that, for ˛ 2 Œ0; 1/, the restriction of the
localization morphism M 0 !M 0.�1/ to V˛M 0 is injective. We can therefore regard each
Fp�kM

0\V˛M
0 (k > 0) as being contained in Fp�kM 0.�1/, hence its image by the operator

on its left is contained in FpM 0.�1/.
The Deligne filtration satisfies properties similar to those of its special case (1.6.7). It is

an F�DX�P1-filtration (this is clear on X �A1t and this is proved as for (1.6.7) on X �A1t 0).
Similarly, formula (1.6.8) holds on X �A1t 0 . Note also that, since FpM 0 D 0 for p � 0, each
F Del
˛Cp.M˝ Eq/ is OX�P1-coherent.

If we set
F Del
<�.M˝ Eq/ D

X
�0<�

F Del
�0 .M˝ Eq/

and
grF

Del

� .M˝ Eq/ D F Del
� =F Del

<� ;

then grF
Del

� .M˝ Eq/ is supported on X � ¹1º if � 62 Z.

Proposition 3.1.2. Assume that .M; F�M/ underlies a mixed Hodge module. Then, for
each ˛ 2 Œ0; 1/, the Rees module RF Del

˛C�
.M˝ Eq/ is obtained (up to forgetting the grading) by

the formula
RF Del

˛C�
.M˝ Eq/ D V �˛ .

FM/=.� � z/V �˛ .
FM/:

(Recall that we denote by M the Rees module RFM and by FM its Laplace exponential
twist, cf. Section 2.3.)

Proof. We will use the expression of V �˛ .
FM/ given in Section 2.4. The equality is easy

in the chart X �A1t � yA
1, and we will consider the chart X �A1t 0 �

yA1. Then it follows from
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the expression of V �˛ .
FM/ that

V �˛
FM=Œ.� � z/FM \ V �˛

FM� D
X
k>0

.àt 0 � t 0�2/kt 0�1zkCŒz�RF V
t 0

˛ M

D RF Del
˛C�

.M˝ Eq/:

It remains to show that V �˛
FM \ .� � z/FM D .� � z/V �˛

FM. This is a consequence of the
strictness of grV

�


FM for any  , as recalled in Section 2.4. Indeed, assume that m 2 V �

FM is
such that .� � z/m 2 V �˛

FM. If  > ˛ and the class ofm in grV
�


FM is not zero, then the class

of .� � z/m is zero in grV
�


FM, and this is nothing but the class of �zm. By strictness, the

multiplication by z is injective on grV
�


FM, which leads to a contradiction.

Remark 3.1.3. The natural inclusion

RF Del
˛C�

.M˝ Eq/ D V �˛
FM=Œ.� � z/FM \ V �˛

FM� ,�! FM=.� � z/FM

can be understood as follows. Recall that FM=.� � z/FM is identified with RF �M (forgetting
its grading) with twisted action of Ät ; Ät 0 (Lemma 2.3.3), where the filtration Fp�M is defined
as .FpM/.�1/. We then remark that, if ˛ 2 Œ0; 1/ is fixed, we have a natural inclusion

F Del
˛Cp

�M � .FpM/.�1/;
since both coincide on X �A1t . This is the natural inclusion above.

Proof of Theorem 3.0.1 (i). As mentioned in Section 2.4, FM is strictly specializable
and regular along � D 0. This implies that V �˛

FM isRFDZ=yA1-coherent. By Proposition 3.1.2,
RF Del

˛C�
.M˝ Eq/ is then RFDZ=yA1=.� � z/RFDZ=yA1-coherent. In order to conclude, it re-

mains to identify the latter quotient with RFDX�P1 , which is straightforward.

Proof of Theorem 3.0.1 (ii). Let us denote by K; I;C the kernel, image and cokernel
of ', with the induced filtration F�, which underlie mixed Hodge modules, according to [31]
(due to the strictness of ', both natural filtrations on I coincide). By the strictness of ',
RFK; RF I; RF C are the kernel, image and cokernel of RF '. On the other hand, ' is strictly
compatible with the filtration V t

0

�
. It is therefore compatible with the filtrations F Del

˛C�, and for
each ˛ 2 Œ0; 1/ we get sequences of graded RFDX�P1-modules

0 �! RF Del
˛C�

.K˝ Eq/ �! RF Del
˛C�

.M1 ˝ Eq/ �! RF Del
˛C�

.I˝ Eq/ �! 0;(3.1.4)

0 �! RF Del
˛C�

.I˝ Eq/ �! RF Del
˛C�

.M2 ˝ Eq/ �! RF Del
˛C�

.C˝ Eq/ �! 0;

that we will prove to be exact, in order to get the following desired exact sequence of graded
RFDX�P1-modules

0 �! RF Del
˛C�

.K˝Eq/ �! RF Del
˛C�

.M1˝E
q/ �! RF Del

˛C�
.M2˝E

q/ �! RF Del
˛C�

.C˝Eq/ �! 0:

In order to prove exactness, we can now forget the grading and express the RFDX�P1-module
RF Del

˛C�
Mi as in Proposition 3.1.2.

For each ˛ 2 Œ0; 1�, the morphism

grV
t0

˛ ' W grV
t0

˛ .M1; F�M1/ �! grV
t0

˛ .M2; F�M2/
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is strict, since it underlies a morphism of mixed Hodge modules, according to [31]. Using
[25, Proposition 4.1], we find that ' induces a strictly specializable morphism (in the sense of
[24, Definition 3.3.8 (2)]) F' W FM1 !

FM2. Applying [24, Lemma 3.3.10], we obtain that F'

is V -strict.
Since the construction F (pull-back pC followed by the twist E t�=z) is exact, the mod-

ules FK;FI;FK are the kernel, image and cokernel of F'.
Then, by the V -strictness of F', we get exact sequences for each ˛ 2 Œ0; 1/,

0 �! V �˛
FK �! V �˛

FM1 �! V �˛
FI �! 0;

0 �! V �˛
FI �! V �˛

FM2 �! V �˛
FK �! 0:

Since � � z is injective on each term, we can apply Proposition 3.1.2 to get the desired exact-
ness of (3.1.4).

3.2. Behavior with respect to push-forward. Let h W X ! Y be a projective mor-
phism. Let us also denote by h the projective morphism h � Id W X � P1 ! Y � P1 and by r
the projection Y � P1 ! P1, so that q D r ı h. Let .M; F�M/ be a filtered holonomic
DX�P1-module which underlies a mixed Hodge module [31]. Its push-forward hC.M; F�M/
is then strict (see Appendix A), that is,

(3.2.1) H jhCRFM D RFH jhCM for all j ;

which is equivalent to asking that the left-hand term has no CŒz�-torsion. Moreover, each
.H jhCM; F�H

jhCM/ underlies a mixed Hodge module. If .M; F�M/ is pure (and polar-
izable), then each .H jhCM; F�H

jhCM/ is also pure (and polarizable).
On the other hand, we clearly have hC.M˝ Eq/ D .hCM/˝ Er . Therefore,

H jhC.M˝ Eq/ D H jhC.M/˝ Er :

Similarly, considering the twisted objects by E t�=z (cf. Section 2.3) and according to (3.2.1),
we have, with obvious notation,

(3.2.2) H jhC
FM D F.RFH jhCM/ for all j :

Proposition 3.2.3. If .M; F�M/ underlies a mixed Hodge module, then, for each
˛ 2 Œ0; 1/, we have strictness of the push-forward of the Deligne filtration:

H j .hCRF Del
˛C�

.M˝ Eq// D RF Del
˛C�

H jhC.M/˝ Er for all j :

Proof. As we have seen in Section 2.4, FM is strictly specializable along � D 0 and each
grV

�

˛
FM is a direct summand of the Rees module of a mixed Hodge module (up to a shift of

the filtration). It follows from [31] that hC grV
�

˛
FM is strict for each such ˛ (cf. Appendix A).

According to [24, Theorem 3.1.8], each H jhC.
FM/ is strictly specializable along � D 0 and

we have
H j .hCV

�
˛

FM/ D V �˛H jhC.
FM/:

According to (3.2.2), we can apply the results of Section 2.4 to H j .hC
FM/. Therefore, for

each j , � � z is then injective on H jhC.V
�
˛

FM/ since it is injective on V �˛H jhC.
FM/.

Arguing by decreasing induction on j , we find that for each j the sequence

0 ���! H jhC.V
�
˛

FM/
��z
���! H jhC.V

�
˛

FM/ ���! H jhC.V
�
˛

FM=.� � z/V �˛
FM/ ���! 0
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is exact and is identified with the sequence

0 ���! V �˛H jhC.
FM/

��z
���! V �˛H jhC.

FM/

���! V �˛H jhC.
FM/=Œ.� � z/V �˛H jhC.

FM/� ���! 0:

The proposition now follows from Proposition 3.1.2 that we apply to both FM and H jhC
FM,

according to (3.2.2).

3.3. E1-degeneration. We keep the setting as in Section 3.2, and we consider the
twisted de Rham complex DR.M˝ Eq/. For each ˛ 2 Œ0; 1/, the filtration F Del

˛C�.M˝ Eq/

is an F�DX�P1-filtration, hence the twisted de Rham complex is filtered by

F Del
˛C�DR.M˝ Eq/ D ¹0 �! F Del

˛C�.M˝ Eq/
r
��! �1

X�P1 ˝ F
Del
˛C�C1.M˝ Eq/ �! � � � º:

Theorem 3.3.1. For ˛ 2 Œ0; 1/, the filtered complex R�.X � P1; F Del
˛C�DR.M˝ Eq//

is strict.

Remark 3.3.2. From [4, Proposition (1.3.2)] we deduce that the corresponding spectral
sequence degenerates at E1, hence Theorem 3.0.1 (iii).

Lemma 3.3.3. The theorem holds if .M; F�M/ is a mixed Hodge module on P1, that is,
if we assume X D ¹ptº in the theorem.

