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Introduction 1

Introduction

K. Kodaira’s vanishing theorem, saying that the inverse of an ample invertible
sheaf on a projective complex manifold X has no cohomology below the di-
mension of X and its generalization, due to Y. Akizuki and S. Nakano, have
been proven originally by methods from differential geometry ([39] and [1]).

Even if, due to J.P. Serre’s GAGA-theorems [56] and base change for
field extensions the algebraic analogue was obtained for projective manifolds
over a field k of characteristic p = 0, for a long time no algebraic proof was
known and no generalization to p > 0, except for certain lower dimensional
manifolds. Worse, counterexamples due to M. Raynaud [52] showed that in
characteristic p > 0 some additional assumptions were needed.

This was the state of the art until P. Deligne and L. Illusie [12] proved
the degeneration of the Hodge to de Rham spectral sequence for projective
manifolds X defined over a field k of characteristic p > 0 and liftable to the
second Witt vectors W2(k).

Standard degeneration arguments allow to deduce the degeneration of
the Hodge to de Rham spectral sequence in characteristic zero, as well, a re-
sult which again could only be obtained by analytic and differential geometric
methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.)
gave an easy proof of Kodaira vanishing in all characteristics, provided that X
lifts to W2(k).

Short time before [12] was written the two authors studied in [20] the
relations between logarithmic de Rham complexes and vanishing theorems on
complex algebraic manifolds and showed that quite generally vanishing theo-
rems follow from the degeneration of certain Hodge to de Rham type spectral
sequences. The interplay between topological and algebraic vanishing theorems
thereby obtained is also reflected in J. Kollár’s work [41] and in the vanishing
theorems M. Saito obtained as an application of his theory of mixed Hodge
modules (see [54]).

It is obvious that the combination of [12] and [20] give another algebraic
approach to vanishing theorems and it is one of the aims of these lecture
notes to present it in all details. Of course, after the Deligne-Illusie-Raynaud
proof of the original Kodaira and Akizuki-Nakano vanishing theorems, the
main motivation to present the methods of [20] along with those of [12] is that
they imply as well some of the known generalizations.

Generalizations have been found by D. Mumford [49], H. Grauert and
O. Riemenschneider [25], C.P. Ramanujam [51] (in whose paper the method of
coverings already appears), Y. Miyaoka [45] (the first who works with integral
parts of Ql divisors, in the surface case), by Y. Kawamata [36] and the second
author [63]. All results mentioned replace the condition “ample” in Kodaira’s
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result by weaker conditions. For Akizuki-Nakano type theorems A. Sommese
(see for example [57]) got some improvement, as well as F. Bogomolov and A.
Sommese (as explained in [6] and [57]) who showed the vanishing of the global
sections in certain cases.

Many of the applications of vanishing theorems of Kodaira type rely on
the surjectivity of the adjunction map

Hb(X,L ⊗ ωX(B)) −−→ Hb(B,L ⊗ ωB)

where B is a divisor and L is ample or is belonging to the class of invertible
sheaves considered in the generalizations.

J. Kollár [40], building up on partial results by Tankeev, studied the
adjunction map directly and gave criteria for L and B which imply the surjec-
tivity.

This list of generalizations is probably not complete and its composi-
tion is evidently influenced by the fact that all the results mentioned and some
slight improvements have been obtained in [20] and [22] as corollaries of two
vanishing theorems for sheaves of differential forms with values in “integral
parts of Ql -divisors”, one for the cohomology groups and one for restriction
maps between cohomology groups.

In these notes we present the algebraic proof of Deligne and Illusie [12]
for the degeneration of the Hodge to de Rham spectral sequence (Lecture 10).
Beforehand, in Lectures 8 and 9, we worked out the properties of liftings of
schemes and of the Frobenius morphism to the second Witt vectors [12] and the
properties of the Cartier operator [34] needed in the proof. Even if some of the
elegance of the original arguments is lost thereby, we avoid using the derived
category. The necessary facts about hypercohomology and spectral sequences
are shortly recalled in the appendix, at the end of these notes.

During the first seven lectures we take the degeneration of the Hodge to
de Rham spectral sequence for granted and we develop the interplay between
cyclic coverings, logarithmic de Rham complexes and vanishing theorems (Lec-
tures 2 - 4).

We try to stay as much in the algebraic language as possible. Lectures 5
and 6 contain the geometric interpretation of the vanishing theorems obtained,
i.e. the generalizations mentioned above. Due to the use of H. Hironaka’s em-
bedded resolution of singularities, most of those require the assumption that
the manifolds considered are defined over a field of characteristic zero.

Raynaud’s elegant proof of the Kodaira-Akizuki-Nakano vanishing the-
orem is reproduced in Lecture 11, together with some generalization. How-
ever, due to the non-availability of desingularizations in characterisitic p, those
generalizations seem to be useless for applications in geometry over fields of
characteristic p > 0.
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In characteristic zero the generalized vanishing theorems for integral
parts of Ql -divisors and J. Kollár’s vanishing for restriction maps turned out
to be powerful tools in higher dimensional algebraic geometry. Some examples,
indicating “how to use vanishing theorems” are contained in the second half
of Lecture 6, where we discuss higher direct images and the interpretation of
vanishing theorems on non-compact manifolds, and in Lecture 7. Of course,
this list is determined by our own taste and restricted by our lazyness. In par-
ticular, the applications of vanishing theorems in the birational classification
theory and in the minimal model program is left out. The reader is invited to
consult the survey’s of S. Mori [46] and of Y. Kawamata, K. Matsuda and M.
Matsuki [38].

There are, of course, more subjects belonging to the circle of ideas presented
in these notes which we left aside:

• L. Illusie’s generalizations of [12] to variations of Hodge structures [32].
• J.-P. Demailly’s analytic approach to generalized vanishing theorems [13].
• M. Saito’s results on “mixed Hodge modules and vanishing theorems”

[54], related to J. Kollár’s program [41].
• The work of I. Reider, who used unstability of rank two vector bundles

(see [6]) to show that certain invertible sheaves on surfaces are generated
by global sections [53] (see however (7.23)).
• Vanishing theorems for vector bundles.
• Generalizations of the vanishing theorems for integral parts of Ql -divisors

([2], [3], [42], [43] and [44]).

However, we had the feeling that we could not pass by the generic vanishing
theorems of M. Green and R. Lazarsfeld [26]. The general picture of “vanishing
theorems” would be incomplete without mentioning this recent development.
We include in Lectures 12 and 13 just the very first results in this direction.
In particular, the more explicit description and geometric interpretation of the
“bad locus in Pic0(X) ”, contained in A. Beauville’s paper [5] and Green and
Lazarsfeld’s second paper [27] on this subject is missing. During the prepara-
tion of these notes C. Simpson [58] found a quite complete description of such
“degeneration loci”.

The first Lecture takes possible proofs of Kodaira’s vanishing theorem
as a pretext to introduce some of the key words and methods, which will reap-
pear throughout these lecture notes and to give a more technical introduction
to its subject.

Methods and results due to P. Deligne and Deligne-Illusie have inspired and
influenced our work. We cordially thank L. Illusie for his interest and several
conversations helping us to understand [12].
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§ 1 Kodaira’s vanishing theorem, a general discussion

Let X be a projective manifold defined over an algebraically closed field k
and let L be an invertible sheaf on X. By explicit calculations of the Čech-
cohomology of the projective space one obtains:

1.1. Theorem (J. P. Serre [55]). If L is ample and F a coherent sheaf, then
there is some ν0 ∈ IN such that

Hb(X,F ⊗ Lν) = 0 for b > 0 and ν ≥ ν0

In particular, for F = OX , one obtains the vanishing of Hb(X,Lν) for b > 0
and ν sufficiently large.

If char(k) = 0, then “ν sufficiently large” can be made more precise. For exam-
ple, it is enough to choose ν such that A = Lν⊗ω−1

X is ample, where ωX = ΩnX
is the canonical sheaf of X, and to use:

1.2. Theorem (K. Kodaira [39]). Let X be a complex projective manifold
and A be an ample invertible sheaf. Then

a) Hb(X,ωX ⊗A) = 0 for b > 0

b) Hb′(X,A−1) = 0 for b′ < n = dim X.

Of course it follows from Serre-duality that a) and b) are equivalent. Moreover,
since every algebraic variety in characteristic 0 is defined over a subfield of Cl ,
one can use flat base change to extend (1.2) to manifolds X defined over any
algebraically closed field of characteristic zero.

1.3. Theorem (Y. Akizuki, S. Nakano [1]). Under the assumptions made
in (1.2), let ΩaX denote the sheaf of a-differential forms. Then

a) Hb(X,ΩaX ⊗A) = 0 for a+ b > n

b) Hb′(X,Ωa
′

X ⊗A−1) = 0 for a′ + b′ < n.

For a long time, the only proofs known for (1.2) and (1.3) used methods
of complex analytic differential geometry, until in 1986 P. Deligne and L. Il-
lusie found an elegant algebraic approach to prove (1.2) as well as (1.3), using
characteristic p methods. About one year earlier, trying to understand several
generalizations of (1.2), the two authors obtained (1.2) and (1.3) as a direct
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consequence of the decomposition of the de Rham-cohomology Hk(Y,Cl ) into
a direct sum ⊕

b+a=k

Hb(Y,ΩaY )

or, equivalently, of the degeneration of the “Hodge to de Rham” spectral se-
quence, both applied to cyclic covers π : Y −−→ X.

As a guide-line to the first part of our lectures, let us sketch two possible
proofs of (1.2) along this line.

1. Proof: With Hodge decomposition for non-compact manifolds

and topological vanishing: For sufficiently large N one can find a non-
singular primedivisor H such that AN = OX(H). Let s ∈ H0(X,AN ) be the
corresponding section. We can regard s as a rational function, if we fix some
divisor A with A = OX(A) and take

s ∈ Cl (X) with (s) +N ·A = H.

The field L = Cl (X)( N
√
s) depends only on H. Let π : Y −−→ X be the cov-

ering obtained by taking the normalization of X in L (see (3.5) for another
construction).

An easy calculation (3.13) shows that Y is non-singular as well as
D = (π∗H)red and that π : Y −−→ X is unramified outside of D. One has

π∗ΩaX(log H) = ΩaY (log D)

where ΩaX(log H) denotes the sheaf of a-differential forms with logarithmic
poles along H (see (2.1)). Moreover

π∗OY =
N−1⊕
i=0

A−i and

π∗ΩnY (log D) =
N−1⊕
i=0

ΩnX(log H)⊗A−i =
N−1⊕
i=0

ΩnX ⊗AN−i

Deligne [11] has shown that

Hk(Y −D,Cl ) ∼=
⊕
b+a=k

Hb(Y,ΩaY (log D)).

SinceX−H is affine, the same holds true for Y −D and hence Hk(Y −D,Cl ) = 0
for k > n. Altogether one obtains for b > 0

0 = Hb(Y,ΩnY (log D)) =
N−1⊕
i=0

Hb(X,ΩnX ⊗AN−i).

2
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In fact, a similar argument shows as well that

Hb(X,ΩaX(log H)⊗A−1) = 0

for a+b > n . We can deduce (1.3) from this statement by induction on dim X
using the residue sequence (as will be explained in (6.4)).

The two ingredients of the first proof can be interpretated in a different way.
First of all, since the de Rham complex on Y −D is a resolution of the constant
sheaf one can use GAGA [56] and Serre’s vanishing to obtain the topological
vanishing used above. Secondly, the decomposition of the de Rham cohomology
of Y into the direct sum of (a, b)-forms, implies that the differential

d : ΩaY −−→ Ωa+1
Y

induces the zero map

d : Hb(Y,ΩaY ) −−→ Hb(Y,Ωa+1
Y ).

Using this one can give another proof of (1.2):

2. Proof: Closedness of global (p, q) forms and Serre’s vanishing

theorem: Let us return to the covering π : Y → X constructed in the first
proof. The Galois-group G of Cl (Y ) over Cl (X) is cyclic of order N . A generator
σ of G acts on Y and D and hence on the sheaves π∗ΩaY and π∗ΩaY (log D).
Both sheaves decompose in a direct sum of sheaves of eigenvectors of σ and, if
we choose the N -th root of unity carefully, the i-th summand of

π∗ΩaY (log D) = ΩaX(log H)⊗ π∗OY =
N−1⊕
i=0

ΩaX(log H)⊗A−i

consists of eigenvectors with eigenvalue ei. For ei 6= 1 the eigenvectors of π∗ΩaY
and of π∗ΩaY (log D) coincide, the difference of both sheaves is just living in
the invariant parts ΩaX and ΩaX(log H). Moreover, the differential

d : OY −−→ Ω1
Y

is compatible with the G-action and we obtain a Cl -linear map (in fact a con-
nection)

∇i : A−i −−→ Ω1
X(log H)⊗A−i.

Both properties follow from local calculations. Let us show first, that

π∗ΩaY = ΩaX ⊕
N−1⊕
i=1

ΩaX(log H)⊗A−i .
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Since H is non-singular one can choose local parameters x1, . . . , xn such that
H is defined by x1 = 0. Then

y1 = N
√
x1 and x2, . . . , xn

are local parameters on Y . The local generators

N · dx1

x1
, dx2, . . . , dxn of Ω1

X(log H)

lift to local generators

dy1

y1
, dx2, . . . , dxn of Ω1

Y (log D).

The a-form
φ = s · dy1

y1
∧ dx2 ∧ . . . ∧ dxa

(for example) is an eigenvector with eigenvalue ei if and only if the same holds
true for s, i.e. if s ∈ OX · yi1. If φ has no poles, s must be divisible by y1. This
condition is automatically satisfied as long as i > 0. For i = 0 it implies that
s must be divisible by yN1 = x1.

The map ∇i can be described locally as well. If

s = t · yi1 ∈ OX · yi1

then on Y one has
ds = yi1 · dt+ t · dyi1

and therefore d respects the eigenspaces and ∇i is given by

∇i(s) = (dt+
i

N
· tdx1

x1
) · yi1.

If Res : Ω1
X(log H) −−→ OH denotes the residue map, one obtains in addition

that
(Res ⊗ idA−1) ◦ ∇1 : A−1 −−→ OH ⊗A−1

is the OX -linear map

s 7−→ 1
N
s |H .

Since d : Hb(Y,OY ) −−→ Hb(Y,Ω1
Y ) is the zero map, the direct summand

∇1 : Hb(X,A−1) −−→ Hb(X,Ω1
X(log D)⊗A−1)

is the zero map as well as the restriction map

N · (Res ⊗ idA−1) ◦ ∇1 : Hb(X,A−1) −−→ Hb(H,OH ⊗A−1).
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Hence, for all b we have a surjection

Hb(X,A−N−1) = Hb(X,OX(−H)⊗A−1) −−→ Hb(X,A−1).

Using Serre duality and (1.1) however, Hb(X,A−N−1) = 0 for b < n and N
sufficiently large.

2

Again, the proof of (1.2) gives a little bit more:

If A is an invertible sheaf such that AN = OX(H) for a non-singular divi-
sor H, then the restriction map

Hb(X,A−1) −−→ Hb(H,OH ⊗A−1)

is zero.

This statement is a special case of J. Kollár’s vanishing theorem
([40], see (5.6,a)).

The main theme of the first part of these notes will be to extend the
methods sketched above to a more general situation:
If one allows Y to be any cyclic cover of X whose ramification divisor is a
normal crossing divisor, one obtains vanishing theorems for the cohomology
(or for the restriction maps in cohomology) of a larger class of locally free
sheaves.
Or, taking a more axiomatic point of view, one can consider locally free sheaves
E with logarithmic connections

∇ : E −−→ Ω1
X(log H)⊗ E

and ask which proporties of ∇ and H force cohomology groups of E to vanish.
The resulting “vanishing theorems for integral parts of Ql -divisors” (5.1) and
(6.2) will imply several generalizations of the Kodaira-Nakano vanishing the-
orem (see Lectures 5 and 6), especially those obtained by Mumford, Grauert
and Riemenschneider, Sommese, Bogomolov, Kawamata, Kollár ......

However, the approach presented above is using (beside of algebraic
methods) the Hodge theory of projective manifolds, more precisely the degen-
eration of the Hodge to de Rham spectral sequence

Eab1 = Hb(Y,ΩaY (log D)) =⇒ IHa+b(Y,Ω•Y (log D))

again a result which for a long time could only be deduced from complex ana-
lytic differential geometry.

Both, the vanishing theorems and the degeneration of the Hodge to de
Rham spectral sequence do not hold true for manifolds defined over a field
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of characteristic p > 0. However, if Y and D both lift to the ring of the sec-
ond Witt-vectors (especially if they can be lifted to characteristic 0) and if
p ≥ dim X, P. Deligne and L. Illusie were able to prove the degeneration (see
[12]). In fact, contrary to characteristic zero, they show that the degeneration
is induced by some local splitting:

If Fk and FY are the absolute Frobenius morphisms one obtains the geometric
Frobenius by

Y
F−−−−→ Y ′ = Y×Spec kSpec k σ−−−−→ Y

Z
ZZ~

y y
Spec k Fk−−−−→ Spec k

with FY = σ ◦F . If we write D′ = (σ∗D)red then, roughly speaking, they show
that F∗(Ω•Y (log D)) is quasi-isomorphic to the complex⊕

a

ΩaY ′(log D′)[−a]

with ΩaY ′(log D′) in degree a and with trivial differentials.

By base change for σ one obtains

dim IHk(Y,Ω•Y (log D)) =
∑
a+b=k

dim Hb(Y ′,ΩaY ′(log D′))

=
∑
a+b=k

dim Hb(Y,ΩaY (log D)).

Base change again allows to lift this result to characteristic 0.

Adding this algebraic proof, which can be found in Lectures 8 - 10, to
the proof of (1.2) and its generalizations (Lectures 2 - 6) one obtains algebraic
proofs of most of the vanishing theorems mentioned.

However, based on ideas of M. Raynaud, Deligne and Illusie give in [12] a
short and elegant argument for (1.3) in characteristic p (and, by base change,
in general):
By Serre’s vanishing theorem one has for some m� 0

Hb(Y,ΩaY ⊗A−p
ν

) = 0 for ν ≥ (m+ 1)

and a + b < n, where A is ample on Y . One argues by descending induction
on m:
As

Ap
(m+1)

= F ∗(A′p
m

) for A′ = σ∗A
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and as Ω•Y is a OY ′ complex, Ω•Y ⊗A−p
(m+1)

is a complex of OY ′ sheaves with

IHk(Y,Ω•Y ⊗A−p
m+1

) = 0 for k < n.

However one has

F∗(Ω•Y ⊗A−p
m+1

) =
⊕
a

ΩaY ′ ⊗A′
−pm [−a]

and
0 = Hb(Y ′,ΩaY ′ ⊗A′

−pm) = Hb(Y,ΩaY ⊗A−p
m

)

for a+ b < n.
Unfortunately this type of argument does not allow to weaken the as-

sumptions made in (1.2) or (1.3). In order to deduce the generalized vanishing
theorems from the degeneration of the Hodge to de Rham spectral sequence in
characteristic 0 we have to use H. Hironaka’s theory of embedded resolution
of singularities, at present a serious obstruction for carrying over arguments
from characteristic 0 to characteristic p. Even the Grauert-Riemenschneider
vanishing theorem (replace “ample” in (1.2) by “semi-ample of maximal Iitaka
dimension”) has no known analogue in characteristic p (see §11).

M. Green and R. Lazarsfeld observed, that “ample” in (1.2) can some-
times be replaced by “numerically trivial and sufficiently general”. To be more
precise, they showed that Hb(X,N−1) = 0 for a general element N ∈ Pic0(X)
if b is smaller than the dimension of the image of X under its Albanese map

α : X −−→ Alb(X).

By Hodge-duality (for Hodge theory with values in unitary rank one bundles)
Hb(X,N−1) can be identified with H0(X,ΩbX ⊗ N ). If Hb(X,N−1) 6= 0 for
all N ∈ Pic0(X) the deformation theory for cohomology groups, developed by
Green and Lazarsfeld, implies that for all ω ∈ H0(X,Ω1

X) the wedge product

H0(X,ΩbX ⊗N ) −−→ H0(X,Ωb+1
X ⊗N )

is non-trivial. This however implies that the image of X under the Albanese
map, or equivalently the subsheaf of Ω1

X generated by global sections is small.
For example, if

Sb(X) = {N ∈ Pic0(X); Hb(X,N−1) 6= 0},

then the first result of Green and Lazarsfeld says that

codimPic0(X)(Sb(X)) ≥ dim(α(X))− b.

It is only this part of their results we include in these notes, together with some
straightforward generalizations due to H. Dunio [14] (see Lectures 12 and 13).
The more detailed description of Sb(X), due to Beauville [5], Green-Lazarsfeld
[27] and C. Simpson [58] is just mentioned, without proof, at the end of Lecture
13.
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§ 2 Logarithmic de Rham complexes

In this lecture we want to start with the definition and simple properties of
the sheaf of (algebraic) logarithmic differential forms and of sheaves with loga-
rithmic integrable connections, developed in [10]. The main examples of those
will arise from cyclic covers (see Lecture 3). Even if we stay in the algebraic
language, the reader is invited (see 2.11) to compare the statements and con-
structions with the analytic case.