Proof. According to [26, Theorem 6.1], the theorem holds if X D ¹ptº and .M; F�M/
is a polarizable Hodge module. Let aP1 W P

1 ! pt denote the constant map. More precisely, it
follows from the proof of [26, Proposition 6.10] that

(3.3.4) H iaP1;C.RF Del
˛C�

.M˝ Eq// D 0 for i ¤ 0;

and

(3.3.5) H 0aP1;C.RF Del
˛C�

.M˝ Eq// D RF Del
˛C�

H 0aP1;C.M˝ Eq/:

Let us prove by induction on the length of the weight filtration that (3.3.4) and (3.3.5) hold for
a mixed Hodge module. If the length is > 1, we find a short exact sequence of mixed Hodge
modules whose underlying filtered exact sequence is

0 �! .M1; F�M1/ �! .M; F�M/ �! .M2; F�M2/ �! 0;

and (3.3.4) and (3.3.5) hold for the extreme terms. Theorem 3.0.1 (ii) gives an exact sequence

0 �! RF Del
˛C�

.M1 ˝ Eq/ �! RF Del
˛C�

.M˝ Eq/ �! RF Del
˛C�

.M2 ˝ Eq/ �! 0:

Then the long exact sequence for H�aP1;C shows that (3.3.4) holds for the middle term and
we have an exact sequence

0 �! H 0aP1;C.RF Del
˛C�

.M1 ˝ Eq// �! H 0aP1;C.RF Del
˛C�

.M˝ Eq//

�! H 0aP1;C.RF Del
˛C�

.M2 ˝ Eq// �! 0:

According to (3.3.5), the extreme terms have no CŒz�-torsion, that is, “RF Del
˛C�

commutes
with H 0aP1;C”. Then the same property holds for the middle term.
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Proof of Theorem 3.3.1. We regard R�.X � P1; RF Del
˛C�

DR.M˝ Eq// as the complex
aCRF Del

˛C�
.M˝ Eq/ up to a shift, where a W X � P1 ! pt is the constant map. The theorem is

a consequence of the strictness (i.e., no CŒz�-torsion) of this complex. Let us set a D aP1 ı F .
Then, according to Lemma 3.3.3, (3.3.4) and (3.3.5) hold for RF Del

˛C�
H jFC.M˝ Eq/ for

each j . Using now the strictness given by Proposition 3.2.3, we have for each j

H j .aCRF Del
˛C�

.M˝ Eq// D H 0aP1;C.RF Del
˛C�

H jFC.M˝ Eq//;

and therefore

H j .aCRF Del
˛C�

.M˝ Eq// D RF Del
˛C�

H 0aP1;C.H
jFC.M˝ Eq//

D RF Del
˛C�

H j .aC.M˝ Eq//;

which is the desired result.

3.4. Proof of Theorem 1.2.2. It follows from [31] that the filtered DX -module
.OX .�D/; F�OX .�D// underlies a mixed Hodge module. We first remark that Corollary 1.7.6,
which is proved for .OX .�D/; F�OX .�D// in the chartX�A1t 0 , also holds in the chartX�A1t
in a standard way. Therefore, in the statement of Theorem 1.2.2, we can replace F Yu;�.r/ with
F Del
��

DR.Ef .�H//, due to the first isomorphism in Corollary 1.7.6.
Using now the second quasi-isomorphism in Corollary 1.7.6, we are reduced to proving

the injectivity of

H q.X � P1; F Del
���1 DR.if;COX .�D/˝ Eq// �! H q.X � P1;DR.if;COX .�D/˝ Eq//

for each q, i.e., the strictness ofR�.X � P1; F Del
�

DR.if;COX .�D/˝ Eq//. This follows from
Theorem 3.3.1 applied to if;COX .�D/.

A. E1-degeneration and strictness

LetX be a complex manifold and let .M; F�M/ be a coherent DX -module equipped with
a good filtration. It defines a coherent graded RFDX -module RFM and this correspondence
induces an equivalence of categories consisting of the corresponding objects.

In [28, Section 2] (cf. also [15]) is constructed the bounded derived category DbF.DX /

of filtered complexes of DX -modules together with an equivalence RF with the bounded
derived category Db.gr-RFDX / of graded RFDX -modules. The subcategory Db

cohF.DX / is
by definitionR�1F of the subcategoryDb

coh.gr-RFDX / (gradedRFDX -coherent cohomology).
We have a commutative diagram of functors:

Db
coh.grF DX / Db

cohF.DX /
gr

oo
forget

//

o

��

Db
coh.DX /

Db
coh.gr-RFDX /

Li�zD0

hh

Li�zD1

77

A bounded complex .K�; F�/ of filtered DX -modules is said to be strict if for each j and
each p, the morphism H j .FpK

�/! H j .FpC1K
�/ is injective (this corresponds to the def-

inition given in [28, Section 1.2.1, p. 865, line �5] with #I D 1). Equivalently, H j .RFK
�/

has no z-torsion for all j and, since this is a graded module, this is equivalent to H j .RFK
�/

having no CŒz�-torsion (i.e., being CŒz�-flat) for all j .



Esnault, Sabbah and Yu, E1-degeneration of the irregular Hodge filtration 201

For an object .K�; F�/ of Db
cohF.DX /, strictness implies that H j .RFK

�/ is graded
RFDX -coherent and without CŒz�-torsion, hence takes the form RFH j .K�/ for some good
filtration on H j .K�/. This filtration is nothing but the filtration

FpH j .K
�
/ D image

�
H j .FpK

�
/ �! H j .K

�
/
�
:

Let h W X ! Y be a proper morphism. The direct image functor

hC W D
b
cohF.DX / �! Db

cohF.DY /

(we use right D-modules here) is constructed in [28] by using the equivalence of categories
with induced filtered D-modules. Through the RF functor, it corresponds to the direct image

hC W D
b
coh.gr-RFDX / �! Db

coh.gr-RFDY /

constructed by using the equivalence of categories with induced graded RFDX -modules. On
the other hand, a functor hC W Db

coh.gr-RFDX /! Db
coh.gr-RFDY / can be defined directly

as Rh�.�˝RFDX RF .DX!Y // and both coincide since h is proper (cf. [29] for the analogue
for D-modules).

As a consequence, given a coherent DX -module with good filtration .M; F�M/, the push-
forward hC.M; F�M/ is strict if and only if H jhC.RFM/ is strict (i.e., has no CŒz�-torsion)
for any j , and in such a case

H jhC.RFM/ D RFH jhC.M/;

where F�H jhC.M/ is the filtration defined as image.H jF�hCM! H jhCM/, and these
morphisms are injective because, h being proper,

H jhCM D lim
�!
p

H jFphCM:

It also follows that the corresponding spectral sequence degenerates at E1.

B. A complement to [25]

We keep the notation of Section 2.4. Since the construction of FM only depends on the
filtered module j�j �.M; F�M/, we may assume that

.M; F�M/ D j�j
�.M; F�M/:

Then M is the RFDX�P1-submodule of �M generated by V0�M. Using the notation of [25] up
to the shift already indicated in Section 2.2, we have an exact sequence

(B.1) 0 �! grV
�

1
FM

�
��! grV

�

0
FM �!M �! 0;

which is essentially the horizontal line of [25, (4.7)], by using the identification U0=�U1 'M

(notation of loc. cit.), identification which is obtained through the equality U0 \ �FM D �U1
proved exactly in the same way as [25, (4.12)]. In the exact sequence above, we have an iden-
tification of the extreme terms as the Rees modules of filtered DX�P1-modules underlying
mixed Hodge modules (up to a shift of the filtration), but we have to make precise why the
intermediate term is of the same kind, as stated in Section 2.4.
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Let us introduce a new factor P1, with coordinates t1; t 01 and let us consider the diagonal
inclusion i W X � P1 ,! X � P1 � P1 sending .x; t/ to .x; t; t/, and similarly in the chart t 0.
Denote by

j1 W X � P1 �A1t1 ,�! X � P1 � P1

the open inclusion, and by

p1 W X � P1 � P1 �! X � P1

the projection on the first two factors. Set .M1; F�M1/ D i�.M; F�M/ (push-forward in the
sense of mixed Hodge modules). Then there exists a mixed Hodge module .M01; F�M

0
1/ such

that:

� .M01; F�M
0
1/ D j1;�j

�
1 .M

0
1; F�M

0
1/,

� p1;�.M
0
1; F�M

0
1/ D 0,

� there is an exact sequence of mixed Hodge modules

0 �! j1;�j
�
1 p
�
1 .M; F�M/ �! .M01; F�M

0
1/ �! .M1; F�M1/ �! 0:

Such an object is classically obtained by the convolution operation of .M1; F�M1/ with
the mixed Hodge module on P1 obtained by extending the constant mixed Hodge module
on P1 X ¹0;1º by the functors j1;� and j0;Š, with

j0 W P
1
X ¹0;1º ,�! P1 X ¹1º

and
j1 W P

1
X ¹0;1º ,�! P1 X ¹0º:

From the exact sequence

0 �! H�1i0;Ci
C
0 OA1 �! j0;Šj

�
0 OA1 �! OA1 �! 0

of DA1-modules and the corresponding sequence of mixed Hodge modules (see [28, (3.5.8.1)])
we deduce the exact sequence above, and a corresponding exact sequence of associated Rees
modules

0 �!M001 �!M01 �!M1 �! 0:

We consider the partial Laplace transformation with respect to the variables t1; � , and we get
an exact sequence

0 �! FM001 �!
FM01 �!

FM1 �! 0

of strictly specializable modules along � D 0, according to [25, Proposition 4.1] and, by the
uniqueness of the V -filtration, the following sequence is also exact for any ˛:

(B.2) 0 �! grV
�

˛
FM001 �! grV

�

˛
FM01 �! grV

�

˛
FM1 �! 0:

That grV
�

0
FM is the Rees module of a filtered D-module underlying a mixed Hodge

module (up to a shift of the filtration) now follows from the following lemma.

Lemma B.3. The following statements hold.

(i) For each ˛ 2 Œ0; 1�, we have an identification grV
�

˛
FM D H0p1;C grV

�

˛
FM1.