Throughout this lecture X will be an algebraic manifold, defined over
an algebraically closed field k, and D =

∑r
j=1Dj a reduced normal crossing

divisor, i.e. a divisor with non-singular components Dj intersecting each other
transversally.

We write τ : U = X −D −−→ X and

ΩaX(∗D) = lim
−−→
ν

ΩaX(ν ·D) = τ∗ΩaU .

Of course (Ω•X(∗D), d) is a complex.

2.1. Definition. ΩaX(log D) denotes the subsheaf of ΩaX(∗D) of differential
forms with logarithmic poles along D, i.e.: if V ⊆ X is open, then

Γ(V,ΩaX(log D)) =

{ α ∈ Γ(V,ΩaX(∗D)); α and dα have simple poles along D}.

2.2. Properties.
a)

(Ω•X(log D), d) ↪→ (Ω•X(∗D), d).

is a subcomplex.
b)

ΩaX(log D) =
a∧

Ω1
X(log D)

c) ΩaX(log D) is locally free. More precisely:
For p ∈ X, let us say with p ∈ Dj for j = 1, . . . , s and p 6∈ Dj for j = s+1, . . . , r,
choose local parameters f1, . . . , fn in p such that Dj is defined by fj = 0 for
j = 1, . . . , s. Let us write

δj =

{
dfj
fj

if j ≤ s
dfj if j > s
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and for I = {j1, . . . , ja} ⊂ {1, . . . , n} with j1 < j2 . . . < ja

δI = δj1 ∧ . . . ∧ δja .

Then {δI ; ]I = a} is a free system of generators for ΩaX(log D).

Proof: (see [10], II, 3.1 - 3.7). a) is obvious and b) follows from the explicite
form of the generators given in c).
Since δj is closed, δI is a local section of ΩaX(log D). By the Leibniz rule the
OX -module Ω spanned by the δI is contained in ΩaX(log D). Ω is locally free
and, in order to show that Ω = ΩaX(log D) it is enough to consider the case
s = 1. Each local section α ∈ ΩaX(∗D) can be written as

α = α1 + α2 ∧
df1

f1
,

where α1 and α2 lie in ΩaX(∗D) and Ωa−1
X (∗D) and where both are in the

subsheaves generated over O(∗D) by wedge products of df2, . . . , dfn.
α ∈ ΩaX(log D) implies that

f1 · α = f1 · α1 + α2 ∧ df1 ∈ ΩaX and f1dα = f1dα1 + dα2 ∧ df1 ∈ Ωa+1
X .

Hence α2 as well as f1α1 are without poles. Since

d(f1α1) = df1 ∧ α1 + f1dα1 = df1 ∧ α1 + f1dα− dα2 ∧ df1

the form df1 ∧ α1 has no poles which implies α1 ∈ ΩaX .
2

Using the notation from (2.2,c) we define

α : Ω1
X(log D) −−→

s⊕
j=1

ODj

by

α(
n∑
j=1

ajδj) =
s⊕
j=1

aj |Dj .

For a ≥ 1 we have correspondingly a map

β1 : ΩaX(log D) −−→ Ωa−1
D1

(log (D −D1)|D1)

given by:
If ϕ is a local section of ΩaX(log D), we can write

ϕ = ϕ1 + ϕ2 ∧
df1

f1
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where ϕ1 lies in the span of the δI with 1 6∈ I and

ϕ2 =
∑
1∈I

aIδI−{1}.

Then
β1(ϕ) = β1(ϕ2 ∧

df1

f1
) =

∑
aIδI−{1}|D1 .

Of course, βi will denote the corresponding map for the i-th component. Fi-
nally, the natural restriction of differential forms gives

γ1 : ΩaX(log (D −D1)) −−→ ΩaD1
(log (D −D1)|D1).

Since the sheaf on the left hand side is generated by

{f1 · δI ; 1 ∈ I} ∪ {δI ; 1 6∈ I}

we can describe γ1 by

γ1(
∑
1∈I

f1aIδI +
∑
1 6∈I

aIδI) =
∑
1 6∈I

aIδI |D1 .

Obviously one has

2.3. Properties. One has three exact sequences:
a)

0→ Ω1
X −−→ Ω1

X(log D) α−−→
r⊕
j=1

ODj → 0.

b)

0→ ΩaX(log (D −D1)) −−→ ΩaX(log D)
β1−−→ Ωa−1

D1
(log (D −D1)|D1)→ 0.

c)

0→ ΩaX(log D)(−D1) −−→ ΩaX(log (D−D1))
γ1−−→ ΩaD1

(log (D−D1)|D1)→ 0.

By (2.2,b) (Ω•X(log D), d) is a complex. It is the most simple example of a
logarithmic de Rham complex.

2.4. Definition. Let E be a locally free coherent sheaf on X and let

∇ : E −−→ Ω1
X(log D)⊗ E

be a k-linear map satisfying

∇(f · e) = f · ∇(e) + df ⊗ e.
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One defines
∇a : ΩaX(log D)⊗ E −−→ Ωa+1

X (log D)⊗ E

by the rule
∇a(ω ⊗ e) = dω ⊗ e+ (−1)a · ω ∧∇(e).

We assume that ∇a+1 ◦ ∇a = 0 for all a. Such ∇ will be called an integrable
logarithmic connection along D, or just a connection. The complex

(Ω•X(log D)⊗ E ,∇•)

is called the logarithmic de Rham complex of (E ,∇).

2.5. Definition. For an integrable logarithmic connection

∇ : E −−→ Ω1
X(log D)⊗ E

we define the residue map along D1 to be the composed map

ResD1(∇) : E ∇−−→ Ω1
X(log D)⊗ E β′1=β1⊗idE−−−−−−−→ OD1 ⊗ E .

2.6. Lemma.
a) ResD1(∇) is OX-linear and it factors through

E restr.−−−−→ OD1 ⊗ E −−→ OD1 ⊗ E

where restr. the restriction of E to D1. By abuse of notations we will call the
second map ResD1(∇) again.
b) One has a commutative diagram

ΩaX(log (D −D1))⊗ E (∇a)◦(incl.)−−−−−−−−→ Ωa+1
X (log D)⊗ Eyγ1⊗idE

yβ1⊗idE=β′1

ΩaD1
(log (D −D1) |D1)⊗ E

((−1)a·id)⊗ResD1 (∇)
−−−−−−−−−−−−−−→ ΩaD1

(log (D −D1) |D1)⊗ E

Proof: a) We have

∇(g · e) = g · ∇(e) + dg ⊗ e and β′1(∇(g · e)) = g · β′1(∇(e)).

If f1 divides g then g · β′1(∇(e)) = 0.
b) For ω ∈ ΩaX(log (D −D1)) and e ∈ E we have

β′1(∇a(ω ⊗ e)) = β′1(dω ⊗ e+ (−1)a · ω ∧∇(e))

= β′1((−1)a · ω ∧∇(e)).
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If ω = f1 · aI · δI for 1 ∈ I, then

(−1)aω ∧∇(e) ∈ Ωa+1
X (log D)(−D1)

and β′1(∇a(ω ⊗ e)) = 0. On the other hand, γ1(ω)⊗ e = 0 by definition.
If ω = aIδI for 1 6∈ I, then

γ1(ω)⊗ e = aI · δI |D1 ⊗e

and
β′1((−1)aω ∧∇(e)) = (−1)aω|D1 ⊗ ResD1(∇)(e).

2

2.7. Lemma. Let

B =
r∑
j=1

µjDi

be any divisor and (∇, E) as in (2.4). Then ∇ induces a connection ∇B with
logarithmic poles on

E ⊗ OX(B) = E(B)

and the residues satisfy

ResDj (∇B) = ResDj (∇)− µj · idDj .

Proof: A local section of E(B) is of the form

σ =
s∏
j=1

f
−µj
j · e

and

∇B(σ) =
s∏
j=1

f
−µj
j ∇(e) + d(

s∏
j=1

f
−µj
j )⊗ e =

=
s∏
j=1

f
−µj
j ∇(e) +

s∑
k=1

(
s∏
j=1

f
−µj
j ) · (−µk)

dfk
fk
⊗ e.

Hence ∇B : E(B) −−→ Ω1
X(log D)⊗ E(B) is well defined. One obtains

ResD1(∇B(σ)) =
s∏
j=1

f
−µj
j ResD1(∇(e)) +

s∏
j=1

f
−µj
j (−µ1)⊗ e |D1 .

2
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2.8. Definition. a) We say that (∇, E) satisfies the condition (∗) if for all
divisors

B =
r∑
j=1

µjDj ≥ D

and all j = 1 . . . r one has an isomorphism of sheaves

ResDj (∇B) = ResDj (∇)− µj · idDj : E |Dj−−→ E |Dj .

b) We say that (∇, E) satisfies the condition (!) if for all divisors

B =
r∑
j=1

−νjDj ≤ 0

and all j = 1, . . . , r

ResDj (∇B) = ResDj (∇) + νj · idDj : E |Dj−−→ E |Dj

is an isomorphism of sheaves.

In other words, (∗) means that no µj ∈ ZZ, µj ≥ 1, is an eigenvalue of ResDj (∇)
and (!) means the same for µj ∈ ZZ, µj ≤ 0. We will see later, that (∗) and (!)
are only of interest if char (k) = 0.

2.9. Properties.
a) Assume that (E ,∇) satisfies (∗) and that B =

∑
µjDj ≥ 0. Then the

natural map

(Ω•X(log D)⊗ E ,∇•) −−→ (Ω•X(log D)⊗ E(B),∇B• )

between the logarithmic de Rham complexes is a quasi-isomorphism.
b) Assume that (E ,∇) satisfies (!) and that B =

∑
−µjDj ≤ 0. Then the

natural map

(Ω•X(log D)⊗ E(B),∇B• ) −−→ (Ω•X(log D)⊗ E ,∇•)

between the logarithmic de Rham complexes is a quasi-isomorphism.

(2.9) follows from the definition of (∗) and (!) and from:

2.10. Lemma. For (E ,∇) as in (2.4) assume that

ResD1(∇) : E |D1−−→ E |D1

is an isomorphism. Then the inclusion of complexes

(Ω•X(log D)⊗ E(−D1),∇−D1
• ) −−→ (Ω•X(log D)⊗ E ,∇•)

is an quasi-isomorphism.
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Proof: Consider the complexes E(ν):

E(−D1) −−→ Ω1
X(log D)⊗ E(−D1) −−→ . . . −−→ Ων−1

X (log D)⊗ E(−D1) −−→

−−→ ΩνX(log (D −D1))⊗ E −−→ Ων+1
X (log D)⊗ E −−→ . . . −−→ ΩnX(log D)⊗ E

We have an inclusion
E(ν+1) −−→ E(ν)

and, by (2.6,b) the quotient is the complex

0 −−→ ΩνD1
(log (D−D1)|D1)⊗E

(−1)ν⊗ResD1 (∇)
−−−−−−−−−−−→ ΩνD1

(log (D−D1)|D1)⊗E −−→ 0

Since the quotient has no cohomology all the E(ν) are quasi-isomorphic, espe-
cially E(0) and E(n), as claimed.

2

2.11. The analytic case

At this point it might be helpful to consider the analytic case for a moment: E is a
locally free sheaf over the sheaf of analytic functions OX ,

∇ : E −−→ Ω1
X(log D)⊗ E

is a holomorphic and integrable connection. Then ker(∇ |U ) = V is a local constant
system. If (∗) holds true, i.e. if the residues of ∇ along the Dj do not have strictly
positive integers as eigenvalues, then (see [10], II, 3.13 and 3.14)

(Ω•X(log D)⊗ E ,∇•)

is quasi-isomorphic to Rτ∗V . By Poincaré-Verdier duality (see [20], Appendix A) the
natural map

τ!V
∨ −−→ (Ω•X(log D)⊗ E∨(−D),∇∨• )

is a quasi-isomorphism. Hence (!) implies that the natural map

τ!V −−→ (Ω•X(log D)⊗ E , ∇•)

is a quasi-isomorphism as well. In particular, topological properties of U give vanish-
ing theorems for

IHl(X,Ω•X(log D)⊗ E)

and for some l. More precisely, if we choose r(U) to be the smallest number that
satisfies:

For all local constant systems V on U one has Hl(U, V ) = 0 for l >
n+ r(U),

then one gets:

2.12. Corollary.
a) If (E ,∇) satisfies (∗), then for l > n+ r(U)

IHl(X,Ω•X(log D)⊗ E) = Hl(U, V ) = 0.

b) If (E ,∇) satisfies (!), then for l < n− r(U)

IHl(X,Ω•X(log D)⊗ E) = Hl
c(U, V ) = 0.
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By GAGA (see [56]), (2.12) remains true if we consider the complex of algebraic

differential forms over the complex projective manifold X, even if the number r(U)

is defined in the analytic topology.

(2.12) is of special interest if both, (∗) and (!), are satisfied, i.e. if none of the eigen-

values of ResDj (∇) is an integer. Examples of such connections can be obtained,

analytically or algebraically, by cyclic covers.

If U is affine (or a Stein manifold) one has r(U) = 0. For U affine there is no need to

use GAGA and analytic arguments. Considering blowing ups and the Leray spectral

sequence one can obtain (2.12) for algebraic sheaves from:

2.13. Corollary. Let X be a projective manifold defined over the algebraically
closed field k. Let B be an effective ample divisor, D = Bred a normal crossing
divisor and (E ,∇) a logarithmic connection with poles along D (as in (2.4)).
a) If (E ,∇) satisfies (∗), then for l > n

IHl(X,Ω•X(log D)⊗ E) = 0.

b) If (E ,∇) satisfies (!), then for l < n

IHl(X,Ω•X(log D)⊗ E) = 0.

Proof: (2.9) allows to replace E by E(N · B) in case a) or by E(−N · B) in
case b) for N > 0. By Serre’s vanishing theorem (1.1) we can assume that

Hb(X,ΩaX(log D)⊗ E) = 0

for a + b = l. The Hodge to de Rham spectral sequence (see (A.25)) implies
(2.13).

2

§ 3 Integral parts of Ql -divisors and coverings

Over complex manifolds the Riemann Hilbert correspondence obtained by
Deligne [10] is an equivalence between logarithmic connections (E ,∇) and rep-
resentations of the fundamental group π1(X−D). For applications in algebraic
geometry the most simple representations, i.e. those who factor through cyclic
quotient groups of π1(X − D), turn out to be useful. The induced invert-
ible sheaves and connections can be constructed directly as summands of the
structure sheaves of cyclic coverings. Those constructions remain valid for all
algebraically closed fields.

Let X be an algebraic manifold defined over the algebraically closed
field k.
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3.1. Notation. a) Let us write Div(X) for the group of divisors on X and

DivQl (X) = Div(X)⊗ZZ Ql .

Hence a Ql -divisor ∆ ∈ DivQl (X) is a sum

∆ =
r∑
j=1

αjDj

of irreducible prime divisors Dj with coefficients αj ∈ Ql .
b) For ∆ ∈ DivQl (X) we write

[∆] =
r∑
j=1

[αj ] ·Dj

where for α ∈ Ql , [α] denotes the integral part of α, defined as the only integer
such that

[α] ≤ α < [α] + 1.

[∆] will be called the integral part of ∆.
c) For an invertible sheaf L, an effective divisor

D =
r∑
j=1

αjDj

and a positive natural number N , assume that LN = OX(D). Then we will
write for i ∈ IN

L(i,D) = Li(−[
i

N
D]) = Li ⊗OX(−[

i

N
·D]).

Usually N and D will be fixed and we just write L(i) instead of L(i,D).
d) If

D =
r∑
j=1

αjDj

is a normal crossing divisor, we will write, for simplictiy,

ΩaX(log D) instead of ΩaX(log Dred).

In spite of their strange definition the sheaves L(i) will turn out to be related
to cyclic covers in a quite natural way. We will need this to prove:

3.2. Theorem. Let X be a projective manifold,

D =
r∑
j=1

αjDj
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be an effective normal crossing divisor, L an invertible sheaf and N ∈ IN−{0}
prime to char(k), such that LN = OX(D). Then for i = 0, . . . , N −1 the sheaf
L(i)−1

has an integrable logarithmic connection

∇(i) : L(i)−1
−−→ Ω1

X(log D(i))⊗ L(i)−1

with poles along D(i) =
r∑
j=1

i·αj
N 6∈ZZ

Dj ,

satisfying:
a) The residue of ∇(i) along Dj is given by multiplication with

(i · αj −N · [
i · αj
N

]) ·N−1 ∈ k.

b) Assume that either char(k) = 0, or, if char(k) = p 6= 0, that X and D
admit a lifting to W2(k) (see (8.11)) and that p ≥ dim X. Then the spectral
sequence

Eab1 = Hb(X,ΩaX(log D(i))⊗ L(i)−1
) =⇒ IHa+b(X,Ω•X(log D(i))⊗ L(i)−1

)

associated to the logarithmic de Rham complex

(Ω•X(log D(i))⊗ L(i)−1
,∇(i)
• )

degenerates in E1.
c) Let A and B be reduced divisors (both having the lifting property (8.11) if
char(k) = p 6= 0) such that B,A and D(i) have pairwise no commom com-
ponents and such that A + B + D(i) is a normal crossing divisor. Then ∇(i)

induces a logarithmic connection

OX(−B)⊗ L(i)−1
−−→ Ω1

X(log (A+B +D(i)))(−B)⊗ L(i)−1

and under the assumptions of b) the spectral sequence

Eab1 = Hb(X,ΩaX(log (A+B +D(i)))(−B)⊗ L(i)−1
) =⇒

IHa+b(X,Ω•X(log (A+B +D(i)))(−B)⊗ L(i)−1
)

degenerates in E1 as well.

3.3. Remarks. a) In (3.2), whenever one likes, one can assume that i = 1. In
fact, one just has to replace L by L′ = Li and D by D′ = i ·D .Then

L′N = OX(i ·D) = OX(D′)

and

L′
(1,D′)

= L′(−[
D′

N
]) = Li(−[

i

N
D]).
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b) Next, one can always assume that 0 < αj < N . In fact, if α1 ≥ N , then

L′ = L(−D1) and D′ = D −N ·D1

give the same sheaves as L and D:

L′
(i,D′)

= Li(−i ·D1 − [
i

N
·D′]) = Li(−[

i

N
·D]).

c) In particular, for i = 1 and 0 < aj < N we have

L(1) = L and D(1) = D.

Nevertheless, in the proof of (3.2) we stay with the notation, as started.
d) Finally, for i ≥ N one has

L(i,D) = Li(−[
i

N
·D]) = Li−N (−[

i−N
N

·D]) = L(i−N,D).

The “L(i)” are the most natural notation for “integral parts of Ql - divisors”
if one wants to underline their relations with coverings. In the literature one
finds other equivalent notations, more adapted to the applications one has in
mind:

3.4. Remarks.
a) Sometimes the integral part [∆] is denoted by b∆c.
b) One can also consider the round up {∆} = d∆e given by

{∆} = −[−∆]

or the fractional part of ∆ given by

< ∆ >= ∆− [∆].

c) For L, N and D as in (3.1,c) one can write

L = OX(C)

for some divisor C. Then

∆ = C − 1
N
·D ∈ DivQl (X)

has the property that N ·∆ is a divisor linear equivalent to zero. One has

L(i,D) = OX(i · C − [
i

N
·D]) = OX(−[−i ·∆]) = OX({i ·∆}).

d) On the other hand, for ∆ ∈ DivQ(X) and N > 0 assume that N · ∆ is a
divisor linear equivalent to zero. Then one can choose a divisor C such that
C −∆ is effective. For L = OX(C) and D = N ·C −N ·∆ ∈ Div(X) one has

LN = OX(N · C) = OX(D)



22 H. Esnault, E. Viehweg: Lectures on Vanishing Theorems

and
L(i,D) = OX(i · C − [

i

N
D]) =

OX(−[−i · C +
i

N
·D]) = OX({i ·∆}).

e) Altogether, (3.2) is equivalent to:

For ∆ ∈ DivQl (X) such that N ·∆ is a divisor linear equivalent to zero, assume
that < ∆ > is supported in D and that D is a normal crossing divisor. Then
OX({∆}) has a logarithmic integrable connection with poles along D which
satisfies a residue condition similar to (3.2,a) and the E1-degeneration.

We leave the exact formulation and the translation as an exercise.

3.5. Cyclic covers. Let L, N and

D =
r∑
j=1

αjDj

be as in (3.1,c) and let s ∈ H0(X,LN ) be a section whose zero divisor is D.
The dual of

s : OX −−→ LN , i.e. s∨ : L−N −−→ OX ,

defines a OX -algebra structure on

A′ =
N−1⊕
i=0

L−i.

In fact,

A′ =
∞⊕
i=0

L−i/I

where I is the ideal-sheaf generated locally by

{s∨(l)− l, l local section of L−N}.

Let

Y ′ = SpecX(A′)
π′

−−→ X

be the spectrum of the OX -algebra A′, as defined in [30], page 128, for exam-
ple.
Let π : Y → X be the finite morphism obtained by normalizing Y ′ → X. To
be more precise, if Y ′ is reducible, Y will be the disjoint union of the nor-
malizations of the components of Y ′ in their function fields. We will call Y the
cyclic cover obtained by taking the n-th root out of s (or out of D, if L is fixed).