(ii) For ˛ 2 Œ0; 1/ and any j we have H jp1;C grV
�

˛
FM001 D 0.
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Indeed, from the lemma and the exact sequence (B.2) we obtain

H0p1;C grV
�

0
FM01

�
�! grV

�

0
FM:

According to (B.1) for FM01 and the vanishing of p1;CM01, we obtain that � induces an isomor-
phism

H0p1;C grV
�

1
FM01

�
�! H0p1;C grV

�

0
FM01;

hence we have an isomorphism

H0p1;C grV
�

1
FM01

�
�! grV

�

0
FM:

The argument of [25, Proposition 4.1] now applies to grV
�

1
FM01, which is shown to underlie

a mixed Hodge module (up to a shift of the filtration), and therefore H0p1;C grV
�

1
FM01 also,

by [31], hence grV
�

0
FM too, as wanted.

Sketch of proof of the lemma. For the first point one checks that, similarly to (1.6.5), we
have the equality

FM1 D iC
FM

(with an obvious extension of the meaning of i ) and also

grV
�

˛
FM1 D iC grV

�

˛
FM for each ˛,

so the result follows by using p1 ı i D Id.
For the second point, we can regard M001 as the external product of M with the Rees

module j1;�RFOA1t1
so that the operation F only concerns the latter, and the assertion relies on

the property that the Fourier transform of OA1t1
as a DA1t1

-module is supported on � D 0.

C. Proof of Proposition 1.5.3

Let$X W �X ! X (resp.$ W �P1 ! P1) be the real oriented blowing up of the irreducible
components of D (resp. of1). It induces an isomorphism

�X X$�1X .D/
�
�! X XD D U :

Recall that one can construct �X by gluing local charts as follows. Let X˛ be charts of X in
which D is equal to a union of hyperplane coordinates.

In the local setting of Section 1.1, we set

xi D �i exp.i �i /; i D 1; : : : ; `;

yj D �j exp.i �j /; j D 1; : : : ; m:

Then

(C.1) �X˛ D .S1/` � .R>0/` � ��m ��p; where ��m D .S1/m � .R>0/m:
Any holomorphic gluing between X˛ and Xˇ which is compatible with D induces a holomor-
phic gluing between X˛ XD and Xˇ XD which extends in a unique way as a real analytic
gluing between �X˛ and �Xˇ . It satisfies therefore the cocycle condition, from which we obtain
the real oriented blow-up map $X .
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In a similar way one checks that the morphism f W X ! P1 induces a map �f W �X ! �P1.
Set S11 D $

�1.1/ and �X1 D �f �1.S11/. In the neighborhood of Pred we will replace X
with the inverse image X 0 of a disk� � P1 centered at1, with coordinate t 0. We then denote
by g W X 0 ! � the map induced by 1=f , so that P D .g/. This map g can be lifted as a map�g W �X 0 ! ��, where �� has coordinates .exp i arg t 0; �0/. In the local setting of Section 1.1,
we have �X1 D .S1/` � ´Ỳ

iD1

�i D 0

µ
� ��m ��p;

and if g D xe , then j�gj D �e and arg�g DP`
iD1 ei�i . It follows that

�g
j �X1 W �X1 �! S11

is a topological fibration (since the natural stratification of �X1 is obviously Whitney and�g
j �X1

is smooth on each stratum, and proper).
Denote byZ � �X1 the closed subset whose complement consists of points in the neigh-

borhood of which e1=g has moderate growth (i.e., in the neighborhood of which Re.g/ < 0)
and let Z0 � Z be the closed subset�g�1.R>0/ \ �X1. We have

Z D �X1 \ ¹arg�g 2 Œ��=2; �=2�º and Z0 D �X1 \ ¹arg�g D 0º:
Since�g

j �X1 is a topological fibration, Z0 is a deformation retract of Z. We consider the inclu-
sions

U
� � ˛ // �X XZ� _

��

� � ˇ // �X Z?
_oo

U
� � ˛� // �X XZ0 � � ˇ� // �X Z0?

_oo

� ?

OO

and the exact sequences

0 �! F D ˇŠ˛�CU �! C �X D .ˇ ı ˛/�CU �! CZ �! 0;

0 �! F 0 D ˇ�Š ˛
�
�CU �! C �X D .ˇ� ı ˛�/�CU �! CZ0 �! 0:

In these exact sequences, it can be seen that the � push-forwards are equal to the corresponding
derived push-forward, that is, for example, Rk˛�CU D 0 for k > 0.

Lemma C.2. There is a natural quasi-isomorphism

.�
�

X .�D/;r WDdCdf / ' R$�F :

Sketch of proof. We can argue in two ways. Either we use the theorems of multi-variable
asymptotic analysis of Majima [16] as in [10, Proposition 1], or we factorize$ through the real
blow-up space b$ W bX ! X of the single divisor Pred. Let us sketch the latter method. Using
notation as above for bX , [21, Theorem 5.1] gives a quasi-isomorphism

.�
�

X .�D/;r/ ' Rb$�Rb̌ŠRb̨�Rj�CU ;
where j denotes here the inclusion U ,! X X Pred. Let p W �X ! bX denote the natural map, so
that b̨ ı j D p ı ˛ and b̌ ı p D p ı ˇ. It follows that the right-hand term above is isomorphic
to R$�F .
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As a consequence,
Hk

dR.U;r/ ' H
k.�X;F /:

Since Z retracts to Z0, the natural map

Hk.Z;C/ �! Hk.Z0;C/

is an isomorphism, and therefore so is the map

Hk.�X;F 0/ �! Hk.�X;F /
for each k. The proof of the lemma now reduces to finding a morphism .��f ; d/! R$�F

0

(in the derived category Db.CX /) and to proving that it is an isomorphism. Equivalently, we
should find a morphism

.�
�

X .logD/=��f ; d/ �! R$�CZ0

which should be an isomorphism, and should make the following diagram commutative:

(C.3)

.��X .logD/; d/ //

o

��

.��X .logD/=��f ; d/

‹

��

Rj�CU D R$�C �X // R$�CZ0 .

The question is now local around Pred and we can work with g W X 0 ! � already con-
sidered above. We will also denote by .��g ; d/ the complex .��;an

f
; d/jX 0 . We can describe it as

follows. Working on �, we denote

.�
�

t 0 ; d/ D ¹t
0O�

d
��! �1�.log 0/º:

Then
�
�

g D g
��
�

t 0 ˝�
�

X 0.logD/;

according to (1.3.1), and the quotient complex ��X 0.logD/=��g can be obtained from the rela-
tive logarithmic de Rham complex ��

X 0=�
.logD/ by the formula

�
�

X 0.logD/=��g D �
�

X 0=�.logD/=g��X 0=�.logD/

(cf. Appendix E). Recall that ��
X 0=�

.logD/ was defined by Steenbrink in [32]:

�
p

X 0=�
.logD/ D

p̂
.�1X 0.logD/=g��1�.log 0//

D �
p
X 0.logD/

.dg
g
^�

p�1
X 0 .logD/:

The proof now decomposes in three steps, in order to treat the case of a non-reduced
divisor P . We first analyze the behavior of the various objects by a ramification of the value
of g, following [33]. We then treat the case when the pole divisor is reduced but within the
framework of V -manifolds. We finally treat the general case by pushing forward along the
ramification morphism and taking invariants with respect to the corresponding group action.

Step one: Ramification. Inspired by the approach of M. Saito in Appendix E, we will
argue as in [33]. Let e be a common multiple of the numbers ei (ei is the multiplicity of



206 Esnault, Sabbah and Yu, E1-degeneration of the irregular Hodge filtration

the i -th component of P ) and let us consider the commutative diagram

eX
0

eg

��

"

%%

�

��

X 0 �� e�

��

" //

�

X 0

g

��

e�
" // �

where e� has coordinate u, " is defined by ".u/ D ue, and � W eX 0 ! X 0 �� e� is the nor-
malization morphism. Then eP D .eg/ is a reduced divisor with V -normal crossings in the
V -manifold eX 0. Set

eX
0�
D eX

0
X eP :

Then " W eX 0� ! X 0� is a covering of group G D Z=eZ, which also acts on eX
0 above the

corresponding action on e�. Recall that D D Pred [H . Then eD WD eP [ "
�1H is also

a reduced divisor with V -normal crossings.
We have the following local description of .eX 0; eP / (cf. [33, proof of Lemma 2.2]).

We keep the notation of Section 1.1. Set

d D gcd.e1; : : : ; e`/; e0 D
e

d
; e0i D

ei

d
; ci D

e

ei
D
e0

e0i
(i D 1; : : : ; `).

Then eX
0 is the disjoint union of d copies of the space Y 0 obtained as the quotient of the

space Y having coordinates ..x0i /iD1;:::;`; .yj /jD1;:::;m; .zk/kD1;:::;p/ by the subgroup G0 of
G00 WD Z=c1Z � � � � � Z=c`Z consisting of the elements ˛ D .˛1; : : : ; ˛`/ such that

exp

 X̀
iD1

2� i
˛i

ci

!
D 1;

acting as

(C.4) ˛ � .x0;y; z/ D ..e2� i˛i=cix0i /iD1;:::;`;y; z/:

Each component Y 0 is identified with the normalization of the space ¹ue
0

D
Q`
iD1 x

e0
i

i º and
the composed map � ı � from Y to the latter is given by xi D x

0ci
i (i D 1; : : : ; `). Lastly, the

composed map
h W Y

�
��! Y 0

eg
��! e�

is given by u D h.x0;y; z/ D
Q`
iD1 x

0
i and, by definition, the action of G0 preserves the fibres

of h. We visualize this in the following diagram.

.x0;y; z/
_

��

2 Y
� //

((

h

,,

Y 0

�
��

.
Q
x0i ;x

0c ;y; z/
_

��

¹.u;x;y; z j ue
0

D
Q
x
e0
i

i º

eg

��Q
x0i e�
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As a consequence, the pull-back of the local component Pi of Pred defined by xi is, in each
local connected component Y 0 of eX 0, the V -smooth component ePi which is the quotient
of ¹x0i D 0º by the induced action of G0.