Obviously one has:



§ 3 Integral parts of Ql -divisors and coverings 23

3.6. Claim. Y is uniquely determined by:
a) π : Y → X is finite.
b) Y is normal.
c) There is a morphism φ : A′ → π∗OY of OX -algebras, isomorphic over some
dense open subscheme of X.

3.7. Notations. For D, N and L as in (3.1,c) let us write

A =
N−1⊕
i=0

L(i)−1
.

The inclusion
L−i −−→ L(i)−1

= L−i([ i
N
·D])

gives a morphism of OX -modules

φ : A′ −−→ A.

3.8. Claim. A has a structure of an OX -algebra, such that φ is a homomor-
phism of algebras.

Proof: The multiplication in A′ is nothing but the multiplication

L−i × L−j −−→ L−i−j

composed with s∨ : L−i−j −−→ L−i−j+N ,

in case that i+ j ≥ N . For i, j ≥ 0 one has

[
i

N
·D] + [

j

N
·D] ≤ [

i+ j

N
·D]

and, for i+ j ≥ N , one has

L(i+j) = Li+j(−[
i+ j

N
·D]) = Li+j−N (−[

i+ j −N
N

·D]) = L(i+j−N).

This implies that the multiplication of sections

L(i)−1
× L(j)−1

−−→ L−i−j([ i
N
D] + [

j

N
D]) −−→ L(i+j)−1

is well defined, and that for i + j ≥ N the right hand side is nothing but
L(i+j−N)−1

.
2

3.9.

Assume that N is prime to char(k), e a fixed primitive N -th root of unit and
G =< σ > the cyclic group of order N . Then G acts on A by OX -algebra



24 H. Esnault, E. Viehweg: Lectures on Vanishing Theorems

homomorphisms defined by:

σ(l) = ei · l for a local section l of L(i)−1
⊂ A.

Obviously the invariants under this G-action are

AG = OX .

3.10. Claim. Assume that N is prime to char(k). Then

A = π∗OY or (equivalently) Y = Spec(A) .

3.11. Corollary (see [16]). The cyclic group G acts on Y and on π∗OY . One
has Y/G = X and the decomposition

π∗OY =
N−1⊕
i=0

L(i)−1

is the decomposition in eigenspaces.

Proof of 3.10.: For any open subvariety X0 in X with codimX(X−X0) ≥ 2
and for Y0 = π−1(X0) consider the induced morphisms

Y0
ι′−−−−→ Y

π0

y yπ
X0

ι−−−−→ X

Since Y is normal one has ι′∗OY0 = OY and π∗OY = ι∗π0∗OY0 . Since A is
locally free, (3.10) follows from

π0∗OY0 = A|X0 .

Especially we may choose X0 = X − Sing(Dred) and, by abuse of notations,
assume from now on that Dred is non-singular.

As remarked in (3.6) the equality of A and π∗OY follows from:

3.12. Claim. Spec (A) −−→ X is finite and Spec(A) is normal.

Proof: (3.12) is a local statement and to prove it we may assume that
X = Spec B and that D consists of just one component, say D = α1 ·D1. Let
us fix isomorphisms Li ' OX for all i and assume that D1 is the zero set of
f1 ∈ B. For some unit u ∈ B∗ the section s ∈ H0(X,LN ) ' B is identified
with f = u · fα1

1 . For completeness, we allow D (or α1) to be zero.
The OX -algebra A′ is given by the B-algebra

H0(X,A′) =
N−1⊕
i=0

H0(X,L−i)
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which can be identified with the quotient of the ring of polynomials

A′ = B[t]/tN−f =
N−1⊕
i=0

B · ti.

In this language

A =
N−1⊕
i=0

B · ti · f−[ iN α1]
1 =

N−1⊕
i=0

H0(X,L(i)−1
) = H0(X,A)

and φ : A′ → A induces the natural inclusion A′ ↪→ A.

Hence (3.12) follows from the first part of the following claim.
2

3.13. Claim. Using the notations introduced above, assume that N is prime
to char(k). Then one has
a) Spec A is non-singular and π : Spec A −−→ Spec B is finite.
b) If α1 = 0, then Spec A −−→ Spec B is non-ramified (hence étale).
c) if α1 is prime to N , we have a defining equation g ∈ A for ∆1 = (π∗D1)red
with

gN = ua · f1 for some a ∈ IN.

d) If Γ is a divisor in Spec B such that D + Γ has normal crossings, then
π∗(D + Γ) has normal crossings as well.

Proof: Let us first consider the case α1 = 0. Then

A′ = A = B[t]/tN−u

for u ∈ B∗. A is non-singular, as follows, for example, from the Jacobi-criterion,
and A is unramified over B. Hence

Spec A −−→ Spec B

is étale in this case and a), b) and d) are obvious.

If α1 = 1 , then again
A′ = A = B[t]/tN−u·f1 .

For p ∈ SpecB, choose f2, . . . , fn such that f1·u, f2, . . . , fn is a local parameter-
system in p. Then t, f2, . . . , fn will be a local parameter system, for q = π−1(p) .

Similar, if α1 is prime to N , and if c) holds true, g and f2, . . . , fn will be
a local parameter system in q and, composing both steps, Spec A will always
be non-singular and d) holds true.
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Let us consider the ring

R = B[t0, t1]/tN0 −u,tN1 −f1
.

Identifying t with t0 ·tα1
1 we obtain A′ as a subring of R. Spec R is non-singular

over p and Spec R −−→ Spec B is finite.

The group H =< σ0 > ⊕ < σ1 > with ord (σ0) = ord (σ1) = N operates
on R by

σν(tµ) =
{
tµ if ν 6= µ
e · tµ if ν = µ

Let H ′ be the kernel of the map γ : H −−→ G =< σ > given by γ(σ0) = σ and
γ(σ1) = σα1 . The quotient

Spec (R)/H′ = Spec RH
′

is normal and finite over Spec B.
One has (σµ0 , σ

ν
1 ) ∈ H ′, if and only if µ + να1 ≡ 0 mod N . Hence RH

′
is

generated by monomials ta0 · tb1 where a, b ∈ {0, . . . , N − 1} satisfy:

(∗) aµ+ bν ≡ 0 mod N for all (µ, ν) with µ+ α1ν ≡ 0 mod N .

Obviously, (∗) holds true for (a, b) if b ≡ a · α1 mod N . On the other hand,
choosing ν to be a unit in ZZ/N , (∗) implies that b ≡ a · α1 mod N .

Hence, for all (a, b) satisfying (∗) we find some k with b = a · α1 + k · N .
Since a, b ∈ {0, . . . , N − 1} we have

a · α1

N
≥ −k =

a · α1

N
− b

N
>
a · α1

N
− 1

or k = −[a·α1
N ].

Therefore one obtains

RH
′

=
N−1⊕
a=0

ta0 · t
a·α1−N ·[

a·α1
N ]

1 ·B =
N−1⊕
a=0

(t0 · tα1
1 )a · f−[

a·α1
N ]

1 ·B

and hence RH
′

=
N−1⊕
a=0

ta · f−[
a·α1
N ]

1 ·B = A.

If α1 is prime to N , we can find a ∈ {0, . . . , N − 1} with a ·α1 = 1 + l ·N for
l ∈ ZZ. Then

a · α1 −N · [
a · α1

N
] = 1
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and g = ta · f−[
a·α1
N ]

1 satisfies

gN = ua · fa·α1−N [
a·α1
N ]

1 = ua · f1.

2

3.14. Remarks.
a) If Y is irreducible, for example if D is reduced, the local calculation shows
Y is nothing but the normalisation of X in k(X)( N

√
f), where f is a rational

function giving the section s.
b) π′ : Y ′ −−→ X can be as well described in the following way (see [30], p.
128-129):
Let V(L−α) = Spec (

⊕∞
i=0 L−α) be the geometric rank one vector bundle

associated to L−α. The geometric sections of V(L−α) −−→ X correspond to
H0(X,Lα). Hence s gives a section σ of V(L−N ) over X. We have a natural
map

τ : V(L−1) −−→ V(L−N )

and Y ′ = τ−1(σ(X)).

The local computation in (3.13) gives a little bit more information than asked
for in (3.12):

3.15. Lemma. Keeping the notations and assumptions from (3.5) assume that
N is prime to char(k). Then one has
a) Y is reducible, if and only if for some µ > 1, dividing N , there is a section
s′ in H0(X,L

N
µ ) with s = s′µ.

b) π : Y → X is étale over X −Dred and Y is non-singular over
X − Sing(Dred).
c) For ∆j = (π∗Dj)red we have

π∗D =
r∑
j=1

N · αj
gcd(N,αj)

·∆j .

d) If Y is irreducible then the components of ∆j have over Dj the ramification
index

ej =
N

gcd(N,αj)
.

Proof: For a) we can consider the open set Spec B ⊂ X − Dred. Hence
Spec B[t]/tN−u is in Y dense and open. Y is reducible if and only if tN − u
is reducible in B[t], which is equivalent to the existence of some u′ ∈ B with
u = u′

µ

.
b) has been obtained in (3.13) part a) and b).
For c) and d) we may assume that D = α1 ·D1 and, splitting the covering in
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two steps, that either N divides α1 or that N is prime to α1.
In the first case, we can as well choose α1 to be zero (by 3.3,b) and c) as well
as d) follow from part b).
If α1 is prime to N ,then π∗D = e1 · α1 · ∆1. Since π∗D is the zero locus of
f = tN , N divides e1 ·α1. On the other hand, since e1 divides deg (Y/X) = N ,
one has e1 = N in this case.

2

3.16. Lemma. Keeping the notations from (3.5) assume that N is prime to
char(k) and that Dred is non-singular. Then one has:
a) (Hurwitz’s formula) π∗ΩbX(log D) = ΩbY (log (π∗D)).
b) The differential d on Y induces a logarithmic integrable connection

π∗(d) :
N−1⊕
i=0

L(i)−1
−−→ π∗Ω1

Y (log (π∗D)) =
N−1⊕
i=0

Ω1
X(log D)⊗ L(i)−1

,

compatible with the direct sum decomposition.
c) If ∇(i) : L(i)−1 −−→ Ω1

X(log D)⊗L(i)−1
denotes the i-th component of π∗(d)

then ∇(i) is a logarithmic integrable connection with residue

ResDj (∇(i)) = (
i · αj
N
− [

i · αj
N

]) · idODj .

d) One has

π∗(ΩbY ) =
N−1⊕
i=0

ΩbX(log D(i))⊗ L(i)−1
for D(i) =

r∑
j=1

i·αj
N ∈Ql −ZZ

Dj .

e) The differential

π∗(d) : π∗OY =
N−1⊕
i=0

L(i)−1
−−→ π∗(Ω1

Y ) =
N−1⊕
i=0

Ω1
X(log D(i))⊗ L(i)−1

decomposes into a direct sum of

∇(i) : L(i)−1
−−→ Ω1

X(log D(i))⊗ L(i)−1
.

Proof: Again we can argue locally and assume that X = Spec B and
D = α1D1 as in (3.12).
If α1 = 0, or if N divides α1, then f1 is a defining equation for ∆1 = (π∗D1)red
and the generators for ΩbX(log D) are generators for ΩbY (log π∗D) as well.
For α1 prime to N , we have by (3.13,c) a defining equation g for ∆1 =
(π∗D1)red with gN = ua · f1. Hence

N · dg
g

=
df1

f1
+ a · du

u
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and, since N ∈ k∗ and a · duu ∈ Ω1
X , one finds that df1

f1
and π∗Ω1

X generate
Ω1
Y (log π∗D).

We can split π in two coverings of degree N · gcd (N,α1)−1 and gcd (N,α1).
Hence we obtain a) for b = 1. The general case follows.

The group G acts on π∗ΩbY and π∗ΩbY (log π∗D)) compatibly with the in-
clusion, and the action on the second sheaf is given by id⊗ σ if one writes

π∗ΩbY (log (π∗D)) = ΩbX(log D)⊗ π∗OY .

Let l be a local section of ΩbX(log D)⊗ L(i)−1
written as

l = φ · gi for φ ∈ ΩbX(log D) and gi = ti · f−[
i·α1
N ]

1 .

Since
gNi = ui · f i·α1−N ·[

iα1
N ]

1

has a zero along ∆1 if and only if

i · α1

N
6∈ ZZ,

we find that l lies in ΩbY in this case.
On the other hand, if gi is a unit, l lies in ΩbY if and only if φ has no pole along
D and we obtain d).

We have

N
dgi
gi

= i · du
u

+ (i · α1 −N [
i · α1

N
])
df1

f1

or

dgi = (
i

N

du

u
+ (

i

N
α1 − [

i · α1

N
])
df1

f1
) · gi.

Hence,
d(gi · φ) ∈ Ωb+1

X (log D)⊗ L(i)−1
,

and (π∗d) respects the direct sum decomposition. Obviously, the Leibniz rule
for d implies that (π∗d) as well as the components ∇(i) are connections and b)
and e) hold true.

Finally, for c), let φ ∈ OX . Then by the calculations given above, we find

ResD1(∇(i))(gi · φ) = (
i

N
α1 − [

i · α1

N
])gi · φ |D1 .

2
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Proof of 3.2,a:

If X is projective and

D =
r∑
j=1

αjDj

a normal crossing divisor we found the connection

∇(i) : L(i)−1
−−→ Ω1

X(log D(i))⊗ L(i)−1

with the residues as given in (3.2,a) over the open submanifold X−Sing(Dred).
Of course, ∇(i) extends to X since

codimX(Sing(Dred)) ≥ 2.

2

Over a field k of characteristic zero, to prove the E1-degeneration, as stated in
(3.2,b) or (3.2,c) one can apply the degeneration of the logarithmic Hodge to
de Rham spectral sequence (see (10.23) for example) to some desingularization
of Y . We will sketch this approach in (3.22). One can as well reduce (3.2,b) to
the more familiar degeneration of the Hodge spectral sequence

Eab1 = Hb(T,ΩaT ) =⇒ IHa+b(T,Ω•T )

for projective manifolds T by using the following covering Lemma, due to
Y. Kawamata [35]:

3.17. Lemma. Keeping the notations from (3.5) assume that N is prime to
char(k) and that D is a normal crossing divisor. Then there exists a manifold
T and a finite morphism

δ : T −−→ Y

such that:
a) The degree of δ divides a power of N .
b) If A and B are reduced divisors such that D + A + B has at most normal
crossings and if A+B has no common component with D, then we can choose
T such that (π ◦ δ)∗(D+A+B) is a normal crossing divisor and (π ◦ δ)∗A as
well as (π ◦ δ)∗B are reduced.

Proof of (3.2) in characteristic zero, assuming the E1 degenera-

tion of the Hodge to de Rham spectral sequence:

Let X0 = X − Sing(Dred), Y0 = π−1(X0) and T0 = δ−1(Y0).
δ∗Ω•T0

contains Ω•Y0
as direct summand. Since (π ◦ δ) is flat (π ◦ δ)∗Ω•T will

contain
N−1⊕
i=0

Ω•X(log D(i))⊗ L(i)−1
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as a direct summand. The E1-degeneration of the spectral sequence

Eab1 = Hb(T,ΩaT ) =⇒ IHa+b(T,Ω•T )

implies (3.2,b) for each i ∈ {0, . . . , N − 1}. Finally, if A and B are the divisors
considered in (3.2,c), A′ = (π ◦ δ)∗A and B′ = (π ◦ δ)∗B,

Ω•X(log (A+B +D(i)))(−B)⊗ L(i)−1

is a direct summand of

(π ◦ δ)∗Ω•T (log (A′ +B′))(−B′)

and we can use the E1-degeneration of

Eab1 = Hb(T,ΩaT (log (A′ +B′))(−B′)) =⇒ IHa+b(T,Ω•T (log (A′ +B′))(−B′)).

2

3.18. Remarks.
a) If A = B = 0 the degeneration of the spectral sequence, used to get (3.2,b),
follows from classical Hodge theory. In general, i.e. for (3.2,c), one has to use
the Hodge theory for open manifolds developed by Deligne [11].
In these lectures (see (10.23)) we will reproduce the algebraic proof of Deligne
and Illusie for the degeneration.
b) If char (k) 6= 0 and if X,L and D admit a lifting to W2(k) (see (8.11)),
then the manifold T constructed in (3.17) will again admit a lifting to W2(k).
Hence the proof of (3.2,b and c) given above shows as well:

Assuming the degeneration of the Hodge to de Rham spectral sequence (proved
in (10.21)) theorem (3.2) holds true under the additional assumption that L
lifts to W2(k) as well.

c) Using (3.2,a) we will give a direct proof of (3.2,b and c) at the end of
§10, without using (3.17), for a field k of characteristic p 6= 0. By reduction to
characteristic p one obtains a second proof of (3.2) in characteristic zero.
d) In Lectures 4 - 7, we will assume (3.2) to hold true.

To prove (3.17) we need:

3.19. Lemma (Kawamata [35]). Let X be a quasi-projective manifold, let

D =
r∑
j=1

Dj

be a reduced normal crossing divisor, and let

N1, . . . , Nr ∈ IN− {0}
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be prime to char(k). Then there exists a projective manifold Z and a finite
morphism τ : Z → X such that:
a) For j = 1, . . . r one has τ∗Dj = Nj · (τ∗Dj)red.
b) τ∗(D) is a normal crossing divisor.
c) The degree of τ divides some power of

∏r
j=1Nj.

d) If X and D satisfy the lifting property (8.11) the same holds true for Z.

Proof: If we replace the condition that D =
∑r
j=1Dj is the decomposi-

tion of D into irreducible (non-singular) components by the condition that
D =

∑r
j=1Dj for non-singular divisors D1 . . . Dr we can construct Z by in-

duction and hence assume that N1 = N and N2 = . . . = Nr = 1.

Let A be an ample invertible sheaf such that AN (−D1) is generated by its
global sections. Choose n = dim X general divisors H1, . . . ,Hn with

OX(Hi) = AN (−D1).

The divisor D +
∑n
i=1Hi will be a reduced normal crossing divisor. Let

τi : Zi −−→ X

be the cyclic cover obtained by taking the N -th root out of Hi + D1. Then
Zi satisfies the properties a), c) and d) asked for in (3.19) but, Zi might have
singularities over Hi ∩ D1 and τ∗i (D) might have non-normal crossings over
Hi ∩D1. Let Z be the normalization of

Z1 ×X Z2 ×X . . .×X Zn.

Z can inductively be constructed as well in the following way:
Let Z(ν) be the normalization of Z1 ×X . . . ×X Zν and τ (ν) : Z(ν) → X the
induced morphism. Then, outside of the singular locus of Z(ν), the cover Z(ν+1)

is obtained from Z(ν) by taking the N -th root out of

τ (ν)∗(Hν+1 +D1) = τ (ν)∗(Hν+1) +N · (τ (ν)∗D1)red.

This is the same as taking the N -th root out of τ (ν)∗(Hν+1) by (3.2,b) and
(3.10). Since this divisor has no singularities, we find by (3.15,b) that the sin-
gularities of Z(ν+1) lie over the singularities of Z(ν), hence inductively over
H1 ∩D1. However, as Z is independent of the numbering of the Hi, the singu-
larities of Z are lying over

n⋂
i=1

(Hi ∩D1) = (
n⋂
i=1

Hi) ∩D1 = ∅.

2
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Proof of (3.17): Let τ : Z → X be the covering constructed in (3.19) for

Dred =
r∑
j=1

Dj

and N = N1 = . . . = Nr. Let T be the normalization of Z ×X Y . Then T is
obtained again by taking the N -th root out of τ∗D. Since τ∗D = N · D′ for
some divisor D′ on Z, we can use (3.3,b), (3.10) and (3.15,b) to show that T
is étale over Z.

For part c), we apply the same construction to the manifold Z, given for the
divisor D + A + B, where the prescribed multiplicities for the components of
A and B are one.

2

Generalizations and variants in the analytic case

(3.17) is a special case of the more general covering lemma of Kawamata:

3.20. Lemma. Let X be a projective manifold, char(k) = 0 and let π : Y → X be a
finite cover such that the ramification locus D = ∆(Y/X) in X has normal crossings.
Then there exists a manifold T and a finite morphism δ : T → Y . Moreover, one can
assume that π ◦ δ : T → X is a Galois cover.

For the proof see [35]. As shown in [63] (3.16) can be generalized as well:

3.21. Lemma. (Generalized Hurwitz’s formula) For π : Y → X as in (3.20) let
δ : Z → Y be a desingularization such that (π ◦ δ)∗D = D′ is a normal crossing
divisor. Then one has an inclusion

δ∗π∗ΩaX(log D) −−→ ΩaZ(log D′)

giving an isomorphism over the open subscheme U in Z where (π ◦ δ) |Z is finite.

If Y in (3.20) is normal, it has at most quotient singularities (see (3.24) for a slightly
different argument). In particular, Y has rational singularities (see [62] or (5.13)),
i.e.:

Rbδ∗OZ = 0 for b > 0.

One can even show (see [17]):

3.22. Lemma. For Y normal and π : Y → X, δ : Z → Y as in (3.21) and τ = π ◦ δ
one has:

Rbτ∗Ω
a
Z(log D′) =

 ΩaX(log D)⊗
⊕N−1

i=0
L(i)−1

for b = 0

0 for b > 0
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For b = 0 this statement follows directly from (3.21). For b > 0, however, the only
way we know to get (3.22) is to use GAGA and the independence from the choosen
compactification of the mixed Hodge structure of the open manifold Z − D′ (see
Deligne [10]).

Using (3.21) and (3.22) one finds again (see [20]):
The degeneration of the spectral sequence

Eab1 = Hb(Z,ΩaZ(log D′)) =⇒ Ha+b(Z,Ω•Z(log D′))

implies (3.2,b).

Let us end this section with the following

3.23. Corollary. Under the assumptions of 3.2 assume that k = Cl . Then

dim (Hb(X,ΩaX(log D(i))⊗ L(i)−1
)) = dim (Ha(X,ΩbX(log D(N−i))⊗ L(N−i)−1

)).

Proof: By GAGA we can assume that we consider the analytic sheaf of differentials.
The Hodge duality on the covering T constructed in (3.17) is given by conjugation.
Since under conjugation ei goes to eN−i for a primitive N -th root of unity, we obtain
(3.23).

2

Let us end this section by showing that the cyclic cover Y constructed
in (3.5) has at most quotient singularities. Slightly more generally one has the
following lemma which, as mentioned above, also follows from (3.20).

3.24. Lemma. Let X be a quasi-projective manifold, Y a normal variety and
let π : Y −−→ X be a separable finite cover. Assume that the ramification divisor

D =
m∑
j=1

Dj = ∆(Y/X)

of π in X is a normal crossing divisor and that for all j and all components
Bij of π−1(Dj) the ramification index e(Bij) is prime to char k.
Then Y has at most quotient singularities, i.e. each point y ∈ Y has a neigh-
bourhood of the form T/G where T is nonsingular and G a finite group acting
on T .

Proof: One can assume that X is affine. For j = 1, · · · ,m define

nj = lcm{e(Bij); Bij component of π−1(Dj)}.

Let τ : Z −−→ X be the cyclic cover obtained by taking sucessively the nj-th
root out of Dj . In other terms, Z is the normalization of the fibered product
of the different coverings of X obtained by taking the nj root out of Dj or,
equivalently, τ is the composition of

Z = Zm
τm−−→ Zm−1

τm−1−−−→ · · · −−→ Z1
τ1−−→ Z0 = X
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where τj : Zj −−→ Zj−1 is the cover obtained by taking the nj-th root out of
(τ1 ◦ τ2 ◦ · · · ◦ τj−1)∗(Dj). By (3.15,b) Zj is non singular. Z is Galois over X
with Galois group

G =
m∏
j=1

ZZ/nj · ZZ.

Let T be the normalization of Z×X Y and δ : T −−→ Y the induced morphism.
Each component T0 of T is Galois over Y with a subgroup of G as Galois group.

The morphism δ0 = δ|T0 is obtained by taking sucessively the nj
αj

-th root out
of

π−1(Dj) =
rj∑
i=1

e(Bij)
αj

·Bij

for
αj = gcd{e(Bij); Bij component of π−1(Dj)}.

By (3.15) all components of δ−1(Bij) have ramification index

nj
αj

gcd{njαj ,
e(Bi

j
)

αj
}

=
nj

e(Bij)

over Y . Hence they are ramified over X with order nj . In other terms, the
induced morphism T0 −−→ Z is unramified and T0 is a non-singular Galois
cover of Y .

2

§ 4 Vanishing theorems, the formal set-up.

Theorem 3.2 , whose proof has been reduced to the E1-degeneration of a Hodge
to de Rham spectral-sequences, implies immediately several vanishing theorems
for the cohomology of the sheaves L(i).
To underline that in fact the whole information needed is hidden in (3.2) and
(2.9) we consider in this lecture a more general situation and we state the
assumptions explicitly, which are needed to obtain the vanishing of certain co-
homology groups.

(4.2) and (4.8) are of special interest for applications whereas the other variants
can been skipped at the first reading.

4.1. Assumptions. Let X be a projective manifold defined over an alge-
braically closed field k and let

D =
r∑
j=1

Dj



36 H. Esnault, E. Viehweg: Lectures on Vanishing Theorems

be a reduced normal crossing divisor. Let E be a locally free sheaf on X of
finite rank and let

∇ : E −−→ Ω1
X(log D)⊗ E

be an integrable connection with logarithmic poles along D.
We will assume in the sequel that ∇ satisfies the E1-degeneration i.e. that the
Hodge to de Rham spectral sequence (A.25)

Eab1 = Hb(X,ΩaX(log D)⊗ E) =⇒ IHa+b(X,Ω•X(log D)⊗ E)

degenerates in E1.

4.2. Lemma (Vanishing for restriction maps I). Assume that ∇ satisfies
the condition (!) of (2.8), i.e. that for all µ ∈ IN and for j = 1, . . . , r the map

ResDj (∇) + µ · idODj : E |Dj−−→ E |Dj
is an isomorphism. Assume that ∇ satisfies the E1-degeneration (4.1).
Then for all effective divisors

D′ =
r∑
j=1

µjDj

and all b the natural map

Hb(X,OX(−D′)⊗ E) −−→ Hb(X, E)

is surjective.

Proof: By (2.9,b) the map

Ω•X(log D)⊗ E(−D′) −−→ Ω•X(log D)⊗ E

is a quasi-isomorphism and hence induces an isomorphism of the hypercoho-
mology groups. Let us consider the exact sequences of complexes

0 −→ Ω•
≥1

X (log D)⊗ E −→ Ω•X(log D)⊗ E −→ E −→ 0x x x
0 −→ Ω•

≥1

X (log D)⊗ E(−D′) −→ Ω•X(log D)⊗ E(−D′) −→ E(−D′) −→ 0.

By assumption, the spectral sequence for Ω•X(log D) ⊗ E degenerates in E1,
which implies that the morphism α in the following diagram is surjective (see
(A.25)).

IHb(X,Ω•X(log D)⊗ E) α−−−−→ Hb(X, E)x=

xβ
IHb(X,Ω•X(log D)⊗ E(−D′)) −−−−→ Hb(X, E(−D′))

Hence β is surjective as well.
2
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4.3. Variant. If in (4.2)

D′ =
s∑
j=1

µjDj ≥ 0 for s ≤ r,

then it is enough to assume that for j = 1, . . . , s and for 0 ≤ µ ≤ µj − 1

ResDj (∇) + µ · idODj

is an isomorphism.

Proof: By (2.10) this is enough to give the quasi-isomorphism

Ω•X(log D)⊗ E(−D′) −−→ Ω•X(log D)⊗ E

needed in the proof of (4.2).
2

4.4. Lemma (Dual version of (4.2) and (4.3)). Assume that

∇ : E −−→ Ω1
X(log D)⊗ E

satisfies the E1-degeneration and that for j = 1, . . . , s and 1 ≤ µ ≤ µj

ResDj (∇)− µ · idODj

is an isomorphism (for example, if ∇ satisfies the condition (∗) from (2.8,a)).
Then for

D′ =
s∑
j=1

µjDj

and all b the map

Hb(X,ωX(D)⊗ E) −−→ Hb(X,ωX(D +D′)⊗ E)

is injective.

Proof: Consider the diagram

Hb(X,ωX(D +D′)⊗ E) −−−−→ IHn+b(X,Ω•X(log D)⊗ E(D′))xβ xγ
Hb(X,ωX(D)⊗ E) α−−−−→ IHn+b(X,Ω•X(log D)⊗ E).

α is injective by the E1-degeneration (see (A.25)) , γ is an isomorphism by
(2.10) and hence β is injective.

2
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The lemma (4.2) or its variant (4.3) implies that for all b the natural restriction
maps

Hb(X, E) −−→ Hb(D′,OD′ ⊗ E)

are the zero maps. For higher differential forms this remains true, if D′ is a
non-singular divisor:

4.5. Lemma (Vanishing for restriction maps II). Assume that

∇ : E −−→ Ω1
X(log D)⊗ E

satisfies E1-degeneration. Let D′ be a non-singular subdivisor of D and assume
that for all components Dj of D′ the map ResDj (∇) is an isomorphism. (For
example this follows from condition (!) in (2.8,b)).
Then the restriction (see (2.3))

Hb(X,ΩaX(log (D −D′))⊗ E) −−→ Hb(D′,ΩaD′(log (D −D′) |D′)⊗ E)

is zero for all a and b.

Proof: As we have seen in (2.6,b) the restriction map factors through

Hb(∇a) : Hb(X,ΩaX(log D)⊗ E) −−→ Hb(X,Ωa+1
X (log D)⊗ E)

provided ResDj (∇) is an isomorphism on the different components Dj of D′.
By E1-degeneration, Hb(∇a) is the zero map (see (A.25)).

2

Before we are able to state the global vanishing for E or ΩaX(log D)⊗E
we need some more notations.

4.6. Definition. Let U ⊂ X be an open subscheme and let B be an effective
divisor with Bred = X − U . Then we define the (coherent) cohomological di-
mension of (X,B) to be the least integer α such that for all coherent sheaves
F and all k > α one finds some ν0 > 0 with Hk(X,F(ν · B)) = 0 for all
multiples ν of ν0. Finally, for the reduced divisor D = X − U , we write

cd(X,D) = Min{ α ; there exists some effective divisor B with Bred = D,
such that α is the cohomological dimension of (X,B)}.

4.7. Examples.
a) For D = X −U the embedding ι : U → X is affine and for a coherent sheaf
G on X we have

Hb(U,G |U ) = Hb(X, ι∗(G |U )) = lim→
α∈IN

Hb(X,G ⊗OX(α ·B)),

where B is any effective divisor with Bred = D. In particular, if b > cd(X,D)
we find

Hb(U,G |U ) = 0
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b) By Serre duality one obtains as well that for b < n− cd(X,D) we can find
B > 0 such that for a locally free sheaf G and all multiples ν of some ν0 > 0
one has

dimHb(X,G ⊗OX(−ν ·B)) = 0.

c) If D is the support of an effective ample divisor, then Serre’s vanishing
theorem (see (1.1)) implies cd(X,D) = 0. We are mostly interested in this
case, hopefully an excuse for the clumsy definition given in (4.6).

4.8. Lemma (Vanishing for cohomology groups).
Assume that X is projective and that

∇ : E −−→ Ω1
X(log D)⊗ E

satisfies the E1-degeneration (see (4.1)).
a) If ∇ satisfies the condition (∗) of (2.8) and if a+ b > n+ cd(X,D), then

Hb(X,ΩaX(log D)⊗ E) = 0.

b) If ∇ satisfies the condition (!) of (2.8) and if a+ b < n− cd(X,D), then

Hb(X,ΩaX(log D)⊗ E) = 0.

Proof: Let us choose α ∈ ZZ with α ≥ 0 in case a) and with α ≤ 0 in case b).
For B ≥ D, (2.9) tells us that

Ω•X(log D)⊗ E and Ω•X(log D)⊗ E(α ·B)

are quasi-isomorphic. In both cases we have a spectral sequence

Eab1 = Hb(X,ΩaX(log D)⊗ E(α ·B)) =⇒

=⇒ IHa+b(X,Ω•X(log D)⊗ E(α ·B)) = IHa+b(X,Ω•X(log D)⊗ E).

By assumption this spectral sequence degenerates for α = 0 and, for arbitrary
α we have (see (A.16))∑

a+b=l

dim Hb(X,ΩaX(log D)⊗ E) = dim IHl(X,Ω•X(log D)⊗ E)

≤
∑
a+b=l

dim Hb(X,ΩaX(log D)⊗ E(α ·B)).

By definition of cd(X,D) we can choose B such that the right hand side is
zero for l > n+ cd(X,D) and all α > 0 in case a), or l < n− cd(X,D) and all
α < 0 in case b).

2
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The same argument shows:

4.9. Variant. In (4.8) we can replace a) and b) by:
c) Let D∗ and D! be effective divisors, both smaller than D, and assume that

i) For all components Dj of D∗ and all µ ∈ IN− {0}

ResDj (∇)− µ · idODj
is an isomorphism.
ii) For all components Dj of D! and all µ ∈ IN

ResDj (∇) + µ · idODj
is an isomorphism.

Then
Hb(X,ΩaX(log D)⊗ E) = 0

for a+ b > n+ cd(X,D∗) and for a+ b < n− cd(X,D!).

The analytic case
As we have seen in the proof of (4.8) the condition (∗) implies that

IHl(X,Ω•X(log D)⊗ E) = 0 for l > n+ cd(X,D).

For k = Cl , this is not the best possible result. In fact, as mentioned in (2.12), (∗)
implies that over Cl

IHl(X,Ω•X(log D)⊗ E) = 0 for l > n+ r(X −D)

where r(X − D) is the least number α such that Hl(X − D,V ) = 0 for all locally
constant systems V on X −D and l > n+ α.

(2.12) and the E1-degeneration asked for in (4.8) and (4.9) imply immediately
that “cd( )” in 4.8 and 4.9 can be replaced by “r( )”.
As we will see, r(X−D) might be smaller than cd(X,D). For the results which follow
we only know, at present, proofs by analytic methods.

4.10. Definition. Let U be an algebraic irreducible variety and g : U → W a
morphism. Then define

r(g) = Max{ dim Γ− dim g(Γ)− codim Γ;
Γ irreducible closed subvariety of U }

4.11. Properties.
a)

r(g) = Max{ dim (generic fibre of g |Γ)− codim Γ;
Γ irreducible closed subvariety of U }

b) If b denotes the maximal fibre dimension for g, then

r(g) ≤ Max{dim U − dim W ; b− 1}.

c) If U ′ ⊆ U is open and dense, then r(g |U′) ≤ r(g).
d) If ∆ ⊆ U is closed then r(g |∆) ≤ r(g) + codimU (∆).
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Proof: a) and c) are obvious and b) follows from a). For d) one remarks that for
Γ ⊂ ∆ one has

codim∆ (Γ) = codimU (Γ)− codimU (∆).

2

4.12. Lemma. (Improvement of 4.8 using analytic methods)
Let X be a projective manifold defined over an algebraically closed field k of charac-
teristic zero. Assume that

∇ : E −−→ Ω1
X(log D)⊗ E

is an integrable connection satisfying the E1-degeneration and let

g : X −D −−→W

be a proper surjective morphism to an affine variety W .
a) If ∇ satisfies the condition (∗) of (2.8) then

Hb(X,ΩaX(log D)⊗ E) = 0

for a+ b > n+ r(g).
b) If ∇ satisfies the condition (!) of (2.8) then

Hb(X,ΩaX(log D)⊗ E) = 0

for a+ b < n− r(g).

Proof: By flat base chance we can replace k by any other field k′, such that X,D, E
are defined over k′. Hence, we may assume that k = Cl .
By GAGA (see [56]) we may assume in (4.12) that all the sheaves and ∇ are analytic.
Then, by (2.12) and by the E1-degeneration it is enough to show:

4.13. Lemma. Let U be an analytic manifold, W be an affine manifold and
g : U → W be a proper morphism. Then, for all local constant systems V on U and
l > dim (U) + r(g) one has Hl(U, V ) = 0.

Proof (see [22]): The sheaves Rag∗V are analytically constructible sheaves ([61])
and their support

Sa = Supp(Rag∗V )

must be a Stein space, hence

Hb(W,Rag∗V ) = 0 for b > dim Sa.

However, the general fibre of g |g−1(Sa) must have a dimension larger than or equal
to a

2
. Hence

2 · (dim g−1(Sa)− dim Sa) ≥ a
and Hb(W,Rag∗V ) = 0 for

a+ b > n+ r(g) ≥ 2 · dim g−1(Sa)− dim Sa ≥ a+ dim Sa.

By the Leray spectral sequence (A.27)

Eba2 = Hb(W,Rag∗V ) =⇒ Ha+b(U, V )

one obtains (4.13).
2
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4.14. Remark. If W is affine and g : U →W obtained by blowing up a point, then
for X and D as in (4.6) one has cd(X,D) = dim U − 1, whereas r(g) = dim U − 2.

§ 5 Vanishing theorems for invertible sheaves

In this lecture we will deduce several known generalizations of the Kodaira-
Nakano vanishing theorem by applying the vanishing (5.1) obtained for “inte-
gral parts of Ql -divisors” from (3.2), combined with (4.2). Needless to say that
in all those corollaries of (5.1) one loses some information and that it might
be more reasonable to try to work with (5.1) or correspondingly with (6.2)
directly, whenever it is possible.

Let us remind you, that the proof of (3.2) is not yet complete. The neces-
sary arguments needed to show the E1-degeneration will only be presented in
Lecture 10.

Very quickly we will have to restrict ourselves to characteristic zero. One rea-
son is that the condition (∗) and (!) are too much to ask for in characteristic
p 6= 0. But more substantially, most of our proofs will start with “blow up B
to get a normal crossing divisor”, hence with an application of H. Hironaka’s
theorem on the existence of desingularizations.

Let us start with (4.2). For simplicity, we restrict ourselves to i = 1 and
L = L(1). By (3.3) we are not losing any information.

5.1. Vanishing for restriction maps related to Ql -divisors:

Let X be a projective manifold defined over an algebraically closed field k, let
L be an invertible sheaf, N ∈ IN− {0} and let

D =
r∑
j=1

αjDj

be a normal crossing divisor with 0 < αj < N and LN = OX(D). Let

D′ =
r∑
j=1

µjDj

be an effective divisor. Then one has:
a) If char (k) = 0 then for all b the natural morphism

Hb(X,L−1(−D′)) −−→ Hb(X,L−1)
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is surjective and hence the morphism

Hb(X,ωX ⊗ L) −−→ Hb(X,ωX(D′)⊗ L)

injective.
b) If char (k) = 0 and if C is a reduced divisor without common component
with D such that D+C is a normal crossing divisor, then for all b the natural
morphism

Hb(X,L−1(−C −D′)) −−→ Hb(X,L−1(−C))

is surjective and hence the morphism

Hb(X,ωX(C)⊗ L) −−→ Hb(X,ωX(D′ + C)⊗ L)

injective.
c) If char (k) = p 6= 0, then a) and b) hold true under the additional assump-
tions:

i) X and D (as well as C) satisfy the lifting property (8.11) and
dim (X) ≤ p.

ii) N is prime to p.

iii) For all j and 0 ≤ µ ≤ µj − 1 one has αj + µ ·N 6≡ 0 mod p.

Proof: By (3.2,c) OX(−C)⊗L−1 has a logarithmic connection ∇ with poles
along C + Dred satisfying E1-degeneration, and ResDj (∇) = αj

N . Hence (5.1)
follows from (4.2) and (4.3) or (4.4).

2

5.2. Corollary (Kodaira [39], Deligne, Illusie [12]). Let X be a projective
manifold and L an invertible sheaf. If char (k) = p > 0, then assume in addition
that X and L admit a lifting to W2(k) (8.11) and that dim X ≤ p. Then, if L
is ample,

Hb(X,L−1) = 0 for b < n = dim (X)

Proof: Choose N , prime to p = char (k), such that

Hb(X,L−N−1) = Hn−b(X,ωX ⊗ LN+1) = 0

for b < n, and such that LN is generated by global sections. If D is a general
section of LN , then we can apply (5.1) and find

Hb(X,L−1(−D)) −−→ Hb(X,L−1)

to be surjective. Since the group on the left hand side is zero, we are done.
2
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If char (k) = p, then we will see in (11.3) that it is sufficient to assume that X
lifts to W2(k). The condition that L lifts as well is not necessary.

5.3. Definition. Let X be a projective variety and L be an invertible sheaf
on X. If H0(X,Lν) 6= 0, the sections of L define a rational map

φν = φLν : X −−→ IP(H0(X,Lν)).

The Iitaka-dimension κ(L) of L is given by

κ(L) =

 −∞ if H0(X,Lν) = 0 for all ν

Max{dimφν(X); H0(X,Lν) 6= 0} otherwise

5.4. Properties. For X and L as above one has:

a) κ(L) ∈ {−∞, 0, 1, . . . ,dim X}.

b) If H0(X,Lν) 6= 0 for some ν > 0 then one can find a, b ∈ IR, a, b > 0,
such that

a · µκ(L) ≤ dim H0(X,Lν·µ) ≤ b · µκ(L) for all µ ∈ IN− {0}.

c) If κ(L) 6= −∞, then

κ(L) = tr.deg (
⊕
µ≥0

H0(X,Lµ)) − 1.

d) One has κ(L) = dim X, if and only if for some ν > 0 and some effective
divisor C the sheaf Lν(−C) is ample.

e) If A is very ample and A the zero divisor of a general section of A, then

κ(L |A) ≥Min {κ(L),dim A}.

Proof: a), b) and c) are wellknown and their proof can be found, for example,
in [46], §1.
For d) let A be an ample effective divisor. For n = dim X and some
ν ∈ IN − {0} one finds a, b ∈ IR, a, b > 0, with a · µn < dim H0(X,Lν·µ) and
dim H0(X,Lν·µ|A) < b · µn−1. Hence, the exact sequence

0 −−→ H0(X,Lν·µ(−A)) −−→ H0(X,Lν·µ) −−→ H0(A,Lν·µ |A)

shows that for some µ we have OX(A) as a subsheaf of Lν·µ. On the other
hand, if A ⊂ Lν is ample then

n = κ(A) ≤ κ(Lν) = κ(L).
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If κ(L) = n in e), then, using d) for example, κ(L |A) = n− 1.
If κ(L) < n, then H0(X,OX(−A)⊗ Lν) = 0 for all ν and b) implies

κ(L |A) ≥ κ(L).