Lemma C.5. The natural morphisms of complexes

.�
�

X 0.logD/; d/ �! .�
�

X 0=�.logD/; d/

�! .�
�

X 0=�.logD/=g��X 0=�.logD/; d/ D .��X 0.logD/=��g ; d/

can be obtained by taking G-invariants of the morphisms of complexes

"�.�
�

eX 0
.log eD/; d/ �! "�.�

�

eX 0=e�
.log eD/; d/

�! "�.�
�

eX 0=e�
.log eD/=eg�

�

eX 0=e�
.log eD/; d/ D "�.�

�

eX 0
.log eD/=�

�

eg
; d/:

Proof. According to [33, Remark 2.3], "�OeX 0 is OX 0 locally free of rank e and the
G-action is induced by the natural action u 7! u � exp.2� i k=e/, so that OX 0 D ."�OeX 0/

G .
This action is compatible with the G-action on "�OX 0��e� and the induced action on

"�.OX 0��e�=uOX 0��e�/ D OX 0=gOX 0

is trivial. The same holds then for

"�.OeX 0=uO
eX 0/ D "�.��.OeX 0=uO

eX 0//

D "�.��OeX 0=u��OeX 0//

D "�.OX 0��e�=uOX 0��e�/:

The sheaves�k
eX 0
.log eD/ (resp.�k

eX 0=e�
.log eD/) are O

eX 0-locally free and are locally
identified with

"��kX 0.logD/ (resp. "��kX 0=�.logD/);

cf. [33, Remark 2.5], so that we have natural identifications

.�
�

X 0.logD/; d/ D Œ"�.�
�

eX 0
.log eD/; d/�G ;

.�
�

X 0=�.logD/; d/ D Œ"�.�
�

eX 0=e�
.log eD/; d/�G :

Let us consider the real blow-up space �Y of Y along the components of the divisor
.
Q`
iD1 x

0
i

Qm
jD1 yj /. The action (C.4) of G0 on Y extends to an action on �Y (in the presen-

tation like (C.1), G0 only acts on the arguments � 0i ) and the quotient space is by definition the
real blow-up space �Y 0 of Y 0 along the components of the pull-back eD of D in Y 0, which
is a divisor with V-normal crossings. By the gluing procedure described above one defines
a global map $

eX 0 W
�
eX 0 ! eX

0. Note that the map �� W �Y ! �Y 0 is a covering with group G0,
and so the local charts �Y 0 can also be described by a formula like (C.1).

The map " W eX 0 ! X 0 lifts as a map�" W �eX 0 ! �X 0, which is a covering map of degree e
with group G, and eg lifts as a map �eg W �eX 0 ! �

e� giving rise to an obvious commutative
diagram. It induces therefore a homeomorphism

eZ
0
WD �eg�1.argu D 0; juj D 0/

�
�! Z0:
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More precisely, �Y has the form (C.1) with coordinates ..arg x0i /i ; .jx
0
i j/i / on the first

two factors, and the map �" is given by arg xi D ci arg x0i (a covering map of group G00) and
jxi j D jx

0
i j
ci (a homeomorphism). The factorization through �Y 0 consists in taking the quotient

by G0 first, and then by G00=G0 on the arguments.

Step two: The case of a reduced divisor with V -normal crossings. In order to sim-
plify notation we will denote by X 0; g;Z0; S the objects previously denoted by eX

0, eg,
eZ

0, eD. Let C
1�X 0 denote the sheaf of C1 functions on �X 0 (well defined in each chart �Y 0

as above, due to the local form (C.1)). Since G0 acts on �Y through the only factor .S1/`, the
functions �0i D jx

0
i j descend to �Y 0, and we have

C
1�Y 0 D .���C1�Y /G0 ;

where �� W �Y ! �Y 0 is the quotient map (covering map with group G0). Recall also that the
action of G0 preserves the fibres of the map �h W �Y ! ��.

Let C
1�X 0.logD/ be the subsheaf of j�C1X 0� locally generated by C

1�X 0 , log �0i (i D 1; : : : ; `)
and log �j (j D 1; : : : ; m) in the local setting above. The logarithmic 1-forms A1�X 0.logD/ are
the linear combination with coefficients in C

1�X 0.logD/ of the forms

d�0i
�0i
; d� 0i ;

d�j
�j
; d�j ; dz; dz

and we set
A
p�X 0.logD/ D

p̂
A1�X 0.logD/:

We therefore get a logarithmic de Rham complex .A��X 0.logD/; d/. We have

.A
��Y 0.logD/; d/ D .���A��Y .logD/; d/G

0

(where we still denote by D the pull-back of D � Y 0 in Y ).

Lemma C.6. The complex .A��X 0.logD/; d/ is a resolution of C �X 0 .
Proof. One first shows the result in the charts like Y , where it is proved in a standard

way, and then one takes the G0-invariants.

The sheaf
A
p�X 0;Z0.logD/

of logarithmic p-forms vanishing on Z0 is the subsheaf of A
p�X 0.logD/ locally defined as

A
p�X 0;Z0.logD/ WD .j�gj; log j�gj; .exp.2� i arg�g/ � 1//Ap�X 0.logD/

C
dj�gj
j�gj ^A

p�1�X 0 .logD/C d arg�g ^A
p�1�X 0 .logD/:

We will therefore set

A
p

Z0
.logD/ D A

p�X 0.logD/=Ap�X 0;Z0.logD/:

Given a chart Y 0 as above, let us set

Z0Y 0 D Z
0
\ Y 0 and Z0Y D ���1.Z0Y 0/ � à�Y :
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Since G0 preserves the fibres of �h, it induces a covering Z0Y ! Z0Y 0 . As a consequence, if we
define the sheaf

A
p�Y ;Z0Y .logD/

by the same formula as above, where we only replace �X 0 with �Y and�g with �h, we have

.A
��Y 0;Z0

Y 0

.logD/; d/ D .���A��Y ;Z0Y .logD/; d/G
0

:

Defining A�
Z0Y
.logD/ similarly, we then also have

.A
�

Z0
Y 0
.logD/; d/ D .���A�Z0Y .logD/; d/G

0

:

Lemma C.7. The exact sequence of complexes

0 �! .A
��X 0;Z0.logD/; d/ �! .A

��X 0.logD/; d/ �! .A
�

Z0.logD/; d/ �! 0

is a resolution of the exact sequence of sheaves

0 �! F 0 �! C �X 0 �! CZ0 �! 0:

Proof. In view of Lemma C.6, it is enough to prove that .A�Z0.logD/; d/ is a resolution
of CZ0 , and by the same argument as above, it is enough to show the result in charts like Y .
On each octant �0i D 0 (i D 1; : : : ; `) of �01 � � � �

0
`
D 0, one identifies Z0 with

.S1/`�1 � .R>0/
`�1
� ��m ��p

with coordinates e2� i �¤i ; �0¤i on the first two factors, and the restriction of .A�Z0.logD/; d/
to this subset is equal to the complex defined as above for �Y with the corresponding variables.
We can then apply Lemma C.6.

We have a natural morphism of complexes $�1.��X 0.logD/; d/!.A��X 0.logD/; d/.

Lemma C.8. The image of $�1.��g ; d/ is contained in .A��X 0;Z0.logD/; d/.

Proof. This follows immediately by expressing (1.3.1) in polar coordinates.

We conclude that we have a commutative diagram:

$�1.��X 0.logD/; d/

��

// $�1.��X 0.logD/=��g ; d/

��

.A��X 0.logD/; d/ // .A�
Z0
.logD/; d/

and by using the adjunction Id! $�$
�1, we get the desired commutative diagram:

(C.9)

.��X 0.logD/; d/

��

// .��X 0.logD/=��g ; d/

��

$�.A
��X 0.logD/; d/ //

o

$�.A
�

Z0
.logD/; d/
o

R$�C �X 0 // R$�CZ0 .
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That the right vertical morphism is a quasi-isomorphism can now be checked fiberwise
at points of Pred. We will thus check this at the center of each chart Y 0. Since the variables z
do not play any role, we will simply forget them. Moreover, we can work in the corresponding
chart Y with the function h, and we take G0-invariants to obtain the desired isomorphism in
the chart Y 0.

We have $�1.0/ D .S1/` � .S1/m and Z0o WD Z
0 \$�1.0/ is the fiber of the map

.ei � 01 ; : : : ; ei � 0
` ; ei �1 ; : : : ; ei �m/ 7�! ei

P
i �
0
i

above 1. If we represent Hp.$�1.0/;C/ as
Vp
hd�; d�i (where h � i denotes the C-vector

space generated by � ), then the map Hp.$�1.0/;C/! Hp.Z0o ;C/ is represented by the
quotient map

p̂
hd� 0; d�i 7�!

p̂
hd� 0; d�i

.�X
i

d� 0i
�
^

p̂�1
hd� 0; d�i:

Let us now denote by ��.logD/;��
h

the germs at the origin of the corresponding com-
plexes. Then .��.logD/; d/ is quasi-isomorphic to the complex .

V�
hdx0=x0; dy=yi; 0/ and the

identification Hp.��.logD/; d/ ' Hp.$�1.0/;C/ is by the isomorphism dx0=x0 7! i d� 0,
dy=y 7! i d� . We can now conclude thanks to the following lemma:

Lemma C.10. For each p we have

Hp.�
�
.logD/=��h; d/ D

p̂
hdx0=x0; dy=yi

.�X
i

dx0i=x
0
i

�
^

p̂�1
hdx0=x0; dy=yi:

Proof. For ! 2 �p.logD/ such that d! 2 �pC1
h

, let us write ! as a power series:

! D
X
a;b

!a;bx
0ayb with !a;b 2

p̂
hdx0=x0; dy=yi.

According to (1.3.1), we can restrict the sum to a 6> .1; : : : ; 1/. Then the condition d! 2 �pC1
h

reads

d.x0ayb/

x0ayb
^ !a;b 2

d.
Q
i x
0
i /Q

i x
0
i

^
p̂�1 Ddx0

x0
;

dy
y

E
for all a 6> .1; : : : ; 1/ and all b:

Since d.x0ayb/=x0ayb and
P
i dx0i=x

0
i are C-linearly independent in hdx0=x0; dy=yiwhenever

.a;b/ ¤ .0; 0/ and a 6> .1; : : : ; 1/, we also have !a;b 2 .
P
i dx0i=x

0
i / ^

Vp�1
hdx0=x0; dy=yi.

As a consequence, ! � !0;0 belongs to the image of d. Since

p̂ Ddx0
x0
;

dy
y

E
\ d�p�1.logD/ D 0

and
p̂ Ddx0

x0
;

dy
y

E
\�

p

h
D

d.
Q
i x
0
i /Q

i x
0
i

^
p̂�1 Ddx0

x0
;

dy
y

E
;

we obtain the desired identification of Hp.��.logD/=��
h
; d/ with Hp.Z0o ;C/.
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Step three: End of the proof. We now go back to the notation of the beginning of the
proof. The group G acts on�"�A��

eX 0
.log eD/ in the following way. Let

 W eX
0
�! eX

0

be induced by u 7! �u for some � with �e D 1 and let � be the corresponding lifting on �
eX 0.