2

For our purposes we can take (5.4,b) as definition of κ(L), and we only need
to know (5.4,d) and (5.4,e).

5.5. Definition. An invertible sheaf L on X is called

a) semi-ample, if for some µ > 0 the sheaf Lµ is generated by global
sections.

b) numerically effective (nef) if for all curves C in X one has

deg (L |C) ≥ 0.

The proof of (5.2) can be modified to give in characteristic zero a
stronger statement:

5.6. Corollary. Let X be a projective manifold defined over a field k of char-
acteristic zero and let L be an invertible sheaf.

a) (Kollár [40])
If L is semi-ample and B an effective divisor with H0(X,Lν(−B)) 6= 0 for
some ν > 0, then the natural maps

Hb(X,L−1(−B)) −−→ Hb(X,L−1)

are surjective for all b, or, equivalently, the adjunction map

Hb(X,L ⊗ ωX(B)) −−→ Hb(B,L ⊗ ωB)

is surjective for all b.

b) (Grauert-Riemenschneider [25])
If L is semi-ample and κ(L) = n = dim X, then

Hb(X,L−1) = 0 for b < n.

Proof: Obviously a) and b) are compatible with blowing ups τ : X ′ → X. In
fact, using the Leray spectral sequence (A.27) we just have to remember that

Rbτ∗τ
∗L = L ⊗Rbτ∗OX′ =

{
L for b = 0
0 for b 6= 0
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(See (5.13) for a generalization).
Hence we may assume in a) that Lν = OX(B + C) for an effective normal
crossing divisor B + C. We can choose some µ, with

[
B + C

µ
] = 0

and such that Lµ is generated by its global sections. If D1 is a general divisor
of Lµ, i.e. the zero set of a general s ∈ H0(X,Lµ), then D = D1 + B + C
has normal crossings and [Dµ ] = 0. Hence, for N = ν + µ and D′ = B the
assumptions of (5.1,a) hold true and we obtain a).

For b), let us choose some divisor C and some ν such that Lν(−C) = A
is ample. Replacing A by some multiple, we may assume by Serre’s vanishing
theorem (1.1) that

Hb(X,L−1 ⊗A−1) = Hn−b(X,ωX ⊗ L⊗A) = 0

for b < n, and that A = OX(B) for some divisor B. By a)

Hb(X,OX(−B)⊗ L−1) −−→ Hb(X,L−1)

is surjective. One obtains b), since the left hand side is zero.
2

It is not difficult to modify both parts of this proof to include in b)
the case that L is nef and κ(L) = dim X. Moreover, considering very ample
divisors on X and using induction on dim(X), one can as well remove the
assumption “κ(L) = dim(X)” and obtain the vanishing for b < κ(L).
We leave the details to the reader. Those techniques will appear in (5.12)
anyway, when we prove a more general statement.

5.7. Lemma. For an invertible sheaf L on a projective manifold X the follow-
ing two conditions are equivalent:

a) L is numerically effective.

b) For an ample sheaf A and all ν > 0 the sheaf Lν ⊗A is ample.

Proof: By Seshadri’s criterion A′ is ample if and only if for some ε > 0 and
all curves C in X

deg (A′ |C) ≥ ε ·m(C)

where m(C) is the maximal multiplicity of points on C.
2

5.8. Lemma. For X,L as in (5.7), assume that L is numerically effective
(and, if char (k) = p 6= 0, that X and L satisfy the lifting property (8.11) and
that dim X ≤ p). Then one has:
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a) κ(L) = n = dim X, if and only if c1(L)n > 0 (where c1(L) is the Chern
class of L).

b) For b ≥ 0 and for all invertible sheaves F one has a constant cb > 0
with

dim Hb(X,F ⊗ Lν) ≤ cb · νn−b for all ν ∈ IN.

Proof: a) follows from b) and from the Hirzebruch-Riemann-Roch theorem
which tells us that χ(X,Lν) is a polynomial of deg n with highest coefficient

1
n!
· c1(L)n.

For b) we assume by induction on dim X, that it holds true for all hypersurfaces
H in X. We can choose an H, which satisfies

Hb(X,OX(H)⊗ Lν ⊗F) = 0.

In fact, we just have to choose H such that F ⊗ω−1
X ⊗OX(H) is ample. Then

by (5.7)
F ⊗ ω−1

X ⊗OX(H)⊗ Lν

will be ample for all ν ≥ 0 and the vanishing required holds true by (5.2). From
the exact sequence

0 −−→ F ⊗Lν −−→ F ⊗Lν ⊗OX(H) −−→ F ⊗OH(H)⊗ Lν −−→ 0

we obtain an isomorphism

Hb−1(H,F ⊗OH(H)⊗ Lν) ' Hb(X,F ⊗ Lν)

for b > 1 and a surjection

H0(H,F ⊗OH(H)⊗ Lν) −−→ H1(X,F ⊗ Lν).

By induction we find cb for b ≥ 1 and, since H0(X,F ⊗ Lν) is bounded above
by a polynomial of deg ν, for b = 0 as well.

2

Even if L is nef, there is in general no numerical characterisation of κ(L). For
example, there are numerically effective invertible sheaves L with κ(L) = −∞.
Following Kawamata [37], one defines:

5.9. Definition. Let L be a numerically effective invertible sheaf. Then the
numerical Iitaka-dimension is defined as

ν(L) = Min {ν ∈ IN− {0}; c1(L)ν numerically trivial } − 1.
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5.10. Properties. Let X,L be as in (5.8). Then one has:

a) ν(L) ≥ κ(L).

b) If L is semi-ample then

ν(L) = κ(L).

Proof: If ν(L) = dim X or κ(L) = dim X, then (5.8,a) gives

ν(L) = κ(L) = n = dim X.

Hence we can assume both to be smaller than n. By (5.4,e) we have for a
general hyperplane section H of X

κ(L |H) ≥ κ(L)

and obviously
ν(L |H) = ν(L).

By induction on dim (X) one obtains a).
For b) we may assume that L = τ∗M for a morphism τ : X → Z with M
ample and with dim (Z) = κ(L). Then

c1(L)ν = τ∗c1(M)ν = 0

if and only if ν > dim Z.
2

The following lemma, due to Y. Kawamata [37], is more difficult to prove, and
we postpone its proof to the end of this lecture.

5.11. Lemma. For an invertible sheaf N on a projective manifold X, defined
over a field k of characteristic zero, the following two conditions are equivalent:
a) N is numerically effective and ν(N ) = κ(N )
b) There exist a blowing up τ : Z → X, some µ0 ∈ IN − {0} and an effective
divisor C on Z such that

τ∗N µ ⊗OZ(−C)

is semi-ample for all µ ∈ IN− {0} divisible by µ0.

5.12. Corollary. Let X be a projective manifold defined over a field k of
characteristic zero, let L be an invertible sheaf on X, let

D =
r∑
j=1

αjDj

be a normal crossing divisor and N ∈ IN. Assume that

0 < αj < N for j = 1, . . . , r.
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Then one has:
a) If LN (−D) is semi-ample and B an effective divisor such that

H0(X, (LN (−D))ν ⊗OX(−B)) 6= 0

for some ν > 0, then for all b the maps

Hb(X,L−1(−B)) −−→ Hb(X,L−1)

are surjective.
b) In a) one can replace “semi-ample” by the assumption that LN (−D) is
numerically effective and

κ(LN (−D)) = ν(LN (−D)).

c) (Kawamata [36] - Viehweg [63])
If LN (−D) is numerically effective and

c1(LN (−D))n > 0,

then
Hb(X,L−1) = 0 for b < n.

d) (Kawamata [36] - Viehweg [63])
If LN (−D) is numerically effective, then

Hb(X,L−1) = 0 for b < κ(L).

e) Part d) remains true if one replaces κ(L) by κ(L⊗N−1) for a numerically
effective invertible sheaf N .

Again, the assumptions are compatible with blowing ups, except for
“0 < αj < N”. We need:

5.13. Claim. Let τ : X ′ → X be a proper birational morphism andM = τ∗L.
Assume that ∆ = τ∗D has normal crossings. Then for

M(i) =M(−[
i ·∆
N

])

one has

Rbτ∗M(i)−1
=
{
L(i)−1

for b = 0
0 for b 6= 0.

Proof: We may assume that X is affine and that L = OX . For b = 0 claim
(5.13) follows from the inequality

[
i ·∆
N

] = [
i · τ∗D
N

] ≥ τ∗[ i ·D
N

].
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In general, for b ≥ 0, (5.13) follows from the rationality of the singularities of
the cyclic covers Y and Y ′ obtained by taking the N -th rooth out of D and ∆.
In fact, let Y ′′ be a desingularization of Y ′ and let

Y ′′
σ−−−−→ Y ′

δ−−−−→ Y

π′

y π

y
X ′

τ−−−−→ X

be the induced morphisms. If Y ′ has rational singularities, one has by definition
Raσ∗OY ′′ = 0 for a > 0. Hence, if Y has rational singularities as well,

Ra(δ ◦ σ)∗OY ′′ = Raδ∗OY ′ = 0

and
Raτ∗(π′∗OY ′) = 0,

which implies (5.13).

By (3.24) we know that Y and Y ′ have quotient singularities. This implies
that Y and Y ′ have rational singularities (see for example [62]). Let us recall
the proof:

Let Y be any normal variety with quotient singularities and ϕ : Z −−→ Y
the corresponding Galois cover with Z non singular. Let δ : Y ′ −−→ Y be a
desingularization such that D′ = δ∗(∆(Z/Y )) is a normal crossing divisor,
where ∆(Z/Y ) denotes the set of ramified points in Y . If Z ′ is the normaliza-
tion of Y ′ in the function field of Z, (3.24) tells us that Z ′ has at most quotient
singularities. Let finally γ : Z ′′ −−→ Z ′ be a desingularization. Altogether we
obtain

Z ′′
γ−−−−→ Z ′

δ′−−−−→ Z

ϕ′
y ϕ

y
Y ′

δ−−−−→ Y

where Z ′′, Z and Y ′ are nonsingular.

Let us assume that for all quotient singularities and for all a with a0 > a > 0
we know that the a-th higher direct image of the structure sheaf of the desin-
gularization is zero. Then the Leray spectral sequence gives an injection

Ra0δ′∗OZ′ = Ra0δ′∗(γ∗OZ′′) ↪→ Ra0(δ′ ◦ γ)∗OZ′′ .

Since δ′ ◦ γ is a birational proper morphism of non singular varieties

Ra0(δ′ ◦ γ)∗OZ′′ = 0.
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Since the finite morphisms ϕ and ϕ′ have no higher direct images one obtains

Ra0δ∗(ϕ′∗OZ′) = ϕ∗(Ra0δ′∗OZ′) = 0.

However, OY ′ is a direct summand of ϕ′∗OZ′ and hence Ra0δ∗OY ′ = 0.
2

Proof of 5.12: let us first reduce b) to a):
Applying (5.13) and replacingM byM(1), we can assume that the morphism
τ : Z → X in (5.11,b), applied toN = LN (−D), is an isomorphism and that for
the divisor C in (5.11,b) D+C is a normal crossing divisor. LN ·µ(−µ·D−C) is
semi-ample for all µ divisible by µ0. Choosing µ large enough, the multiplicities
of µ ·D + C will be bounded above by N · µ. Moreover, we can assume that

H0(X,LN ·µ(−µ ·D − C)) 6= 0

and hence, replacing µ again by some multiple, that

H0(X, (LN ·µ(−µ·D − C))ν ⊗OX(−B)) 6= 0

for some ν > 0. Hence a) implies b).

To prove a), let us write

Lν·N (−ν ·D) = OX(B +B′)

or
Lν·N = OX(ν ·D +B +B′)

Blowing up, again, we can assume D+B+B′ to be a normal crossing divisor.
For µ sufficiently large, we can assume that (LN (−D))µ is generated by global
sections. If H is zero set of a general section, then

L(ν+µ)·N = OX(H + (ν + µ) ·D +B +B′).

If µ is large enough, the multiplicities of the components of

D′ = H + (ν + µ) ·D +B +B′

are smaller than (ν + µ) · N and, applying (5.1,a) for N ′ = (ν + µ) · N and
LN ′ = OX(D′), we obtain (5.12,a).

Let us remark next, that d), under the additional condition that κ(L) = n,
implies c):
In fact, c1(LN (−D))n > 0 implies by (5.8,a) that

n = κ(LN (−D)) ≤ κ(LN ) = κ(L).
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To prove d), for κ(L) = n, we can apply (5.4,d). Hence we find a divisor C > 0
and µ > 0 with Lµ(−C) ample. Then by (5.7)

LN ·ν+µ(−ν ·D − C)

is ample for all ν and, by Serre’s vanishing theorem (1.1)

Hb(X,L−1 ⊗ (L−N ·ν−µ(ν·D + C))η) = 0 for b < n

and for η sufficiently large. As in the proof of (5.6) or by (5.13) this condition
is compatible with blowing ups. Hence we may assume D + C to be a normal
crossing divisor and, choosing ν large enough, we may again assume that the
multiplicities of D′ = ν·D + C are smaller than N ′ = N ·ν + µ. Replacing D′

and N ′ by some high multiple we can assume in addition that LN ′(−D′) is
generated by global section and that

Hb(X,L−N
′−1(D′)) = 0 for b < n.

For an effective divisor B with OX(B) = L′N (−D′) we can apply a) and find

0 = H0(X,L−1(−B)) −−→ H0(X,L−1)

to be surjective.
For κ(L) < dim X part d) is finally reduced to the case κ(L) = dim X by
induction:
Let H be a general hyperplane such that

Hb(X,OX(−H)⊗ L−1) = 0 for b < n.

The exact sequence

0 −−→ OX(−H)⊗ L−1 −−→ L−1 −−→ L−1 |H−−→ 0

give isomorphisms
Hb(X,L−1) ' Hb(H,L−1 |H)

for b < n − 1. Since κ(L) ≤ n − 1 we have κ(L |H) ≥ κ(L) and both groups
vanish for b < κ(L) by induction on dimX.
e) follows by the same argument: If κ(L ⊗ N−1) = dimX, then (5.4,c) and
(5.7) imply that κ(L) = dimX as well. For κ(L ⊗N−1) < dimX again

κ(L|H ⊗N−1|H) ≥ κ(L ⊗N−1)

and by induction one obtains e).
2

Let us end this section by proving Kawamata’s lemma (5.11) which was
needed to reduce (5.12,b) to (5.12,a):
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Proof of (5.11): Let us assume b). Since τ∗N µ is nef, if and only if N is nef,
and since ν(N ) = ν(τ∗N ), we can assume that τ is an isomorphism. Moreover,
we can assume µ0 = 1.
“N µ(−C) semi-ample for all µ > 0” implies that N is nef. One obtains from
(5.10)

ν(N ) ≥ κ(N ) ≥ κ(N µ(−C)) = ν(N µ(−C)).

For ν = ν(N ) the leading term in µ of

c1(N µ(−C))ν = (µ · c1(N )− C)ν

is µν · c1(N )ν . Since this term intersects H1 · . . . ·Hn−ν strictly positively, for
general hyperplanes H1, . . . ,Hn−ν , we find ν ≤ ν(N µ(−C)).

To show the other direction, let φµ0 : X → Y be the rational map

X −−→ φµ0(X) = Y ⊂ IP(H0(X,N µ0)).

We can and we will assume that φµ0 has a connected general fibre, that
dim (Y ) = κ(N ) and, blowing X up if necessary, that φµ0 is a morphism.
For some effective divisor D we have

N µ0(−D) = φ∗µ0
L, for L ample on Y .

If F is a general fibre of φµ0 , then D |F is nef.

5.14. Claim. D |F is zero.

Assuming (5.14) we can blow up Y and X and assume that D = φ∗µ0
∆ for

some divisor ∆ on Y . For example, blowing up Y one can assume that φµ0

factors over a flat morphism φ′ : X ′ → Y and that N is the pullback of a sheaf
N ′µ0(−D′) = φ

′∗L for some semi-ample sheaf L and by (5.14) D′ ⊆ φ
′∗∆ for

some divisor ∆ on Y . Since N ′ is numerically effective D′·C ≥ 0 for all curves
C in X ′ contained in a fibre of φ′. This is only possible if D′ = φ

′∗∆. Let us
denote by τ : X → Y the morphism obtained. We have N µ0 = τ∗M for some
sheaf M on Y . Of course κ(M) = dimY and (5.12,b) holds true for M on Y ,
i.e. Mµ(−Γ) is ample for some divisor Γ > 0 and all µ >> 0. Then

N µ·µ0(−τ∗Γ)

is semi-ample for all µ >> 0.
2

Proof of (5.14): We may assume that µ0 = 1. For φ = φ1, one has

c1(N ) = c1(φ∗L) +D = φ∗c1(L) +D.

D is effective, hence c1(N )ν1 · c1(φ∗L)ν2 · D are semi-positive cycles, i.e. for
n = ν1 + ν2 + 1 + r one has

H1 · . . . ·Hr · c1(N )ν1 · c1(φ∗L)ν2 ·D ≥ 0.
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By definition

0 ≡ c1(N )ν+1 = c1(N )ν · (c1(φ∗L) +D) for ν = ν(N ).

Since c1(φ∗L) is also represented by an effective divisor, this is only possible if

0 ≡ c1(N )ν · c1(φ∗L) = c1(N )ν−1 · c1(φ∗L) · (c1(φ∗L) +D).

The same argument shows that c1(φ∗L)2 · c1(N )ν−1 ≡ 0 and after ν steps we
get

c1(φ∗L)ν · c1(φ∗L) + c1(φ∗L)ν ·D ≡ 0

and hence
c1(φ∗L)ν ·D = F ·D = 0.

2

§ 6 Differential forms and higher direct images

The title of this lecture is a little bit misleading. We want to apply the vanish-
ing theorems for differential forms with values in invertible sheaves of integral
parts of Ql -divisors (which follow directly from (3.2), (4.8) and (4.13)) to some
more concrete situations.

For invertible sheaves themselves one obtains thereby different proofs of (5.2),
(5.6,b), (5.12,c) and (5.12,d) but, as far as we can see, nothing more. For
ΩaX ⊗L−1 we obtain the Kodaira-Nakano vanishing theorem and some gener-
alizations. Finally we consider the vanishing for higher direct images, which can
be reduced, as usually, to the global vanishing theorems. As a straightforward
application one obtains vanishing theorems for certain non compact manifolds.

In Lecture 5 we could at least point out some of the intermediate steps which
remain true in characteristic p 6= 0. However, since (∗) and (!) only make sense
in characteristic 0, we can as well assume throughout this chapter:

6.1. Assumptions. X is a projective manifold defined over an algebraically
closed field k of characteristic zero and L is an invertible sheaf on X.

Global vanishing theorems in characteristic p > 0 will appear, as far as it is
possible, in Lecture 11.

6.2. Global vanishing theorem for integral parts of Ql -divisors.

For X,L as in (6.1) let

D =
r∑
j=1

αjDi
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be a normal crossing divisor, N ∈ IN with 0 < aj < N for j = 1 . . . r and
LN = OX(D). Then one has:
a)

Hb(X,ΩaX(log D)⊗ L−1) = 0,

for a+ b < n− cd(X,D) and for a+ b > n+ cd(X,D).
b) Let A and B be reduced divisors such that D+A+B has normal crossings
and such that A, B and D have pairwise no common component. Then

Hb(X,ΩaX(log (A+B +D))(−B)⊗ L−1) = 0

for a+ b < n− cd(X,D +B) and for a+ b > n+ cd(X,D +A).
c) If there exists a proper morphism

g : X −D −−→W

for an affine variety W , then one can replace cd(X,D) by r(g) in a) (see
(4.10)).

Proof: By 3.2 L−1(−B) has a logarithmic integrable connection ∇ with
poles along A + B + D, such that the E1-degeneration holds true. More-
over, ResDj (∇) 6∈ ZZ for j = 1, . . . , r. For a component Aj of A we have
ResAj (∇) = 0, and for a component Bj of B we have ResBj (∇) = 1. Hence
a) follows from (4.8), b) from (4.9) and finally c) from (4.13).

2

6.3. Corollary. For X,L as in (6.1), assume that LN = OX(D) for a normal
crossing divisor D =

∑r
j=1 αjDi with 0 < αj < N and assume that there

exists an ample effective divisor B with Bred = Dred. Then Hb(X,L−1) = 0
for b < n.

Proof: Apply (6.2,a), and (4.7,c).
2

2
nd

proof of (5.12,c), (5.12,d) and (5.12.E).: As we have seen in Lecture
5, it is enough to proof (5.12,d) for κ(LN (−D)) = dim X. Moreover, we may
blow up, whenever we like.

We can write (replacing N and D by some multiple)

LN (−D) = A(Γ)

for some effective divisor Γ and some ample sheafA. Blowing up, we can replace
everything by some high multiple and subtract some effective divisor E from
the pullback of A such that the sheaf obtained remains ample. Hence one can
assume D + Γ to be a normal crossing divisor. Since LN (−D) is numerically
effective, we can replace A by A⊗LN (−D) and repeating this we can assume
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that the multiplicities of D + Γ are bounded by N . Finally, replacing again
everything by some multiple we are reduced to the case that A is very ample.
Writing

LN = OX(D′) for D′ = D + Γ +H,

H a general divisor for A, we can apply (6.3).
2

6.4. Corollary (Akizuki-Kodaira-Nakano [1]). For X,L as in (6.1) as-
sume that L is ample. Then

Hb(X,ΩaX ⊗ L−1) = 0 for a+ b < n.

Moreover, if A + B is a reduced normal crossing divisor, the same holds true
for

Hb(X,ΩaX(log (A+B))(−B)⊗ L−1).

Proof: We can write LN = OX(D) for a non-singular divisor D and we may
even assume that D + A + B is a reduced normal crossing divisor. Moreover,
for N large enough, D +B and D +A will both be ample and

cd(X,D +B) = cd(D +A) = 0.

By (2.3,b) one has an exact sequence

. . . −−→ Hb−1(D,Ωa−1
D (log (A+B) |D)(−B |D)⊗ L−1) −−→

−−→ Hb(X,ΩaX(log (A+B))(−B)⊗ L−1) −−→
−−→ Hb(X,ΩaX(log (A+B +D))(−B)⊗ L−1) −−→ . . .

By induction on dim X we can assume that the first group is zero for
a+ b < n+ 1 and by (6.2,b) the last group is zero for a+ b 6= n.

2

If one tries to weaken “L ample” in this proof, one has to replace it by some
condition compatible with the induction step.

6.5. Definition. An invertible sheaf L is called l-ample if the following two
conditions hold true:

a) LN is generated by global sections, for some N ∈ IN− {0}, and
hence φN : X −−→ IP(H0(X,LN )) a morphism.

b) For N as in a) l ≥ Max{dim φ−1
N (z); z ∈ φN (X)}.

6.6. Corollary (A. Sommese [57], generalized in [22]).
For X,L as in (6.1) assume L to be l-ample. Then

Hb(X,ΩaX ⊗ L−1) = 0

for a+ b < Min {κ(L), dim X − l + 1}.



§ 6 Differential forms and higher direct images 57

Proof: Using the notation from (6.5), we have seen in (4.11,b) that

r(φN ) ≤ Max {dim X − κ(L), l − 1 }.

Hence (6.6) is a special case of the following more technical statement .
2

6.7. Corollary. For X,L as in (6.1) let τ : X → Y be a morphism and let
E be an effective normal crossing divisor with τ−1(τ(X −E)) = X −E. If for
some ample sheaf A on Y and for some ν > 0 one has Lν = τ∗A, then

Hb(X,ΩaX(log E)⊗ L−1) = 0

for a+ b < dim X − r(τ |X−E).

Proof: If I is the ideal sheaf of τ(E), then Aµ⊗ I will be generated by global
sections for some µ� 0. Hence, we may assume that LN (−E) is generated by
global section for N = ν ·µ. Moreover, we can assume that N is larger than the
multiplicities of the components of E. If D is the divisor of a general section
of LN (−E), then D + E is a normal crossing divisor. We have for

τ : D −−→ τ(D), L |D and E |D

the same assumptions as those asked for in 6.7. Moreover, by (4.11,d) we have

r(τ |X−E) + 1 ≥ r(τ |D−E).

By induction on dim X we may assume that

Hb−1(D,Ωa−1
D (log E |D)⊗ L−1) = 0

for
a+ b < n− r(τ |X−E) ≤ n+ 1− r(τ |D−E).

The exact sequence (see (2.3,b))

0→ ΩaX(log E)⊗L−1 → ΩaX(log (D+E))⊗L−1 → Ωa−1
D (log E |D)⊗L−1 → 0

implies that for those a, b the map

Hb(X,ΩaX(log E)⊗ L−1) −−→ Hb(X,ΩaX(log (D + E))⊗ L−1)

is injective. However, since

r(τ |X−E) ≥ r(τ |X−(D+E))

(6.2,c) tells us that

Hb(X,ΩaX(log (D + E))⊗ L−1) = 0

for a+ b < dim X − r(τ |X−E). 2
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6.8. Remarks.
a) The reader will have noticed that (6.7) does not use the full strength of
(6.2). Several other applications and extensions of (6.2) can be found in the
literature, (see for example [2] [3] [43] [44]).
b) Sometimes it is nicer to use the dual version of (6.7). Since

n∧
Ω1
X(log E) = ωX ⊗O(Ered)

we find the dual of ΩaX(log E) to be

ω−1
X ⊗ Ωn−aX (log E)(−Ered)

and by Serre duality (6.7) is equivalent to the vanishing of

Hb(X,ΩaX(log E)(−Ered)⊗ L)

for
a+ b > dim X + r(τ |X−E).

c) For (6.7) we used the invariant r(g) and lemma (4.12), the latter being proved
by analytic methods. However, playing around with de Rham complexes and
their hypercohomology, one should be able to find an algebraic analogue of
those arguments.

In [63] the second author used the Hodge duality (as in (3.23)) to reduce
vanishing for Hb(X,L−1) to the Bogomolov-Sommese vanishing theorem. The
latter fits nicely into the scheme explained in this lecture, (see the proof of
(13.10,a)).

6.9. Corollary (F. Bogomolov, A. Sommese). For X,L as in (6.1) and
for a normal crossing divisor B one has

H0(X,ΩaX(log B)⊗ L−1) = 0

for a < κ(L).

Proof: (6.9) is compatible with blowing ups and we can assume that

φN : X −−→ IP(H0(X,LN ))

is a morphism. For N large enough, we can choose D such that φN |X−D has
equidimensional fibres of dimension n − κ(L) and such that LN = OX(D).
Moreover we may assume B +D to be a normal crossing divisor. By (6.2,c)

H0(X,ΩaX(log (B +D))⊗ L(1)−1
) = 0

for a < κ(L). As ΩaX(log B)⊗L−1 is a subsheaf of ΩaX(log (B+D))⊗L(1)−1
,

one obtains (6.8).
2
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Global vanishing theorems always give rise to the vanishing of certain
direct image sheaves.

6.10. Notations. Let X be a manifold, defined over an algebraically closed
field of characteristic zero and let f : X → Z be a proper surjective morphism.
Let L be an invertible sheaf on X. We will call L
a) f -numerically effective if for all curves C in X with dim f(C) = 0 one has
deg (L |C) ≥ 0
b) f -semi-ample if for some N > 0 the natural map f∗f∗LN −−→ LN is surjec-
tive.

The relative Grauert-Riemenschneider vanishing theorem says, that for a bira-
tional morphism f : X → Z one has Rbf∗ωX = 0 for b > 0. As a generalization
one obtains:

6.11. Corollary.
a) For f : X → Z as in (6.10) let L be an invertible sheaf such that LN (−D)
is f-numerically effective for a normal crossing divisor

D =
r∑
j=1

αjDj .

Then
Rbf∗(L(1) ⊗ ωX) = 0 for b > dim X − dim Z − κ(L |F )

where F is a general fibre of f .
b) In particular, if f : X → Z is birational and if D = f∗∆ is a normal
crossing divisor for some effective Cartier divisor ∆ on Z, then

Rbf∗(ωX ⊗OX(−[
D

N
])) = 0 for b > 0.

Proof: Obviously, since OX(−D) = f∗OZ(−∆) is f numerically effective, b)
is a special case of a).
As usual, in a), we can add the assumption 0 < αj < N for j = 1, . . . r, and
we will have L(1) = L.

The statement being local in Z, we can assume Z to be affine or, compactifying
X and Z, we can assume Z to be projective. By (5.13) we are allowed to blow
X up and we can assume that X is projective as well.
The assumptions made imply that for A ample invertible on Z

f∗Aν ⊗ LN (−D)

will be numerically effective for ν >> 0 and that

κ(f∗Aν ⊗ L) ≥ κ(L |F ) + dim (Z).
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Using Serre’s vanishing (1.1) we can assume that for all c > 0 and b ≥ 0

Hc(Z,Aν ⊗Rbf∗(L ⊗ ωX)) = 0

and that H0(Z,Aν ⊗Rbf∗(L⊗ ωX)) generates the sheaf Aν ⊗Rbf∗(L⊗ ωX).
By the Leray spectral sequence (A.27) we obtain

Hb(X, f∗Aν ⊗ L⊗ ωX) = H0(Z,Aν ⊗Rbf∗(L ⊗ ωX))

and by (5.12,d) this group is zero for

b > dim X − dim (Z)− κ(L |F ) ≥ dim X − κ(f∗Aν ⊗ L).

2

In the special case for which LN (−D) is f -semi-ample the vanishing of

Rbf∗(L ⊗ ωX) for b > dim X − dimZ

follows as well from the next statement, due to J. Kollár, [40].

6.12. Corollary of 5.12,a) (J. Kollár). In addition to the assumption of
(6.11,a) we even assume that LN (−D) is f-semi-ample. Then

Rbf∗(L(1) ⊗ ωX)

has no torsion for b ≥ 0.

Proof: As above we can assume X and Z to be projective and LN (−D) to
be semi-ample. Moreover, we may assume LN (−D) to contain f∗A for a very
ample sheaf A on Z, that L = L(1), that

Hc(X,Rbf∗(L ⊗ ωX)) = 0 for c > 0

and that Rbf∗(L ⊗ ωX) is generated by its global sections. If Rbf∗(L ⊗ ωX)
has torsion for some b, then the map

Rbf∗(L ⊗ ωX) −−→ Rbf∗(L ⊗ ωX)⊗OZ(A)

has a non-trivial kernel K for some effective ample divisor A on Z. We may
assume that OZ(A) = A. Replacing L by L⊗ f∗Aν again, we can assume that
H0(Z,K) 6= 0. For B = f∗A ,this implies that H0(Z,K) lies in the kernel of

Hb(X,L ⊗ ωX) −−→ Hb(X,L ⊗ ωX(B))

and hence that

Hn−b(X,L−1(−B)) −−→ Hn−b(X,L−1)

is not surjective, contradicting (5.12,a).
2
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Some of the vanishing theorems mentioned and a partial degeneration of
the Hodge to de Rham spectral sequence remain true for certain non-compact
manifolds. One explanation for those results, obtained by I. Bauer and S.
Kosarew in [4] and [42] by different methods, is the following lemma.

6.13. Lemma. Let Z be a projective variety in characteristic zero, U ⊆ Z be
an open non-singular subvariety, δ : X → Z be a desingularization such that
ι : U ' δ−1(U)→ X. Assume that X−ι(U) = E for a reduced normal crossing
divisor E. Then, for a+ b < dim X − dim δ(E)− 1 and all invertible sheaves
M on Z one has

Hb(X,ΩaX(log E)⊗ δ∗M) = Hb(U,ΩaX ⊗M |U ).

Proof: Let A be an ample invertible sheaf on Z and let E′ be an effective
exceptional divisor, such that OX(−E′) is relatively ample for δ.
For fixed ν ≥ 0 we can choose A large enough, such that for all a, b

Rbδ∗(ΩaX(log E)⊗OX(−E − ν · E′))⊗A

is generated by global sections and

Hc(Z,Rbδ∗(ΩaX(log E)⊗OX(−E − ν · E′))⊗A) = 0

for c > 0. Moreover, for ν > 0, we may assume that τ∗A(−ν · E′) is ample.
Using Serre duality (as explained in (6.8,b)) and the Leray spectral sequence
(A.27) one finds

Hn−b(X,Ωn−aX (log E)⊗ δ∗A−1(ν · E′))∗ =

Hb(X,ΩaX(log E)(−E)⊗ δ∗A(−ν · E′)) =

H0(Z,Rbδ∗(ΩaX(log E)⊗OX(−E − ν · E′))⊗A).

By (6.4), for ν > 0, or by (6.7), for ν = 0, we find

Rbδ∗(ΩaX(log E)⊗OX(−E − ν · E′)) = 0

for a+ b > dim X. For those a and b and for

Kν = OX/OX(−ν · E′)

we have
Rbδ∗(ΩaX(log E)(−E)⊗Kν) = 0.

One obtains for a+ b > dim X + dim τ(E) from the Leray spectral sequence
(A.27) that

Hb(X, δ∗M−1 ⊗ ΩaX(log E)(−E)⊗Kν) = 0.

Hence for all ν ≥ 0 and a+ b > dim X + dim τ(E) + 1 the map

Hb(X, δ∗M−1 ⊗ ΩaX(log E)⊗OX(−E − ν · E′)) −−→
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−−→ Hb(X, δ∗M−1 ⊗ ΩaX(log E)(−E))

is bijective. By Serre duality again,

Hb(X, δ∗M⊗ ΩaX(log E)) −−→ Hb(X, δ∗M⊗ ΩaX(log E)⊗OX(ν · E′))

is an isomorphism for a+ b < dim X − dim τ(E)− 1 and, taking the limit for
ν ∈ IN, we obtain (6.13).

2

6.14. Corollary (I. Bauer, S. Kosarew [4]). Let Z be a projective variety
in characteristic zero, U ⊆ Z be an open non-singular subvariety. Then, for
k < n− dim (Z − U)− 1 one has

dim IHk(U,Ω•U ) =
∑
a+b=k

dimHb(U,ΩaU ).

Proof: We can choose a desingularisation δ : X → Z and E as in (6.13).
Then we have a natural map of spectral sequences

Eab1 = Hb(U,ΩaU ) =⇒ IHa+b(U,Ω•U )xϕa,b xϕ
E′ab1 = Hb(X,ΩaX(log E)) =⇒ IHa+b(X,Ω•X(log E)).

Since E′ab1 degenerates in E1 and since ϕa,b are isomorphisms for

a+ b < n− dim (Z − U)− 1

the second spectral sequence has to degenerate for those a, b.
2

6.15. Corollary (see also I. Kosarew, S. Kosarew [42]).
For Z and U as in (6.14) let L be an l-ample invertible sheaf on Z. Then

Hb(U,ΩaU ⊗ L−1 |U ) = 0

for

a+ b < Min {κ(L),dim X − l + 1, dim X − dim (Z − U)− 1 }

Proof: For X,E as in (6.13) and M = δ∗L we have by (6.7)

Hb(X,M−1 ⊗ ΩaX(log E)) = 0

for a+ b < dim X − r(τ |U ) where

τ : X δ−−→ Z
φN−−→ φN (Z)
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is the composition of δ with the map given by global sections of LN .
However,

r(τ |U ) ≤ r(φN ) ≤ Max {dim X − κ(L), l − 1}.

2

6.16. Remark. For k = Cl , the reason for which certain coherent sheaves F on
Z satisfy Hb(Z,F ⊗H) = 0 for H ample, seems to be related to the existence
of connections. This point of view, which is exploited in J. Kollár’s work on
vanishing theorems [40], [41] and extended by M. Saito (see [54] and the refer-
ences given there), should imply that sheaves arising as natural subquotients
of OZ ⊗Rkf∗V for a morphism f : X → Z of manifolds and a locally constant
system V , sometimes have vanishing properties as the one stated above.
J. Kollár proved, for example, that for a morphism f : X → Z, where X and
Z are projective varieties and X non-singular, one has

Hc(Z,Rbf∗ωX ⊗H) = 0

for c > 0 and H ample on Z.

Slightly more generally one has

6.17. Corollary (of (5.12,b)). Let f : X → Z be a surjective morphism of
projective varieties defined over an algebraically closed field of characteristic
zero, with X non-singular. Let L be an invertible sheaf on X,

D =
r∑
j=1

αjDj

a normal crossing divisor and N ∈ IN with

0 < αj < N for j = 1, . . . , r.

a) If LN (−D) is semi-ample and K a numerically effective invertible sheaf on
Z with κ(K) = dim Z, then for c > 0 and b ≥ 0

Hc(Z,K ⊗Rbf∗(ωX ⊗ L)) = 0.

b) If LN (−D) is numerically effective, κ(LN (−D)) = ν(LN (−D)), and if
(LN (−D))µ contains f∗H for some ample sheaf H on Z and some µ > 0,
then for c > 0 and all b

Hc(Z,Rbf∗(ωX ⊗ L)) = 0.

Proof: By (5.10,b), replacing L by L ⊗ f∗K, a) follows from b).
If H is the zero divisor of a general section of Hµ for µ � 0 and if B = f∗H
then B is a non-singular divisor and the assumptions of (5.12,b) hold true.
Hence

Hb(X,ωX ⊗ L) −−→ Hb(X,ωX(B)⊗ L)
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is injective for all b. Since H is in general position we have exact sequences

0 −→ Rbf∗(L ⊗ ωX) −→ Rbf∗(L ⊗ ωX(B)) −→ Rbf∗(L ⊗ ωB)→ 0

‖ ‖ ‖

Rbf∗(L ⊗ ωX) −→ OZ(H)⊗Rbf∗(L ⊗ ωX) −→ OZ(H)⊗Rbf∗(L ⊗ ωX) |H

By induction on dim Z we may assume that

Hc(H,Rbf∗(L ⊗ ωB)) = 0 for c > 0

and, if we choose µ large enough, we find by Serre’s vanishing theorem

Hc(Z,Rbf∗(L ⊗ ωX)) = 0 for c ≥ 2.

In the Leray-spectral sequence (see A.27) all the differentials are zero, since
Eab2 6= 0 just for a = 0 or a = 1, and hence the upper line in the following
diagram is exact.

0 −→ H1(Z,Rb−1f∗(L ⊗ ωX)) −→ Hb(X,L ⊗ ωX) −→ H0(Z,Rbf∗(L ⊗ ωX))

α

y y
Hb(X,L ⊗ ωX(B)) −→ H0(Z,Rbf∗(L ⊗ ωX(B)))

Since α is injective and since

Hb(X,L ⊗ ωX(B)) = H0(Z,Rbf∗(L ⊗ ωX(B)))

we find H1(Z,Rb−1f∗(L ⊗ ωX)) = 0 for all b.
2

§ 7 Some applications of vanishing theorems

The vanishing theorems for integral parts of Ql -divisors and for numerically
effective sheaves (5.12,c) and (5.12,d), as well as (5.6,a) turned out to be use-
ful for applications in higherdimensional complex projective geometry. We will
not be able in these notes to include an outline of the Iitaka-Mori classification
of threefolds, and the reader interested in this direction is invited to regard S.
Mori’s beautiful survey [46].

In this lecture we just want to give a flavour as to how one should try to
use vanishing theorems to attack certain types of questions. The choice made
is obviously influenced by our personal taste.

We will assume in this lecture:
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All varieties are defined over an algebraically closed field k of characteristic
zero.

7.1. Example: Surfaces of general type. For a projective surface S′ of
general type, i.e. for a non-singular S′ with κ(ωS′) = dimS′ = 2, one can blow
down exceptional curves E ' IP1 with E ·E = −1 ([30], p. 414). After finitely
many steps one obtains a surface S without any exceptional curve, a minimal
model of S′ ([30], p. 418). S is characterised by

7.2. Claim. ωS is nef .

Proof: κ(S) ≥ 0 implies that ωNS = OS(D) for D effective. A curve C with
deg (ωS |C) < 0 must be a component of D and C2 < 0. However, the adjunc-
tion formula gives

−2 ≤ 2g(C)− 2 = deg (ωS |C) + C2.

Hence the only solution is C2 = −1 and deg(ωS |C) = −1, which forces C to
be exceptional.

2

D. Mumford in his appendix to [65] used the contraction of (−2) curves to show:

7.3. Theorem. If S is a minimal model and κ(ωS) = 2, then ωS is semi-ample.

X. Benveniste and Y. Kawamata (dimX = 3) and Y. Kawamata and
V. Shokurov (see [46] for the references) generalised (7.3) to the higher dimen-
sional case. Their ideas, cut back to the surface case, give a simple proof of (7.3).

Proof of 7.3 (from the Diplom-thesis of T. Nakovich, Essen):

Step 1.: If p ∈ S does not lie on any curve C with deg (ωS |C) = 0, then for
some ν � 0 there is s ∈ H0(S, ωνS) with s(p) 6= 0.

Proof: Let τ : S′ → S be the blowing up of p and E the exceptional curve.
One has

deg (τ∗ωµS(−E) |C′) = µ · deg (ωS |C)− E · C ′

for curves C ′ in S′ with C = τ(C ′) 6= p. Hence, for some µ � 0 the sheaf
L = τ∗ωµS(−E) will be nef. By (5.12,c) we find

H1(S′,L−2) ∼= H1(S′, ωS′ ⊗ L2) = H1(S′, τ∗ω2µ+1
S (−E)) = 0

and hence
H0(S′, τ∗ω2µ+1

X ) −−→ H0(E,OE)

is surjective.
2
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Step 2.: For ν � 0 let

D =
r∑
j=1

αjCj

be the base locus of ωνS (i.e. ωνS(−D) is generated by H0(S, ωνS) outside of a
finite number of points). Then D is a normal crossing divisor, C2

j = −2 for
j = 1, . . . , r and ωνS is generated by H0(S, ωνS) outside of D.