Then, for a local section ' of �"�A��
eX 0
.log eD/, the correspondence ' 7! ' ı� induces an

isomorphism �� W�"�A��
eX 0
.log eD/

�
�!�"���A��

eX 0
.log eD/:

Since�" ı� D�", we get an action of G on�"�A��
eX 0
.log eD/ which satisfies

.�"�A��
eX 0
.log eD//G D A

��X 0.logD/:

This action induces an action of G on

$X 0;��"�A��
eX 0
.log eD/ D "�$eX 0;�A

��
eX 0
.log eD/;

and this action is compatible with the action of G on "��
�

eX 0
.log eD/ through the natural

morphism considered in the previous step.
The diagram (C.9) of the previous step gives rise to a commutative diagram

"��
�

eX 0
.log eD/ //

o

��

"�.�
�

eX 0
.log eD/=�

�

eg
/

o

��

"�$eX 0;�A
��
eX 0
.log eD/ // "�$eX 0;�A

�

eZ0
.log eD/.

Since �"�A�
eZ0

.log eD/ D A
�

Z0.logD/;

the right vertical morphism gives an isomorphism

.�
�

X 0.logD/=��g/
�
�! $X 0;�A

�

Z0.logD/ ' R$X 0;�CZ0 :

On the other hand, restricting the left vertical isomorphism to G-invariants induces an isomor-
phism

�
�

X 0.logD/
�
�! $X 0;�A

��X 0.logD/ ' R$X 0;�C �X 0
We thus have completed the diagram (C.3).

D. Proof of (1.3.2�), after M. Kontsevich

Under a restricted condition, we proceed the Deligne–Illusie approach as in [8] for the
Kontsevich complex .��f ; d/ by listing the necessary modification. We shall follow closely the
notations therein.

Let � be a perfect field of characteristic p > 0. Fix f W U ! A1 over � and a compactifi-
cation f W X ! P1 such thatD WD X X U is a normal crossing divisor and the pole divisor P
of f on X has multiplicity one (i.e., P D Pred). We consider the sheaves ��f � �

�.logD/
on X defined as before.
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D.1. The Cartier isomorphism. Consider the commutative diagram with Cartesian
square

X
F //

""

X 0 //

��

X

��

Spec � // Spec �

defining the relative Frobenius F . Here the lower arrow is the Frobenius of the ground field �.
We have the Cartier isomorphism

(D.1.1) C�1 W
M
a

�aX 0.logD0/ �!
M
a

Ha.F�.�
�

X .logD/; d//

of OX 0-algebras. If x is a local section of OX , then

(D.1.2) C�1 W x0 7�! xp; dx0 7�! xp�1dx:

Here x0 D 1˝ x is the pull-back in OX 0 D � ˝� OX .

Lemma D.1.3. The inclusion .��X;f ; d/! .��X .logD/; d/ induces an inclusion

Ha.F�.�
�

X;f ; d// �! Ha.F�.�
�

X .logD/; d//:

Proof. We need to show that

(D.1.4) d�aX .logD/ \�aC1
X;f
D d�aX;f :

Let Z be the singular locus of the divisor D and j W X XZ ! X the inclusion. Since �aC1
X;f

is locally free and Z is of codimension at least two, we have

j�j
�.�aC1

X;f
/ D �aC1

X;f
:

Thus one only needs to prove (D.1.4) on X XZ and hence we may assume that D is smooth.
Let ¹xiºniD1 be local coordinates and assume that f D x�11 . Any element ! 2�aX .logD/

can be written as
! D

dx1
x1

˛ C ˇ

with ˛ 2 �a�1X , ˇ 2 �aX . To see the divisibility of ˇ by x1, we may pass to the completion
along x1 and write

ˇ D  C x1ı

where  is not divisible by x1. Now if d! 2 �aC1
X;f

, then�
dx1
x21

�
^ dˇ 2 �aC2X .logD/:

The latter implies that d D 0. We obtain d! D d� with � D .dx1=x1/˛ C x1ı 2 �aX;f .

Proposition D.1.5. The Cartier isomorphism (D.1.1) sends�a
X 0;f 0

to Ha.F�.�
�

X;f ; d//
and induces an isomorphism

C�1 W
M
a

�aX 0;f 0 �!
M
a

Ha.F�.�
�

X;f ; d//

of OX 0-algebras.
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Proof. Locally we have an explicit liftingeC�1 W �aX 0.logD0/ �! Za.�
�

X .logD/; d/

of (D.1.1) given by formula (D.1.2) at the chain level. Here Za.��X .logD/; d/ denotes the
OX 0-module of cocycles. It is then clear that eC�1 sends �a

X 0;f 0
to Za.��X;f ; d/. As by Lem-

ma D.1.3, the natural map

Ha.F�.�
�

X;f ; d// �! Ha.F�.�
�

X .logD/; d//

is injective, C�1 restricts to a well-defined map �a
X 0;f 0

! Ha.F�.�
�

X;f ; d//, so one has the
commutative diagram

(D.1.6) �a
X 0;f 0

� � //

��

�aX 0.logD0/

C�1'

��

Ha.F�.�
�

X;f ; d//
� � // Ha.F�.�

�

X .logD/; d//.

Therefore the problem reduces to showing that the left vertical arrow is surjective.
We regard the involved sheaves as coherent OX 0-modules. The statement is local, so we

may assume that there exists a Cartesian diagram

X
F //

�

��

X 0

��

An F // .An/0

with étale vertical morphisms such that f D ��.x1 � � � x`/�1 for some ` 6 n. Also notice that

�aX;f D �
��aAn;.x1���x`/�1

and
�aX .logD/ D ���aAn.log.x1 � � � x`//:

Thus to prove the statement, we may assume X D An and work with global sections of the
sheaves. Moreover, by the Künneth formula for the complex .��f ; d/ and the classical Cartier
isomorphism for .��.logD/; d/, we only need to consider the case where ` D n, that is,
f D .x1 � � � xn/

�1 and D D .x1 � � � xn/.
The sheaf Ha.F�.�

�

X;f ; d// is equal to the image of Za.��X;f ; d/ into the sheaf in
the lower right of the diagram (D.1.6). Via the isomorphism in the right side of (D.1.6), the
OX 0-module Ha.F�.�

�

X;f ; d// corresponds to the intersection of �Œxp�-modules

�Œx� �

²
df

f

â�1
²

dx1
x1
; : : : ;

dxn
xn

³
;
1

f

â
²

dx1
x1
; : : : ;

dxn
xn

³³
\ �Œxp� �

â
²

dx1
x1
; : : : ;

dxn
xn

³
where the left and right modules correspond to �a

X;f
and �aX 0.logD0/, respectively. Since the

pole orders of f are equal to one, the intersection equals

�Œxp� �

²
df

f

â�1
²

dx1
x1
; : : : ;

dxn
xn

³
;
1

f p

â
²

dx1
x1
; : : : ;

dxn
xn

³³
and this completes the proof.
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D.2. The lifting and the splitting. Let W2 be the ring of Witt vectors of length two
of �. We now make the assumption that .U � X; f / has a lifting .�U � �X; �f / to W2. Again�X 0; �f 0; : : : will denote the base-change of �X; �f ; : : : under the absolute Frobenius W2 ! W2.

Proposition D.2.1. Locally in the Zariski topology there is a lifting �F W �X ! �X 0 of the
relative Frobenius F such that�F �O �X 0.��D0/ D O �X .�p�D/ and �F �. �f 0/ D �f p:

Proof. This is shown in the proof of [8, Proposition 9.7]. Indeed locally there is an étale
morphism �� W �X �! An D SpecW2Œ�t1; : : : ;�tn�
with�xi WD ����ti such that �f D 1�x1 � � ��x` and �D D .�x1 � � ��xm/
for some ` 6 m 6 n. The morphism �F W �X ! �X 0 defined by �F �.�x0i / D �xpi then has the
desired property.

Theorem D.2.2. Fix a positive integer i with i < p. The lifting .�U � �X; �f / defines
a splitting

iM
aD0

Ha.F�.�
�

X;f ; d//Œ�a�
�
�! �6i .F�.�

�

X;f ; d//

of the i -th truncation of F�.�
�

X;f ; d/ in the derived category of OX 0-modules.

By the standard thickening and base change arguments (cf. [8, Corollary 10.23]), we
obtain the following.

Corollary D.2.3. Let U be a smooth quasi-projective variety defined over a field of
characteristic zero and f 2 OU .U /. Suppose that U has a compactification X such that
X X U is a normal crossing divisor and f extends to f W X ! P1 with only simple poles
on X . Then the spectral sequence

E
pq
1 D H

q.X;�
p

f
/ H) H pCq.X; .�

�

f ; d//

degenerates at E1.

In the rest, we prove the above theorem by showing that with the choice of local liftings
of the Frobenius given by Proposition D.2.1, the splitting

(D.2.4)
iM

aD0

Ha.F�.�
�

X .logD/; d//Œ�a�
�
�! �6i .F�.�

�

X .logD/; d//

constructed in [8, Section 10] actually induces the desired splitting.
We thus fix a collection ¹X˛; �F˛º where ¹X˛º is a covering of X and �F˛ W �X˛ ! �X 0˛ is

a lifting of the relative Frobenius such that�F �˛ . �f 0/ D �f p on each X˛ with X˛ \ P ¤ ¿,(D.2.5) �F �˛ O �X˛ .��D0˛/ D O �X˛ .�p�D˛/ on each X˛ with D˛ WD X˛ \D ¤ ¿:
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Attached to the covering ¹X˛º, let

ZCj � Cj .�6iF�.�
�

X .logD/; d//; ZC
j

f
� Cj .�6iF�.�

�

X;f ; d//

be the corresponding sheaves of Čech cocycles contained in the sheaves of Čech cochains at
degree j . We trivially have ZC

j

f
D ZCj \ Cj .�6iF�.�

�

X;f ; d//. Let Sj be the symmetric
group of j letters. For j < p consider the OX 0-linear map

ıj W �
j
X 0.logD0/ �! .�1X 0.logD0//˝j ;

!1 ^ � � � ^ !j 7�!
1

j Š

X
�2Sj

sign.�/ � !�.1/ ˝ � � � ˝ !�.j /:

One defines a map .�;  /˝j (recalled below) sitting in the factorization of C�1

.�1X 0.logD0//˝j
.�; /˝j

// ZCj

natural quotient
��

�
j
X 0.logD0/

ıj

OO

C�1 // H j .F�.�
�

X .logD/; d//.

The splitting (D.2.4) is then given by the collection

� WD ¹.�;  /˝j ı ıj ı C ºijD0:

We now show that .�;  /˝j ı ıj sends�j
X 0;f 0

toZC
j

f
and thus � induces the desired splitting

for �6iF�.�
�

X;f ; d/.
The map .�;  /˝0 is just the pull-back F �; while .�;  /˝1 is given by the pair

�1X 0.logD0/
.�˛ˇ; ˛/
������!

M
.F�OX /˛ˇ ˚

M
.F��

1
X .logD//˛

defined as follows. Take a system of local coordinates ¹�x1; : : : ;�xnº on �X such that

(D.2.6) �f D 1�x1 � � ��x` and �D D .�x1 � � ��xm/
for some ` 6 m 6 n, and write �F �˛ .�x0j / D �xpj C pv˛;j
for some v˛;j 2 OX˛ . The second equation in (D.2.5) says that there exists a unit v on �X˛ such
that �F �˛

 
mY
jD1

�x0j
!
D v

mY
jD1

�xpj ;
which implies that

.v � 1/

mY
jD1

�xpj D p mX
jD1

v˛;j

i¤jY
16i6m

�xpi :
Reducing modulo p and computing in the domain OX˛ implies that v D 1C pv0 for some
element v0 2 OX˛ . Thus the above identity reduces to

v0
mY
jD1

x
p
j D

mX
jD1

v˛;j

i¤jY
16i6m

x
p
i
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on X˛ (cf. [8, Section 8.7]). Since X˛ is smooth and the xi forms local coordinates, one con-
cludes that xpj divides v˛;j for 1 6 j 6 m. We obtain that, for all ˛,

�F �˛ .�x0j / D
´�xpj .1C pu˛;j / for 1 6 j 6 m;�xpj C pu˛;j for m < j 6 n;

for some u˛;j 2 OX˛ . Then the pair .�˛ˇ ;  ˛/ is defined by

�˛ˇ

�dx0j
x0j

�
D u˛;j � uˇ;j ;  ˛

�dx0j
x0j

�
D

dxj
xj
C du˛;j ;

�˛ˇ .dx
0
k/ D u˛;k � uˇ;k;  ˛.dx0k/ D x

p�1

k
dxk C du˛;k;

for 1 6 j 6 m < k 6 n, and it lands in ZC1.
On the other hand, conditions (D.2.5) and (D.2.6) imply that, for all ˛,

rX
jD1

u˛;j D 0:

With this equation and the explicit description of the generators, a direct computation reveals
that .�;  /˝1 indeed sends �1

X 0;f 0
to ZC1

f
.

In general, .�;  /˝j is constructed as a product of .�;  /˝1 using the product structure
on

L
k ZCk (see [8, p. 116]). In particular, .�;  /˝j is a sum of certain j -term products

of �˛ˇ and  ˛, which send �1
X 0;f 0

to F��0X;f and F��1X;f , respectively. On the other hand,
notice that ıj sends �j

X 0;f 0
to the subspace

jX
aD1

¹!1 ˝ � � � ˝ !j j !a 2 �
1
X 0;f 0º � .�

1
X 0.logD0//˝j :

Since for any k the exterior product

.�1X .logD//˝k �! �kX .logD/

sends both
�0X;f � .�

1
X .logD//˝k and �1X;f ˝ .�

1
X .logD//˝k�1

to�k
X;f

, one obtains that .�;  /˝j ı ıj maps�j
X 0;f 0

toZC
j

f
, which completes the proof.

D.3. The case dimX D p.

Theorem D.3.1. If dimX D p, the splitting of Theorem D.2.2 extends to i D p.

Proof. Let n D dimX . We set D D P CH , where H is the horizontal divisor of f .
Recall that P is assumed to be reduced. The wedge product of forms

F��
n�i
X;f ˝OX0

F��
i
X;f .�H/ �! F��

n
X

followed by the projection to the cohomology sheaf and then the Cartier operator

F��
n
X �! F��

n
X=d�

n�1
X

C
��! �nX 0

induces a perfect duality (see the proof of [8, Lemma 9.20], which adapts word by word to the
sheaves here).
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For 0 6 j < p we constructed OX 0-linear maps

�
j

X 0;f 0
�! Cj .�6j .F�.�

�

X;f ; d///;

which dualize to

�>n�jF��
�

X;f .�H/Œn � j � �! C
�
.�

n�j

X 0;f 0
.�H 0//

and induce a quasi-isomorphism

(D.3.2) �>n�pC1F��
�

X;f .�H/ �!

nM
iDn�pC1

C
�
.�iX 0;f 0.�H

0//Œ�i �

(see [8, p. 119]). We now use n D p to conclude that the kernel of the OX 0-linear surjective
map

(D.3.3) F��
�

X;f .�H/ �! �>1F��
�

X;f .�H/

is the single OX 0-coherent cohomology sheaf H0 concentrated in degree 0. Thus, by cohomo-
logical dimension of coherent sheaves, (D.3.3) induces a surjection

H p.X 0; F��
�

X;f .�H/˝OX0
M/ �! H p.X 0; �>1F��

�

X;f .�H/˝OX0
M/

for any coherent sheaf M on X 0. Therefore by (D.3.2) a surjection

H p.X 0; F��
�

X;f .�H/˝OX0
M/ �! H 0.X 0; �

p
X 0.logP /˝OX0

M/:

Taking for M the OX 0-dual of the last cohomology sheaf Hp of F��
p

X;f
.�H/ yields the

Cartier operator C as a non-vanishing global section of �pX 0.logP /˝OX0
.Hp/_. Hence

any lifting eC 2 H p.X 0; F��
�

X;f .�H/˝OX0
.Hp/_/

of C defines then a splitting of the natural OX 0-linear surjection

F��
�

X;f .�H/ �! HpŒ�p�:

E. On the Kontsevich–de Rham complexes and Beilinson’s maximal extensions

By Morihiko Saito at Kyoto*)

We will use the same notation as in the main part of the article.
Let f W X ! S be a proper morphism of smooth complex algebraic varieties with

S D P1. Let U be a Zariski open subset of X such that D WD X X U is a divisor with simple
normal crossings which contains P WD X1. Here Xs WD f �1.s/ for s 2 S . M. Kontsevich
defined a subcomplex .��f ; d/ of the logarithmic de Rham complex .��X .logD/; d/ by

�
j

f
WD ker.df ^ W �jX .logD/ �! �

jC1
X .�P /=�

jC1
X .logD//;

*) This work is partially supported by Kakenhi 24540039.
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where f is identified with a meromorphic function on X . (In this paper, we denote by
�
j
X .logD/ the analytic sheaf on the associated analytic space. The reader can also use the

algebraic sheaf in the main theorems by GAGA.) Kontsevich considered more generally the
differentials u dC v df ^ for u; v 2 C, although we consider only the case v D 0 in this
Appendix. This is the reason for which we call .��f ; d/ the Kontsevich–de Rham complex
(instead of the Kontsevich complex). Note that ��f coincides with ��X .logD/ on the comple-
ment of P , and we have df D �dg=g2 by setting g WD f �t 0 D 1=f , which is holomorphic
on a neighborhood of P , where t 0 WD 1=t with t the affine coordinate of C � P1.

Kontsevich showed that the filtered complexR�.X; .��f ; F // is strict by using a method
of Deligne–Illusie [7] in case P is reduced (with v D 0), where the Hodge filtration F p is
defined by �>p as in [4]. In Appendix E, we prove this assertion without assuming P reduced
by using the theory of relative logarithmic de Rham complexes in [32–34]. (This is quite dif-
ferent from the method in the main part of this paper.)

Set
�
�

X=S .logD/ WD ��X=S .logD/=g��X=S .logD/jP ;

where��
X=S

.logD/ is the relative logarithmic de Rham complex, see [32,34]. Let j W U ,! X

be the canonical inclusion. We have the following.

Theorem E.1. There is a short exact sequence of filtered complexes

(E.1) 0 �! .�
�

f ; F / �! .�
�

X .logD/; F /
�
��! .�

�

X=S .logD/; F / �! 0;

where the filtration F p is defined by �>p as above. Moreover, there is a decreasing filtration V
on ��

X=S
.logD/ indexed discretely by Q \ Œ0; 1� such that the Hodge filtration of the mixed

Hodge complex calculating the nearby cycle sheaf  gj�QU is given byM
˛2Œ0;1/

gr˛V .�
�

X=S .logD/; F /;

where gr˛V �
�

X=S
.logD/ corresponds to  g;�j�QU with � WD exp.�2�i˛/.

Here  g;� denotes the �-eigenspace of the monodromy on the nearby cycle functor  g ,
see [5]. A variant of the second assertion of Theorem E.1 is noted in [27, Proposition 2.1].
The proof uses as in loc. cit. the normalization of the unipotent base change together with the
theory of logarithmic forms on V -manifolds in [33], and the relation between the V -filtration
and the multiplier ideals is not used here.

Theorem E.2. After taking the cohomology over X or P , the filtration V in Theo-
rem E.1 splits by the action of t 0àt 0 on the relative logarithmic de Rham cohomology groups
forgetting the filtration F , and the image of the morphism �j between the j -th cohomology
groups induced by � is contained in the unipotent monodromy part so that �j is identified with
the natural morphism H j .U;C/!  t 0;1R

j .fU /�CU where fU W U ! S is the restriction
of f to U .

This implies the following.

Corollary E.1. The Hodge filtration F on R�.X; .��f ; F // is strict.



Esnault, Sabbah and Yu, E1-degeneration of the irregular Hodge filtration 219

We denote by Qh;U Œn� the pure Hodge module of weight n whose underlying perverse
sheaf is QU Œn�, where n WD dimX . Let „g.j 0�Qh;U Œn�/ be Beilinson’s maximal extension [2]
as a mixed Hodge module. This is defined by generalizing the definition in loc. cit., so that we
have a short exact sequence of mixed Hodge modules

(E.2) 0 �!  g;1j�Qh;U Œn � 1� �! „g.j
0
�Qh;U Œn�/ �! j�Qh;U Œn� �! 0;

where j 0 W U ,! X X P is the canonical inclusion. (In this paper,  g for mixed Hodge
modules is compatible with the one for the underlying perverse sheaves without any shift of
complex; hence  g Œ�1� preserves perverse sheaves and also mixed Hodge modules.)