Proof: By step 1, if for some p ∈ S there is no section s of ωνS with s(p) 6= 0,
then p lies on some curve C with deg (ωS |C) = 0 and necessarily C is contained
in the base locus. We know thereby that deg (ωS |Cj ) = 0 for the components
Cj of D. By the Hodge-index theorem ([30], p. 364) one finds for any reduced
subdivisor C of D that C · C < 0. If we take C = Cj , then the adjunction
formula shows that

C · C = −2 and C ' IP1.

For C = (C1 + C2) we get
C1 · C2 < 2

and C1 and C2 intersect transversally.
2

Step 3. For D as in Step 2, ωνS(−D) is nef, hence ωNS (−D) for N ≥ ν is nef as
well. We can choose N > αj for j = 1, . . . r. For some i > 0

D′ = [
i ·D
N

] =
r∑
j=1

[
i · αj
N

] · Cj

will be reduced and non zero. By (5.12,c) again, we have for L = ωS

H1(S,L(i)−1
) ∼= H1(S, ωS ⊗ L(i)) = H1(S, ωi+1

S (−D′)) = 0

and
H0(S, ωi+1

S ) −−→ H0(D′, ωi+1
S |D′)

is surjective. Since the right hand side is nontrivial (in fact its dimension is
just the number of connected components of D′), for i+ 1 the base locus does
not contain D′. After finitely many steps we are done.

2

The proof of (7.1) is a quite typical example in two respects. First of all,
vanishing of H1 or more general by the surjectivity of the adjunction map in
(5.6,a) allows to pull back sections of invertible sheaves on divisors. Secondly
it shows again how to play around with integral parts, a method which already
appeared in the proof of (5.12).

Corollary (5.12), as stated, has the disadvantage that D has to be a
normal crossing divisor. Let us try next to study some weaker conditions.



§ 7 Some applications of vanishing theorems 67

7.4. Definition. Let X be a normal variety and D be an effective Cartier
divisor on X. Let τ : X ′ → X be a blowing up, such that X ′ is non singular
and D′ = τ∗D is a normal crossing divisor. We define:
a)

ωX{
−D
N
} = τ∗ωX′(−[

D′

N
]).

b) CX(D,N) = Coker (ωX{−DN } −−→ ωX) where ωX is the reflexive hull of
ωX0 for X0 = X − Sing (X).
c) (see [23])

e(D) = Min {N > 0; CX(D,N) = 0}.

d) If X is compact and L invertible, H0(X,L) 6= 0, then

e(L) = Max {e(D); D ≥ 0 and OX(D) = L}.

7.5. Properties (see [23]). Let X and D be as in (7.4).
a) If X has at most rational singularities, then e(D) is finite.
b) If X is non-singular and D a normal crossing divisor then

ωX{
−D
N
} = ωX(−[

D

N
]).

c) ωX{−DN }, CX(D,N) and e(D) are independent of the blowing up τ : X ′ → X
choosen.
d) Let H be a prime Cartier divisor on X, not contained in D, such that H is
normal. Then one has a natural inclusion

ωH{
−D |H
N

} −−→ ωX{
−D
N
} ⊗ OX(H) |H .

e) If in d) X and H have rational sigularities, then for N ≥ e(D |H), H does
not meet the support of CX(D,N).

Proof: a) is obvious since for N � 0

τ∗ωX′(−[
D

N
]) = τ∗ωX′ = ωX .

Similar to (5.13), part b) can be deduced from (3.24) and from the fact, that
quotient singularities are rational singularities. A more direct argument is as
follows. We have an inclusion

ωX{
−D
N
} −−→ ωX(−[

D

N
])

and it is enough to prove b) for some blowing up dominating τ . Hence, it is
enough to consider the case that τ is a sequence of blowings with non-singular
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centers. Let us write

ωX′ = τ∗ωX ⊗OX′(
t∑
i=1

αi · Ei).

For mi = codimX(τ(Ei)) one has αi ≥ mi − 1.

In fact, assume this to hold true for τ1 : X1 −−→ X and

ωX1 = τ∗1ωX ⊗OX1(
t−1∑
i=1

αi · E′i).

If δ : X ′ −−→ X1 is the blowing up with center S and Et the exceptional divisor
then, for m = codimX1(S), one has

ωX′ = δ∗ωX1 ⊗OX′((m− 1) · Et)

(see [30], p. 188). If mt > m then S lies on some E′ν with mt −m ≤ mν − 1.
Hence

αt ≥ m− 1 + αν ≥ mt − 1.

On the other hand, assume that τ(Eµ) lies on s different components of D, let
us say on D1, · · · , Ds but not in Dj for j > s. Then mµ ≥ s and, if

D =
r∑
j=1

αjDj

one has

[
s∑
j=1

αj
N

] ≤
s∑
j=1

[
αj
N

] + s− 1 ≤
s∑
j=1

[
αj
N

] + αµ.

One obtains

[
D′

N
] ≤ τ∗[D

N
] +

t∑
i=1

αi · Ei

and hence

τ∗ωX(−[
D

N
]) ⊂ ωX′(−[

D′

N
]).

c) follows from b). Hence in d) we may assume that D′ intersects the proper
transform H ′ on H transversally and, of course, that H ′ is non-singular. Then

[
D′

N
] |H′= [

D′ |H′
N

].

One has a commutative diagram

τ∗ωX′(−[D
′

N ] +H ′) α−−−−→ τ∗ωH′(−[D
′|H′
N ]) −−−−→ ωHy y=

τ∗ωX′(−[D
′

N ])⊗OX(H) −−−−→ τ∗ωX′(−[D
′

N ])⊗OX(H) |H
γ−−−−→ ωH
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The cokernel of α lies in R1τ∗ωX′(−[D
′

N ]), and (6.11) shows that α is surjective.
We obtain therefore a non-trivial morphism

α′ : ωH{
−D |H
N

} −−→ ωX{
−D
N
} ⊗ OX(H) |H .

Since ωH{−D|HN } is torsion free d) holds true.
In e) we know that ωH{−D|HN } is isomorphic to ωH . Hence γ is surjective.
Therefore ωX{−DN } ⊗OX(H) must be isomorphic to ωX ⊗OX(H) in a neigh-
bourhood of H.

2

7.6. Remark. The diagram used to prove d) gives slightly more. Instead of
assuming that D′ = τ∗D it is enough to take any normal crossing divisor D′

on X ′ not containing H ′. Then the inclusion

τ∗ωH′(−[
D′ |H′
N

]) ↪→ τ∗ωX′(−[
D

N
])⊗OX(H) |H

exists whenever H ′ +D′ is a normal crossing divisor and OX′(−D′) is
τ -numerically effective (see (6.10)).

Up to now, we do not even know that e(L) is finite. This however follows
from the first part of the next lemma, since every sheaf L lies in some ample
invertible sheaf.

7.7. Lemma. Let X be a projective manifold and let L be an invertible sheaf.
a) If L is very ample and ν > 0, then

e(Lν) ≤ ν · c1(L)dimX + 1

b) For s ∈ H0(X,L) with zero-locus D assume that for some p ∈ X the section
s has the multiplicity µ i.e.:

s ∈ mµ
p ⊗ L but s /∈ mµ+1

p ⊗ L.

Then
ωX{

−D
N
} −−→ ωX

is an isomorphism in a neighbourhood of p for N > µ.
c) If under the assumption of b)

µ′ = [
µ

N
]− dimX + 1 ≥ 0

then ωX{−DN } is contained in mµ′

p ⊗ ωX .
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Proof: a) Let D ≥ 0 be a divisor, OX(D) = Lν .

If X is a curve then [DN ] = 0 for N > deg D + 1 = ν · c1(L) + 1.

In general, let H be the divisor of a general section of L. By induction

e(Lν |H) ≤ ν · c1(L |H)dimH + 1 = ν · c1(L)dimX + 1.

(7.5,e) tells us that CX(D,N) is supported outside of H for

N ≥ ν · c1(L)dimX + 1

and moving H we find CX(D,N) = 0.

For b) and c) we may assume that the blowing up τ : X ′ → X factors through
the blowing up % : Xp → X of p. For Dp = %∗D and for the exceptional divisor
E of % we have

∆ = Dp − µ · E ≥ 0

and ∆ does not contain E. Assume N > µ. One has

OE(∆ |E) = OIPn−1(µ)

and, by part a), one obtains

ωE{
−∆ |E
N
} = ωE .

From (7.5,e) one knows that

ωXp{
−∆
N
} −−→ ωXp

is an isomorphism in a neighbourhood of E. Hence

ωXp(−E) = ωXp{
−∆
N
} ⊗ OXp(−E) = ωXp{

−∆−N · E
N

}

is contained in ωXp{
−Dp
N } which implies that ωX = ωX{−DN } near p.

If µ′ = [ µN ]− n+ 1 ≥ 0 then

ωXp{
−Dp

N
} ⊂ ωXp{

−µ · E
N

} = ωXp(−[
µ

N
] · E)

and

ωX{
−D
N
} = %∗ωXp{

−Dp

N
} ⊂ %∗%∗ωX((n− 1− [

µ

N
]) · E) = mµ′

p ⊗ ωX .

2
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The sheaves ωX{−DN } are describing the correction terms needed if one wants
to generalize the vanishing theorems (5.12,c) or (5.12,d) to non normal crossing
divisors. For example one obtains:

7.8. Proposition. Let X be a projective manifold, L be an invertible sheaf
and D be a divisor such that LN (−D) is numerically effective and

c1(LN (−D))n > 0

for n = dimX. Then

Hb(X,ωX{
−D
N
} ⊗ L) = 0 for b > 0.

Proof: This follows from (5.12,c) and (6.11,b) by using the Leray spectral
sequence (A.27).

2

7.9. Remark. Demailly proved in [13] an analytic improvement of Kodaira’s
vanishing theorem. It would be nice to understand the relation of his positivity
condition with the one arising from (7.8), i.e. with the condition that

ωX{
−D
N
} = ωX .

One of the reasons for the interest in vanishing theorems as (7.8) is
implication that certain sheaves are generated by global sections. For example
one has:

7.10. Corollary. Under the assumptions of (7.8) let H be a very ample sheaf.
Then

HdimX ⊗ L⊗ ωX{
−D
N
}

is generated by global sections.

Proof.: For
F = L ⊗ ωX{

−D
N
} ⊗ ω−1

X

we have
Hb(X,F ⊗Hν ⊗ ωX) = 0 for b > 0 and ν ≥ 0.

For general sections H1, . . . ,Hn of H passing through a given point p and for

Yr =
r⋂
i=1

Hi

we obtain

Hb(Yr,F ⊗Hν ⊗ ωYr ) = 0, for b > 0 and ν ≥ 0,
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by regarding the cohomology sequence given by the short exact sequence

0 −−→ F ⊗Hν ⊗ ωYr −−→ F ⊗Hν+1 ⊗ ωYr −−→ F ⊗Hν ⊗ ωYr+1 −−→ 0.

By induction we may assume that

F ⊗Hdim(Yr+1) ⊗ ωYr+1

is generated by global sections in p, and, using the cohomology sequence again
one finds the same for

F ⊗Hdim(Yr) ⊗ ωYr .
2

Let us apply (7.10) for X = IPn to study the behaviour of zeros of
homogeneous polynomials:

7.11. Example: Zeros of polynomials . Let S be a finite set of points in
IPn, for n ≥ 2, and

ωµ(S) = Min{ d > 0; there exists s ∈ H0(IPn,OIPn(d))
with multiplicity at least µ in each p ∈ S}.

7.12. Claim. For µ′ < µ one has

ωµ′(s)
µ′ + n− 1

≤ ωµ(s)
µ

.

Proof.: For d = ωµ(S) we have a section s ∈ H0(IPn,OIPn(d)) with divisor
D′ such that s has multiplicity at least µ in each p ∈ S. Choose

d′ = [
d

µ
(µ′ + n− 1)].

Since d′ does not change if we replace d by ν · d+ 1 and µ by ν · µ for ν � 0,
we can assume that D′ = D +H for a hyperplane H not meeting S.

For L = OIPn(d′ + 1), for the divisor (d′ + 1) · D, and for N = d, the as-
sumptions of (7.8) hold true and (7.10) tells us that

OIPn(n+ d′ + 1)⊗ ωIPn{
−(d′ + 1) ·D

d
}

is globally generated. Since d′+1 > d
µ (µ′+n−1) and hence µ′+n−1 ≤ (d′+1)·µ

d

we can apply (7.7,c) and find

OIPn(n+ d′ + 1)⊗ ωIPn{
−(d′ + 1) ·D

d
}

to be a subsheaf of
OIPn(d′)⊗

⊗
p∈S

mµ′

p .

2
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7.13. Remark. For some generalizations and improvements and for the his-
tory of this kind of problem see [18].

Up to this point, the applications discussed are based on the global
vanishing theorems for invertible sheaves. J. Kollár’s vanishing theorem (5.6,a)
for restriction maps or, equivalently, vanishing theorems for the cohomology of
higher direct image sheaves ((6.16) and (6.17)) are nice tools to study families
of projective varieties:

7.14. Example: Families of varieties over curves .
Let X be a projective manifold, Z a non-singular curve and f : X → Z a
surjective morphism. We call a locally free sheaf F on Z semi-positive, if for
some (or equivalently: all) ample invertible sheaf A on Z and for all η > 0 the
sheaf

Sη(F)⊗A

is ample. One has

7.15. Theorem (Fujita [24]). For f : X → Z as above f∗ωX/Z is semi-
positive.

Here ωX/Z = ωX ⊗ f∗ω−1
Z is the dualizing sheaf of X over Z. In [40] J. Kollár

used his vanishing theorem (5.6,a) to give a simple proof of (7.15) and of its
generalization to higher dimensional Z, obtained beforehand by Y. Kawamata
[35]. As usually, one obtains similar results adding the L(i). For example, using
the notations introduced in (7.4) one has:

7.16. Variant. Assume in addition that L is an invertible sheaf, D an effective
divisor and that LN (−D) is semi-ample. Then one has
a) The sheaf f∗(L ⊗ ωX/Z{−DN }) is semi-positive.
b) If for a general fibre F of f one has N ≥ e(D |F ), then f∗(L ⊗ ωX/Z) is
semi-positive.

7.17. Corollary. Under the assumption of (7.16) assume that D contains a
smooth fibre of f . Then, if N ≥ e(D |F ), the sheaf f∗(L ⊗ ωX/Z) is ample.

Proof of (7.17): Recall that a vectorbundle F on Z is ample, if and only if
τ∗F is ample for some finite cover

τ : Z ′ −−→ Z.

Hence, if L′, D′, X ′ and f ′ are obtained by pullback from the corresponding
objects over Z, it is enough to show that

τ∗f∗(L ⊗ ωX/Z) = f ′∗(L′ ⊗ ωX′/Z′)

is ample. If, for the ramification locus ∆(Z ′/Z) of Z ′ over Z, the morphism f
is smooth in a neighbourhood of f−1(∆(Z ′/Z)) then f ′ : X ′ −−→ Z ′ satisfies
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again the assumption made in (7.14).
Choosing Z ′ to be ramified of order N over the point p ∈ Z with f−1(p) ⊆ D,
we can reduce (7.17) to the case for which D contains the N -th multiple of a
fibre, say N · f−1(p). We have

f∗(L ⊗ ωX/Z{−
D

N
}) ⊂ f∗(L ⊗ ωX/Z)⊗OZ(−p)

and this inclusion is an isomorphism over some open set. In fact, by (7.5,e) the
assumption N ≥ e(D |F ) implies that ωX/Z and ωX/Z{−D

N } are the same in a
neighbourhood of a general fibre F . Hence

f∗(L ⊗ ωX/Z)⊗OZ(−p)

is semi-positive.
2

Proof of (7.16): As in the proof of (7.17) the assumption made in part b)
implies that

f∗(L ⊗ ωX/Z{
−D
N
}) ⊂ f∗(L ⊗ ωX/Z)

is an isomorphism over some non-empty open subvariety and b) follows from a).

By definition of ωX{−DN } we can assume D to be a normal crossing divi-
sor. Moreover, we can assume that the multiplicities in D are strictly smaller
than N and hence L = L(−[DN ]). Let p ∈ Z be a point in general position
and F = f−1(p). By (5.12,a) applied to the semiample sheaf L(F ) we have a
surjection

H0(X,L(F )⊗ ωX(F )) −−→ H0(F,L(F )⊗ ωF )

and f∗(L⊗ωX)⊗OZ(2 · p) is generated by global sections in a neighbourhood
of p.

7.18. Claim. ωZ(2 · p)⊗
⊗η

f∗(L ⊗ ωX/Z) is semi-positive for all η > 0.

Proof: For η = 1 (7.18) holds true as we just found a trivial subsheaf
⊕rOZ

of
f∗(L ⊗ ωX)⊗OZ(2 · p)

of full rank.
In general, let Y ′ = X ×Z . . . ×Z X (η-times) be the fibre product and
δ : Y → Y ′ be a desingularization. The induced morphisms g′ : Y ′ → Z
and g : Y → Z satisfy:

i) Y ′ is flat and Gorenstein over Z and

ωY ′/Z =
η⊗
j=1

pr∗jωX/Z .
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ii) For

M′ =
η⊗
j=1

pr∗jL and M = δ∗M′

one has an inclusion, surjective at the general point of Z,

g∗(M⊗ ωY/Z) ⊂ g′∗(M′ ⊗ ωY ′/Z) =
η⊗
f∗(L ⊗ ωX/Z)

iii) On a general fibre F̃ of g the divisor

∆ =
η∑
j=1

δ∗pr∗jD

has normal crossings, [ ∆
N ]|

F̃
= 0, and MN (−∆) is semi-ample.

In fact, i) is the compatibility of relative dualizing sheaves with pullback, ii)
follows from flat base change and the inclusion δ∗ωY ⊂ ωY ′ and iii) is obvious.
Using those three properties, (7.18) follows from the case “η = 1” applied to
g : Y → Z.

2

Since Sη( ) is a quotient of
⊗η( ) and since the quotient of a semi-positive

sheaf is again semipositive, one obtains (7.16).
2

7.19. Remarks.
a) If dimZ > 1, then the arguments used in the proof of (7.16,a) show that for
all η > 0 and H very ample the reflexive hull G of

Sη(f∗(L ⊗ ωX/Z))⊗Hdim(X)+1 ⊗ ωZ

is generated by H0(Z,G) over some open set. This led the second author to
the definition “weakly-positive” (see [64]).
b) One can make (7.17) more explicit and measure the degree of ampleness by
giving lower bound for the degree of invertible quotient sheaves of f∗(L⊗ωX/Z).
Details have been worked out in [23]. These explicit bounds, together with the
Kodaira-Spencer map can be used for families of curves over Z to give another
proof of the Theorem of Manin saying that the Mordell conjecture holds true
for curves over function fields over Cl .

The vanishing statements for higher direct images (6.11) and its corol-
laries (7.5,d) and (7.6) are useful to study singularities.

7.20. Example: Deformation of quotient singularities.
Let X be a normal variety and f : X → S a flat morphism from X to a

non-singular curve S.
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7.21. Theorem. Assume that X is normal and that for some s0 ∈ S the
variety X0 = f−1(s0) is a reduced normal surface with quotient singularities.
Then the general fibre f−1(η) = Xη has at most quotient singularities.

Proof (see [19]):

If Y is a normal surface with rational singularities then Mumford [47] has
shown that for p ∈ Y ,

Spec (OY,p)− p = U

has only finitely many non-isomorphic invertible sheaves. Hence for someN > 0
one has ωNU = OU and for some N > 0 the reflexive hull ω[N ]

X of ωNY is invertible.
Let

δ : Y ′ −−→ Y

be a desingularization. Since Y has rational singularities we have

δ∗ωY ′ = ωY

and
δ∗ωY /torsion ⊂ ωY ′ .

We may assume that δ∗ωY /torsion = K is invertible and we write

ωY ′ = K ⊗OY ′(F ).

With this notation we have for some effective divisor D

δ∗ω
[N ]
Y = KN ⊗OY ′(D).

The divisors D and F can be used to characterize the quotient singularities
among the rational singularities:

7.22. Claim. Y has quotient singularities if and only if [DN ] ≤ F .

Proof.: If one replaces D and N by some common multiple, the inequality in
(7.22) is not affected. The question being local we may hence assume that N
is the smallest integer with ω

[N ]
Y invertible and ω

[N ]
Y ' OY .

For K−1 = L one has LN = OY ′(D) and, as in (3.5), we can consider the
cyclic cover Z ′ obtained by taking the N -th root out of D. Let Z be the nor-
malization of Y in k(Z ′) and

Z ′
δ′−−−−→ Z

π′

y yπ
Y ′ −−−−→

δ
Y
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the induced morphism (Z is usually called the canonical covering of Y ). One
has

π′∗ωZ′ =
N−1⊕
i=0

ωY ′ ⊗ L(i).

In fact, this follows from (3.11) by duality for finite morphisms (see [30], p.
239) or, since

L−i([ i ·D
N

] +D(i)) = L−i(D − [
(N − i) ·D

N
]) = L(N−i)

from (3.16,d).
Recall that Z has rational singularities if and only if δ′∗ωZ′ = ωZ .
Assume that Y has a quotient singularity in the point p. If Ũ is the universal
cover of Y − p then the normalization Z̃ of Y in k(Ũ) is non singular and, by
construction it dominates Z. Hence Z has quotient singularities and

π∗δ
′
∗ωZ′ = δ∗π

′
∗ωZ′

is reflexive. In particular δ∗ωY ′ ⊗ L(1) is reflexive. One has

ωY ′ ⊗ L(1) = K ⊗ L⊗OY ′(F − [
D

N
]) = OY ′(F − [

D

N
])

and the reflexivity of δ∗ωY ′ ⊗ L(1) is equivalent to F ≥ [DN ].