Theorem E.3. Assume P is reduced so that  g;1j�Qh;U D  gj�Qh;U , and V in
Theorem E.1 is trivial. By the filtered de Rham functor DRX , the short exact sequence (E.2)
corresponds to the associated distinguished triangle of the short exact sequence (E.1) up to
a shift of triangles. More precisely,

 g;1j�Qh;U Œn � 1�; „g.j
0
�Qh;U Œn�/; j�Qh;U Œn�

in (E.2) respectively correspond to

�
�

X=S .logD/Œn � 1�; .�
�

f ; F /Œn�; .�
�

X .logD/; F /Œn�;

so that the extension class of the short exact sequence (E.2) corresponds to � in (E.1).

We have the inverse functor DR�1X which associates a complex of filtered D-module to
a filtered differential complex (see [28]). By this functor, the surjective morphism � between
the filtered differential complexes in (E.1) corresponds to an extension class between the
corresponding filtered D-modules or mixed Hodge modules in (E.2) so that the kernel of �
corresponds to an extension of filtered D-modules or mixed Hodge modules (because of the
difference in t -structures).

We thank C. Sabbah for useful discussions about the Kontsevich–de Rham complexes.
In Section E.1 we recall some basic facts from the theory of relative logarithmic de Rham

complexes and Beilinson’s maximal extension. In Section E.2 we give the proofs of the main
theorems and their corollary.

E.1. Relative logarithmic de Rham complexes. In this subsection, we recall some
basic facts from the theory of relative logarithmic de Rham complexes and Beilinson’s maximal
extension.

E.1.1. Kontsevich–de Rham complexes. With the notation of the introduction, set

�
j
X hDi WD �

j
X .logD/; �

j
X hDi WD �

j
X hDi=g�

j
X hDijP :

The Kontsevich–de Rham complex is defined by

�
j

f
WD ker.dg=g2^ W �jX hDi �! �

jC1
X hDi.�P /=�

jC1
X hDi/

D ker.dg=g^ W �jX hDi �! �
jC1
X hDi/:
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As for the morphism in the last term, we have

Im.dg=g^ W �jX hDi �! �
jC1
X hDi/(E.1.1.1)

D coker.dg=g^ W �
j�1

X hDi �! �
j

X hDi/:

Indeed, .��X hDi; dg=g^/jP is acyclic, and so is .�
�

X hDi; dg=g^/.
We denote the right-hand side of the isomorphism (E.1.1.1) by �

j

X=S hDi. Then

(E.1.1.2) �
j

X=S hDi D �
j

X=S
hDi=g�

j

X=S
hDijP ;

where �j
X=S
hDi WD coker.dg=g^ W �j�1X hDi ! �

j
X hDi/ as in [32, 34]. Indeed, (E.1.1.2)

follows from the diagram of the snake lemma by applying it to the action of dg=g^ on the
short exact sequences

0 �! �
j
X hDijP

g
��! �

j
X hDijP �! �

j

X hDi �! 0:

So we get the short exact sequence of complexes (E.1) by (E.1.1.1)–(E.1.1.2).

E.1.2. Unipotent base change. Let Pi be the irreducible components of P with ei the
multiplicity of P along Pi . Set e WD LCM¹eiº. Let � be a sufficiently small open disk around
1 2 P1. Let � W ��! � be the e-fold ramified covering such that ��t 0 D�te, where t 0 D 1=t
with t the affine coordinate of C � P1, and�t is an appropriate coordinate of ��. Let �X be the
normalization of the base changeX �S ��, with �D � �X the pull-back ofD � X by the natural
morphism � �X W �X ! X . Set����X h�Di WD ����X .log �D/; ����X=��h�Di WD ����X=��.log �D/:
These are the logarithmic de Rham complex and the relative logarithmic de Rham complex
defined in [33]. Let X 0 � X be the inverse image of � � P1, and G be the covering transfor-
mation group of �X 0 W �X ! X 0 which is isomorphic to Z=eZ. Then

(E.1.2.1) ..�X 0/�����X h�Di/G D ��X hDijX 0 ; ..�X 0/�����X=��h�Di/G D ��X=S hDijX 0 :
This can be shown by taking a local coordinate system .x1; : : : ; xn/ of a unit polydisk�n inX 0

such that g is locally written as

c
Ỳ
jD1

x
ej
j with c 2 C�; ej > 1; ` 2 Œ1; n�;

and then taking a finite ramified covering �n ! �n such that the pull-back of xj is xe=ejj

if j 6 `, and xj otherwise.

E.1.3. Koszul complexes. Assume g D
Qn
iD1 x

ei
i with local coordinates x1; : : : ; xn,

where ei > 1 for any i . The logarithmic de Rham complex .��X hDi; d/0 at 0 2 X is isomorphic
to the Koszul complex associated with xià=àxi (i 2 Œ1; n�) acting on C¹x1; : : : ; xnº. This is
quasi-isomorphic to the subcomplex associated with the zero actions on C � C¹x1; : : : ; xnº.

Setting ıi WD dxi=xi , this Koszul complex has a basis defined by ıJ WD
V
i2J ıi for

J � Œ1; n�. The relative logarithmic de Rham complex .��
X=S
hDi; d/ is a quotient complex

defined by the relation (see [32]) X
i

eiıi D 0:
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This is quasi-isomorphic to a subcomplex associated to the zero actions on the subspace

C¹zº D
°X
�

c�x
�
ˇ̌̌
c� D 0 if ei�j ¤ ej �i for some i; j

±
� C¹x1; : : : ; xnº;

where z D
Qn
iD1 x

ei=d
i with d WD GCD¹eiº, see [32].

E.1.4. External products. LetDi be a divisor with simple normal crossings on a com-
plex manifold Xi (i D 1; 2). Set X WD X1 �X2, D WD D1 �X2 [X1 �D2. Then

(E.1.4.1) �
�

X .logD/ D ��X1.logD1/���X2.logD2/:

Let g1 be a (possible non-reduced) defining equation ofD1. Let g be the pull-back of g1
by the projection. These can be viewed as morphisms to S D C. So we have the relative loga-
rithmic de Rham complexes ��

X1=S
.logD1/, �

�

X=S
.logD/, and

(E.1.4.2) �
�

X=S .logD/ D ��X1=S .logD1/���X2.logD2/:

These can be shown by using a basis as in (E.1.3).

E.1.5. Beilinson’s maximal extension. For a; b 2 Z with a 6 b, let Ea;b be the
variation of mixed Q-Hodge structure of rank b � aC 1 on S 0 WD C� having an irreducible
monodromy and such that

grW2iEa;b D

´
QS 0.�i/ if i 2 Œa; b�,

0 otherwise.

There are natural inclusions

Ea;b ,�! Ea;b0 .a 6 b 6 b0/;

and ¹Ea;bºb>a is an inductive system for each fixed a.
Let g W X ! S be a function on a complex algebraic variety, where S D C in this sub-

section. Set X 0 WD X X g�1.0/ with j W X 0 ,! X the natural inclusion. Let g0 W X 0 ! S 0 be
the morphism induced by g. For a mixed Hodge module M 0 on X 0, it is known that

(E.1.5.1) p g;1M
0
D ker.jŠ.M 0 ˝ g0�E0;b/ �! j�.M

0
˝ g0�E0;b// for b � 0;

where p g;1M 0 WD  g;1M 0Œ�1� .WD  g;1j�M 0Œ�1�/, which is a mixed Hodge module on X .
More precisely, the kernels for b � 0 form a constant inductive system, and the images of the
morphisms form an inductive system ¹Ibº whose inductive limit vanishes, i.e., the image of Ib
in Ib0 vanishes for b0 � b, see the proof of [30, Proposition 1.5].

Beilinson’s maximal extension functor „g (see [2]) can be defined for mixed Hodge
modules M 0 on X 0 by

(E.1.5.2) „gM
0
WD ker.jŠ.M 0 ˝ g0�E0;b/ �! j�.M

0
˝ g0�E1;b// for b � 0;

so that there is a short exact sequence of mixed Hodge modules on X

(E.1.5.3) 0 �!  g;1M
0
�! „gM

0
�! j�M

0
�! 0:
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In fact, the kernel of the morphism in the right-hand side of (E.1.5.2) is the same as H�1 of
the mapping cone of this morphism, and is identified with the kernel of the morphism

jŠ.M
0
˝ g0�E0;b/˚ j�M

0
�! j�.M

0
˝ g0�E0;b/:

So we get (E.1.5.3) by using the diagram of the snake lemma, except for the surjectivity of
the last morphism. The latter is shown by passing to the underlying Q-complexes, where the
inductive limit Ea;C1 exists and the kernel in (E.1.5.1)–(E.1.5.2) can be replaced by the map-
ping cone with b D C1 as in [2]. This argument implies that the extension class defined by
(E.1.5.3) is induced by the natural inclusion

(E.1.5.4) j�M
0 ,�! C.jŠ.M

0
˝ g0�E0;b/ �! j�.M

0
˝ g0�E0;b// .b � 0/:

E.2. Proof of the main theorems. In this subsection, we give the proofs of the main
theorems and their corollary.

E.2.1. Proof of Theorem E.1. By (E.1.1.1)–(E.1.1.2) we get the short exact sequence
of complexes (E.1), which implies the strict compatibility with the filtration F p D �>p (i.e.,
we get short exact sequences after taking grpF ). So the first assertion follows.

The second assertion follows from (E.1.2.1) by using [33]. Here the filtration V is induced
by the �t -adic filtration on .�X 0/�����X=��h�Di, see also [27, Proposition 2.1]. This finishes the
proof of Theorem E.1.

E.2.2. Proof of Theorem E.2. The first assertion follows from the splitting of the
V -filtration in the case n D 1 by using a coordinate. So it remains to show that the compo-
sition

� W �
�

X hDi
�
��! �

�

X=S hDi �! gr0V �
�

X=S hDi

represents the canonical morphism

Rj�CU �!  g:1Rj�CU in Dbc .X;C/:

We have the short exact sequence of differential complexes

(E.2.2.1) 0 �! �
�

X hDi.�Pred/ �! �
�

X hDi �! �
�

X hDiPred �! 0;

where

�
�

X hDi.�Pred/ WD �
�

X hDi ˝OX IPred ; �
�

X hDiPred WD �
�

X hDi ˝OX OPred ;

with IPred the ideal of Pred. Note that

gr0V �
�

X=S hDi D �
�

X=S hDiPred :

Locally the three complexes in (E.2.2.1) are the Koszul complexes of the action of xià=àxi
on IPred , OX , OX=IPred , if D D

Sn
iD1¹xi D 0º with x1; : : : ; xn local coordinates of X .

It is well known that (E.2.2.1) represents the distinguished triangle

j 00Š Rj
0
�CU �! Rj�CU �! i�Rj�CU

C1
��! in Dbc .X;C/;

where i W P ,! X , j 0 W U ,! X X P , j 00 W X X P ,! X denote the inclusions so that

j D j 00 ı j 0:
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Set � WD logg. Let ��X hDiŒ� � be the tensor product of ��X hDi with CŒ� � over C, where
the differential of the complex is given by

d.!�k/ D .d!/�k C k.dg=g/ ^ !�k�1 .k > 0/;

and ��X hDiŒ� � can be identified with a double complex whose differentials are given by d
and dg=g^. (This construction corresponds to the tensor product of the corresponding Q-com-
plex with E0;C1 in Section E.1.5.) We can define ��X hDi.�Pred/Œ� �, �

�

X hDiPred Œ� � similarly,
and get the quasi-isomorphism

� W C.�
�

X hDi.�Pred/Œ� � �! �
�

X hDiŒ� �/
�
�! �

�

X hDiPred Œ� �(E.2.2.2)
�
�! �

�

X=S hDiPred ;

where the last morphism sends
P
i>0 !i�

i to the class of !0. In fact, the last morphism is
a morphism of complexes by the double complex structure explained above. It is a quasi-
isomorphism in case D D P by [32, Section 2.6] (see also [5]). The general case is reduced
to this case by using the compatibility with the external product as in Section E.1.4. Note also
that the compatibility of nearby cycles with external products implies that

(E.2.2.3)  g;1Rj�CU D R.jXXH /�j
�
XXH . gRj�CU /;

where H is the closure of D X P in X with jXXH W X XH ,! X the natural inclusion.
By the argument in Section E.1.5 the extension class given by formula (E.1.5.4) for

M 0 D j 0�QU Œn� corresponds to the natural inclusion

(E.2.2.4) � W �
�

X hDi ,�! C.�
�

X hDi.�Pred/Œ� � �! �
�

X hDiŒ� �/;

and the composition of (E.2.2.4) with (E.2.2.2) coincides with the canonical morphism

� W �
�

X hDi �! �
�

X=S hDiPred ;

i.e., we have the commutative diagram

(E.2.2.5) ��X hDi
� // C.��X hDi.�Pred/Œ� �! ��X hDiŒ� �/

�

��

��X hDi
�

// ��
X=S
hDiPred .

So the assertion follows. This finishes the proof of Theorem E.2.

E.2.3. Proof of Corollary E.1. By [32–34], we have the filtered relative logarithmic
de Rham cohomology sheaves

H jf�.�
�

X=S hDi; F /;

which are locally free sheaves forgetting F . Moreover, the graded quotients gr�F of the Hodge
filtration F commute with the cohomological direct images H j (i.e., F is strict), and give also
locally free sheaves. (Indeed, these can be reduced to the unipotent monodromy case by using
a unipotent base change together with logarithmic forms on V -manifolds as in [33].) These
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imply the strictness of the Hodge filtration F on R�.P; .��
X=S
hDi; F //, by using the short

exact sequence of filtered complexes

0 �! .�
�

X=S hDi; F /
g
��! .�

�

X=S hDi; F / �! .�
�

X=S hDi; F / �! 0:

Moreover, we have the strictness of R�.P; gr0V .�
�

X=S
hDi; F //, and

H j .P; gr0V .�
�

X=S hDi; F //

gives the Hodge filtration on the unipotent monodromy part of the limit mixed Hodge structure
of the variation of mixed Hodge structure

H jf�.�
�

X=S hDi; F /jS 0 ;

where S 0 is the Zariski-open subset of S over which H jf�CU is a local system. Hence the
induced morphism �j in Theorem E.2 is strictly compatible with F .

Corollary E.1 then follows from the assertion that the filtration on a mapping cone of fil-
tered complexes C..K; F /! .K 0; F // is strict if .K; F /; .K 0; F / are strict and the morphisms
H i .K; F /! H i .K 0; F / are strict. (This is a special case of a result of Deligne for bifiltered
complexes [4], since the mapping cone has a filtrationG such that gr0G D K, gr1G D K

0 and the
associated spectral sequence degenerates at E2.) This finishes the proof of Corollary E.1.

E.2.4. Proof of Theorem E.3. Since .��f ; F / is defined by the mapping cone of �, it is
enough to show that the extension class defined by (E.2) corresponds to the morphism � by
the de Rham functor DR, i.e., the commutative diagram (E.2.2.5) is compatible with F in an
appropriate sense. (Here we cannot define the filtration F on each term of (E.2.2.5) since the
condition Fp D 0 for p � 0 cannot be satisfied.) Note, however, that the isomorphism between
the mapping cones may be non-unique.

We will use the inverse functor DR�1 of DR which gives an equivalence of categories
(see [28, Proposition 2.2.10]):

(E.2.4.1) DR�1 W DbF.OX ;Diff/ Š DbF.DX /;

where the left-hand side is the bounded derived category of filtered differential complexes
in the sense of [28], and the right-hand side is that of filtered left D-modules (by using the
transformation between left and right D-modules).

For the proof of the assertion we may assume D D P by the compatibility with the
external product as in Section E.1.4. In fact, the direct image of filtered regular holonomic
D-modules for the open inclusion of the complement of each irreducible component of the
closure of D X P can be defined by the argument as in [31, Proposition 2.8]. We apply this
to each term of the short exact sequences associated with the given extension classes by using
the exactness of the direct image functor in this case. Here the argument is much simpler than
in [31, Proposition 2.8], since we can show that the direct image in this case is analytic-locally
isomorphic to an external product with the open direct image of a constant sheaf.

Set

.C
�

k ; F / WD C..�
�

X hDi.�P /Œ��
6k; F / �! .�

�

X hDiŒ� �
6k; F // .k � 0/;

where Œ� �6k means the tensor product over C with CŒ� �6k which is the subspace spanned by
monomials of degree6 k, and the Hodge filtration F on CŒ� �6k is defined in a compatible way
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with F on E0;k in Section E.1.5. By the same argument as in Section E.2.2 there are canonical
morphisms

(E.2.4.2) �k W .C
�

k ; F / �! .�
�

X=S hDiP ; F /;

together the commutative diagram

(E.2.4.3) .��X hDi; F /
�k // .C �

k
; F /

�k

��

.��X hDi; F /
�
// .��

X=S
hDiP ; F /.

By the argument in Section E.1.5, the morphism �k induces a morphism of filtered regular
holonomic DX -modules

(E.2.4.4) Hn�1.DR�1 �k/ W  
D
g;1.OX ; F / �! DR�1.��X=S hDiP ; F /Œn � 1�;

where the source denotes the underlying filtered DX -module of  g;1Qh;X Œn � 1� (and it will
be shown soon that the target is a filtered regular holonomic DX -module). By Sections E.1.5
and E.2.2, it is enough to show that (E.2.4.4) is a filtered isomorphism. In fact, this implies that
the Hodge filtration on ��

X=S
hDiP is the correct one. Moreover, we have the vanishing of

Hn.DR�1 �k/ W DR�1.��X hDi; F /Œn� �! Hn DR�1.Ck; F / .k � 0/;

by the compatibility with the transition morphism of the inductive system ¹.Ck; F /ºk�0.
Hence DR�1 �k defines an extension class of filtered regular holonomic D-modules in

Ext1.DR�1.��X hDi; F /Œn�;H
n�1 DR�1.Ck; F //;

where DR�1.��X hDi; F /Œn� is isomorphic to the underlying filtered D-modules of j�Qh;U Œn�

as is well known. So the assertion follows from the commutativity of the diagram (E.2.4.3)
if (E.2.4.4) is a filtered isomorphism.

By the argument in Section E.2.2, (E.2.4.4) is an isomorphism if F is forgotten. So the
source and the target of (E.2.4.4) have the common Q-structure  g;1QX Œn � 1�. Let W be
the monodromy filtration on  g;1QX Œn � 1� shifted by n � 1. The source of (E.2.4.4) with
this Q-structure and this weight filtration is the mixed Hodge module  g;1Qh;X Œn � 1� by
definition. By the construction in [32], the target with this Q-structure and this weight filtra-
tion belongs to MHW.X/ where the latter category consists of successive extensions of pure
Hodge modules without assuming any conditions on the extensions. Then (E.2.4.4) is a filtered
isomorphism by [28, Proposition 5.1.14]. So Theorem E.3 follows.

E.2.5. Example. Assume

U D U1 � U2 � X D P1 � P1;

with U1; U2 Zariski-open subsets of C � P1, and f W X ! S D P1 the second projection.
Let j1 W U1 ,! P1, j2 W U2 ,! P1 be the natural inclusions. We assume U2 D C since the
assertion is only on a neighborhood of P D X � ¹1º. We have

Rj�CU D R.j1/�CU1 �R.j2/�CU2 ;  gRj�CU D R.j1/�CU1 �C¹1º;

and hence
„gRj

0
�CU Œ2� D R.j1/�CU1 Œ1��„g 00CU2 Œ1�:
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Here g00 is a local coordinate of P1 at1, and there is a non-splitting short exact sequence of
perverse sheaves on P1

0 �! C¹1º �! „g 00CU2 Œ1� �! R.j2/�CU2 Œ1� �! 0:

In this case, we have

Ext1.Rj�CU Œ2�;  gRj�CU Œ1�/ D Hom.R.j1/�CU1 ˚R.j1/�CU1 Œ�1�;R.j1/�CU1/

D H 0.U1;C/˚H
1.U1;C/;

and one cannot prove the main theorems of Appendix E by using this extension group.
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