On the other hand, F ≥ [DN ] implies that the summand δ∗OY ′(F − [DN ]) of
δ∗π
′
∗ωZ′ has one section without zero on Y . Hence δ′∗ωZ′ has a section without

zero on Z − π−1(p), which implies that δ′∗ωZ′ is invertible and coincides with
ωZ . So Z has a rational singularity and is Gorenstein. Those singularities are
called rational double points, and they are known to be quotient singularities.
Therefore Y has a quotient singularity as well.

2

Proof of (7.21): Let δ : X ′ → X be a desingularization. We assume that
the proper transform X ′0 of X0 is non-singular and write δ0 = δ |X′0 .
By (7.5,d), applied in the case “D = 0 ”, we have a natural inclusion

δ0∗ωX′0 −−→ δ∗ωX′ ⊗OX(X0) |X0 .

Since X0 has rational singularities one has

δ0∗ωX′0 = ωX0 = (ωX ⊗OX(X0))|X0 .

One obtains δ∗ωX′ = ωX , at least if one replaces S by a neighbourhood of s0.
Hence X and Xη have at most rational singularities.
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Let us choose N > 1, such that both, ω[N ]
Xη

and ω
[N ]
X0

are invertible (It might

happen, nevertheless, that ω[N ]
X is not invertible). We may assume that we have

choosen X such that
K = δ∗ωX/torsion

is an invertible sheaf. Hence

K0 = K ⊗OX′(δ∗X0) |X′0

is invertible and generated by global sections. Moreover, one has maps

δ∗0ωX0 = δ∗(ωX ⊗OX(X0))|X′0 −−→ K0

and K0 contains δ∗0ωX0/torsion. Hence both sheaves must be the same.

Blowing up again, we can assume M = δ∗ω
[N ]
X /torsion to be locally free and

isomorphic to KN (D) where D is a divisor in the exceptional locus of δ such
that X ′0 +D has at most normal crossings.

We can choose an embedding ωX ↪→ OX such that the zero-set does not
contain X0. If correspondingly K = OX′(−∆), for some ∆ ≥ 0 we can choose
the inclusion ωX ↪→ OX such that

D′ = N ·∆−D ≥ 0.

Blowing up we can assume that D′ + X ′0 is a normal crossing divisor. By
definition

OX(−D′) = OX(−N ·∆ +D) =M

and OX(−D′) is δ-numerically effective.

It is our aim to use (7.6) in order to compare the sheaves K0 and δ∗0ω
[N ]
X0

with K and with M. Some unpleasant but elementary calculations will show
that the inequality (7.22), applied to X0, gives a similar inequality for the gen-
eral fibre Xη.

Let us write

ωX′0 = K0(F0) and δ∗0ω
[N ]
X0

= KN0 ⊗OX′0(D0).

By (7.22) one has

F0 ≥ [
1
N
D0].

Since

KN0 ⊗OX′0(D |X′0) ' (KN ⊗OX′(D)⊗OX′(+N · δ∗X0)) |X′0
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is a subsheaf of δ∗0ω
[N ]
X0

one obtains that

(∗) F0 ≥ [
1
N
D |X′0 ] .

On the other hand, since

KN−1
0 = OX′0(−(N − 1)∆ |X′0)⊗OX′((N − 1)δ∗X0) |X′0

and
[
N − 1
N

D′] = (N − 1)∆−D + [
1
N
D]

one has

ωX′0(−[
(N − 1)
N

D′ |X′0 ]) = K0(F0 − (N − 1)∆ |X′0 +D |X′0 −[
1
N
D |X′0 ]) =

KN0 (D |X′0 +F0 − [
1
N
D |X′0 ])⊗OX′(−(N − 1)δ∗X0) |X′0=

M |X′0 (F0 − [
1
N
D |X′0 ])⊗OX′(δ∗X0) |X′0 .

By the inequality (∗) the sheaf

δ0∗(ωX′0(−[
(N − 1)
N

D′ |X′0 ])⊗OX′(−δ∗X0) |X′0)

contains δ0∗(M |X′0). If F is the divisor with ωX′ = K ⊗OX′(F ) we get from
(7.6) δ0∗(M |X′0) as a subsheaf of

δ∗ωX(−[
(N − 1)
N

D′]) |X0= δ∗(K⊗OX′(F )⊗OX′(−(N−1)∆+D− [
1
N
D])) |X0

= δ∗(KN ⊗OX′(D+ F − [
1
N
D])) |X0= δ∗M(F − [

1
N
D]) |X0 .

Of course, we have a natural morphism δ∗M−−→ δ0∗(M |X′0) and the induced
map

δ∗M−−→ δ∗M(F − [
1
N
D]) |X0

is surjective outside of the singular locus of X0. We have natural maps

ω
[N ]
X −−→ δ∗δ

∗ω
[N ]
X −−→ δ∗M−−→ δ∗M(F − [

1
N
D])|X0 −−→ ω

[N ]
X |X0 .

The sheaf δ∗M(F − [ 1
ND]) is torsionfree and, since X0 is a Cartier divisor,

δ∗M(F − [ 1
ND])|X0 has no torsion as well. Therefore

ω
[N ]
X |X0 = δ∗M(F − [

1
N
D])|X0 .

SinceM = δ∗ω
[N ]
X /torsion, this is only possible if F ≥ [ 1

N ·D]. Hence Fη ≥ [DηN ]
where “η” denotes the restriction to the general fibre and the theorem follows
from (7.22).

2
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7.23. Example: Adjoint linear systems on surfaces.
Studying adjoint linear systems on higher dimensional manifolds, L. Ein and

R. Lazarsfeld [15] realized, that (7.7, b and c) and (7.8) can be used to reprove
part of I. Reider’s theorem [53] and to obtain similar results for threefolds.
We cordially thank them for allowing us to add their argument in the surface
case to the final version of these notes.

7.24. Theorem (I. Reider, [53]). Let S be a non-singular projective surface,
defined over an algebraically closed field of characteristic zero, let p ∈ S be a
closed point and let L be a numerically effective invertible sheaf on S. Assume
that c1(L)2 > 4 and that for all curves C with p ∈ C ⊂ S one has c1(L) ·C > 1.
Then there is a section σ ∈ H0(S,L ⊗ ωS) with σ(p) 6= 0.

Proof, following §1 of [15]:

Let H be an ample invertible sheaf on S and let mp be the ideal sheaf of p.
For ν � 0, one has H2(S,Lν ⊗H−1) = 0 and by the Riemann-Roch formula
one finds a, b ∈ IN with

h0(S,H−1 ⊗ Lν ⊗m2·ν
p ) ≥ h0(S,H−1 ⊗ Lν)− h0(S,OS/m2·ν

p )

≥ 1
2
· c1(L)2 · ν2 + a · ν + b− h0(S,OS/m2·ν

p ).

Since

h0(S,OS/m2·ν
p ) =

1
2
· (4 · ν2 + 2 · ν)

one finds for ν � 0 a section s of H−1 ⊗ Lν with multiplicity µp ≥ 2 · ν in p
(see (7.7,b). Let

D = ∆ +
r∑
i=1

νi ·Di

be the zero-divisor of s, where ∆ is an effective divisor not containing p and
p ∈ Di for i = 1 · · · r. If D′ is any effective divisor the Hη(−D′) will be ample
for η � 0. Replacing D by η · D + D′ and ν by ν · η for a suitably choosen
divisor D′, we may assume that r > 1 and that ν1 > ν2 > · · · > νr. Of course
we can also assume that µp is even.

7.25. Claim. If µp > 2 · ν1 then (7.24) holds true.

Proof: Let N = µp
2 By the choice of s one has N ≥ ν and

LN (−D) = LN−ν ⊗H

is ample. By (7.8) one has

H1(S, ωS{
−D
N
} ⊗ L) = 0.
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By (7.7,b), or just by definition of ωS{−DN }, one can find some open neigh-
bourhood U of p such that

ωS{
−D
N
} −−→ ωS

is an isomorphism on U − p. Moreover, by (7.7,c), the inclusion factors like

ωS{
−D
N
} −−→ ωS ⊗mp −−→ ωS .

LetM be the sheaf j∗j∗(ωS{−DN }⊗L) where j : S−p −−→ S is the inclusion. For
some nontrivial skyscraper sheaf C supported in p, one has an exact sequence

0 −−→ ωS{
−D
N
} ⊗ L −−→M −−→ C −−→ 0.

Hence, M has a section σ with σ(p) 6= 0.
2

It remains to consider the case where µp ≤ 2 · ν1. If µp(Di) denotes the multi-
plicity of Di in p, then

µp =
r∑
i=1

νi · µp(Di).

Since r ≥ 2 this implies that µp(D1) = 1.

Let us take N = ν1. Again, N ≥ ν and by (7.8)

H1(S, ωS{
−D
N
} ⊗ L) = 0.

One has an inclusion

ωS{
−D
N
} ⊗ L −−→ ωS ⊗ L(−D1 − [

∆
N

])

whose cokernel is a skyscraper sheaf. Hence

H1(S, ωS ⊗ L(−D1 − [
∆
N

])) = 0

and the restriction map

H0(S, ωS ⊗ L(−[
∆
N

])) −−→ H0(D1, ωD1 ⊗ L(−D1 − [
∆
N

])|D1)

is surjective.

The right hand side contains a section σ with σ(p) 6= 0, since

deg(L(−D1 − [
∆
N

])|D1) ≥ 2.
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In fact one has:

N ·deg(L(−D1− [
∆
N

])|D1) = deg(LN (−D)|D1)+
r∑
i=2

νi ·Di ·D1 +(∆− [
∆
N

]) ·D1

≥ (N − ν) · c1(L) ·D1 + c1(H) ·D1 +
r∑
i=2

νi ·Di ·D1

> (N − ν) · c1(L) ·D1 +
r∑
i=2

νi · µp(Di) = (N − ν) · c1(L) ·D1 + (µp − ν1).

Since c1(L) ·D1 ≥ 2 and µp ≥ 2 · ν, one obtains

N · deg(L(−D1 − [
∆
N

])|D1) > 2 ·N − 2 · ν + µp −N ≥ N.

2

7.26. Remark. It is likely that the other parts of I. Reider’s theorem [53], i.e.
the lower bounds for c1(L)2 and for c1(L) ·C which imply that H0(S, ωS ⊗L)
separates points and tangent directions, can be obtained in a similar way.

§ 8 Characteristic p methods: Lifting of schemes

Up to this point we did not prove the degeneration of the Hodge spectral
sequence used in (3.2). Before doing so in Lecture 10 let us first recall what we
want to prove.

8.1.

Let X be a proper smooth variety (or a scheme) over a field k. One introduces
the de Rham cohomology

Hb
DR(X/k) := IHb(X,Ω•X/k)

where Ω•X/k is the complex of regular differential forms, defined over k, the so
called de Rham complex.

In order to compute it, one introduces the “Hodge to de Rham” spectral se-
quence associated to the Hodge filtration Ω≥aX/k (see (A.25):

Eab1 = Hb(X,ΩaX/k) =⇒ Ha+b
DR (X/k).

If k = Cl , the field of complex numbers, the classical Hodge theory tells us that
the Hodge spectral sequence

Eab1 an = Hb(Xan,ΩaXan) =⇒ IHa+b(Xan,Ω•Xan)



§ 8 Characteristic p methods: Lifting of schemes 83

degenerates in E1, where Ω•Xan is the de Rham complex of holomorphic differ-
ential forms (see (A.25)).

In fact, one has
IHa+b(Xan,Ω•Xan) = Ha+b(Xan,Cl )

and by Hodge theory

dim H l(Xan,Cl ) =
∑
a+b=l

dim Hb(Xan,ΩaXan).

As explained in (A.22), this equality is equivalent to the degeneration of E1 an.

As by Serre’s GAGA theorems [56],

Hb(Xan,ΩaXan) = Hb(X,ΩaX/Cl ),

the Hodge spectral sequence and the “Hodge to de Rham” spectral sequence
coincide and therefore the second one degenerates in E1 as well.

If k is any field of characteristic zero, one obtains the same result by
flat base change:

8.2. Theorem. Let X be a proper smooth variety over a field k of character-
istic zero. Then the Hodge to de Rham spectral sequence degenerates in E1 or,
equivalently,

dim H l
DR(X/k) =

∑
a+b=l

dim Hb(X,ΩaX/k).

As we have already seen in Lecture 1 and 6, theorem (8.2) implies the Akizuki
- Kodaira - Nakano vanishing theorem:

AKNV: If L is ample invertible, then

Hb(X,ΩaX/k ⊗ L
−1) = 0 for a+ b < dim X

(where, of course, char k = 0).

Mumford [47] has shown that over a field k of characteristic p > 0 the
E1 degeneration for the Hodge to de Rham spectral sequence fails and, finally,
Raynaud [52] gave a counterexample to AKNV in characteristic p > 0.

The aim of this and of the next three lectures is to present Deligne-Illusie’s
answer to those counterexamples:

8.3. Theorem (Deligne - Illusie [12]). Let X be a proper smooth variety
over a perfect field k of characteristic p ≥ dim X lifting to the ring W2(k)
of the second Witt vectors (see (8.11)). Then both, the E1-degeneration of the
Hodge to de Rham spectral sequence and AKNV hold true.
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Actually they prove a slightly stronger version of (8.3), as will be explained
later. Unfortunately one cannot derive from their methods the stronger van-
ishing theorems mentioned in Lecture 5 such as Grauert-Riemenschneider or
Kawamata-Viehweg directly. As indicated, the geometric methods of the first
part of these Lecture Notes fail as well. It is still an open problem which of
those statements remains true under the assumptions of (8.3).

Finally, by standard techniques of reduction to characteristic p > 0, Deligne -
Illusie show:

8.4. Proposition. Theorem (8.2) and AKNV over a field k of characteristic
zero are consequences of theorem (8.3).

In the rest of this lecture, we will try to discuss to some extend elemen-
tary properties and examples of liftings to W2(k).

8.5. Liftings of a scheme.
Let S be a scheme defined over IFp the field with p elements.

8.6. Definition. A lifting of S to ZZ/p2 is a scheme S̃, defined and flat over
ZZ/p2, such that S = S̃ ×ZZ/p2 IFp.

8.7. Properties.
a) S is defined by a nilpotent ideal sheaf (of square zero) in S̃. In particular
the inclusion S ⊂ S̃ or, if one prefers, the projection

O
S̃
−−→ OS

induces the identity on the underlying topological spaces (S)top and (S̃)top.
b) From the exact sequence of ZZ/p2-modules

0 −−→ p · ZZ/p2 −−→ ZZ/p2 −−→ ZZ/p −−→ 0

one obtains, since O
S̃

is flat over ZZ/p2, the exact sequence of O
S̃

-modules

0 −−→ p · O
S̃
−−→ O

S̃
−−→ OS −−→ 0

and, from the isomorphism of ZZ/p2-modules

p : ZZ/p −−→ p · ZZ/p2,

one obtains the isomorphism of O
S̃

-modules

p : OS −−→ p · O
S̃
.
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8.8. Example. Let k be a perfect field of characteristic p and S = Spec k.
Then S̃ exists and is uniquely determined (up to isomorphism) by (8.7,b):

S̃ = Spec W2(k), where W2(k) is called the ring of the second Witt vectors
of k.

In concrete terms, W2(k) = k ⊕ k · p as additive group and the multiplica-
tion is defined by

(x+ y · p)(x′ + y′ · p) = x · x′ + (x · y′ + x′ · y) · p.

8.9. Assumptions. Throughout Lectures 8 to 11 S will be a noetherian
scheme over IFp with a lifting S̃ to ZZ/p2.
X will denote a noetherian S-scheme, D ⊂ X will be a reduced Cartier divi-
sor. X will be supposed to be smooth over S, which means that locally X is
étale over the affine space AAn

S over S (here n = dimS X). D will be a normal
crossing divisor over S, i.e.:
D is the union of smooth divisors Di over S and one can choose the previous
étale cover such that the coordinates of AAn

S pull back to a parameter system
(t1, . . . , tn) on X, for which D is defined by

t1 · . . . · tr, for some r ≤ n.

We allow D to be empty.

8.10. Definition. For X smooth and D a normal crossing divisor over S, we
define the sheaf Ω1

X/S (log D) of one forms with logarithmic poles along D as
the OX -sheaf generated locally by

dti
ti

, for i ≤ r , and by dti , for i > r

(where we use the notation from (8.9)). Ω1
X/S(log D) is locally free of rank n

and the definition coincides with the one given in (2.1) for S = Spec k. Finally
we define

ΩaX/S(log D) =
a∧

Ω1
X/S(log D).

8.11. Definition. A lifting of

D =
r∑
j=1

Dj ⊂ X

to S̃ consists of a scheme X̃ and subschemes D̃j of X̃, all defined and flat over
S̃ such that X = X̃ ×

S̃
S and Dj = D̃j ×S̃ S. We write

D̃ =
r∑
j=r

D̃j .
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If k is a perfect field of characteristic p and S = Spec k, we say that (X,D)
admits a lifting to W2(k) if liftings X̃ and D̃j exist over S̃ = Spec W2(k).

If L is an invertible sheaf on X, we say that X and L admit a lifting to W2(k)
if there is a lifting X̃ of X over S̃ = Spec W2(k) and an invertible sheaf L̃ on
X̃ with L̃|X = L.

8.12. Remark. Of course, X̃ is also a lifting of the IFp-scheme X to a scheme
X̃ over ZZ/p2. In particular, (8.7.a) remains true and we have

(X̃)top = (X)top and (D̃)top = (D)top.

One can make (8.7,b) more precise:

8.13. Lemma. Let X be smooth over S and let X̃ be a scheme over S̃ with
X̃ ×

S̃
S = X. Then the following conditions are equivalent.

a) X̃ is smooth over S̃.

b) X̃ is a lifting of X to S̃.

c) There is an exact sequence of O
X̃

-modules

0 −−→ p · O
X̃
−−→ O

X̃

r−−→ OX −−→ 0

together with an O
X̃

-isomorphism

p : OX −−→ p · O
X̃

satisfying
p(x) = p · x̃ , for x̃ ∈ O

X̃
, and x = r(x̃).

d) If Ũ ⊆ X̃ is an open subscheme, U its image in X,

π : U −−→ AAn
S = Spec OS [t1, . . . , tn]

an étale morphism and if ϕ̃1, . . . , ϕ̃n ∈ OŨ satisfy r(ϕ̃i) = ϕi = π∗ti, then π

extends to an étale morphism

π̃ : Ũ −−→ AAn

S̃
= Spec O

S̃
[t1, . . . , tn]

with π̃∗(ti) = ϕ̃i for i = 1, . . . , n.

e) For each a ≥ 0 one has an exact sequence of O
X̃

-modules

0 −−→ p · Ωa
X̃/S̃
−−→ Ωa

X̃/S̃

r−−→ ΩaX/S −−→ 0
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and an O
X̃

-isomorphism

p : ΩaX/S −−→ p · Ωa
X̃/S̃

satisfying
p(ω) = p · ω̃ , for ω̃ ∈ Ωa

X̃/S̃
, and ω = r(ω̃).

Proof: A smooth morphism is flat, and flatness implies c). Obviously d)
implies e) and a). Hence the only part to prove is that c) implies d).
Using the notations from d) (for X̃ = Ũ) we can, of course, define

π̃ : X̃ −−→ AAn

S̃
with π̃∗(ti) = ϕ̃i.

Given a relation
∑
λ̃νm̃ν = 0 in O

X̃
between different monomials m̃ν in

ϕ̃1, . . . , ϕ̃n the exact sequence in c) implies λ̃ν = p · µ̃ν for µ̃ν ∈ OX̃ and
the isomorphism in c) shows that one has∑

µν ·mν = 0 for µν = r(µ̃ν) and mν = r(m̃ν).

Hence µν = 0 as well as µ̃ν = 0.

If g1, . . . , gr are locally independent generators of OX as a OAAn
S
-module, and if

g̃1, . . . , g̃r are liftings to O
X̃

, then each x̃ ∈ O
X̃

verifies

x = r(x̃) =
r∑
i=1

λigi

for some λi ∈ OAAn
S
. If λ̃1, . . . , λ̃r are liftings of λ1, . . . , λr to OAAn

S̃
, then

x̃−
r∑
i=1

λ̃ig̃i ∈ p · OX̃

and one can find µ̃i ∈ OAAn
S̃

with

x̃−
r∑
i=1

λ̃ig̃i = p(
r∑
i=1

µigi) =
r∑
i=1

p · µ̃ig̃i,

and

x̃ =
r∑
i=1

(λ̃i + p · µ̃i) · g̃i.

In other terms, g̃1, . . . g̃r are generators of O
X̃

as a OAAn
S̃
-module. They are

independent by the same argument which gave the independence of the mµ
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above. O
X̃

as a free OAAn
S̃
-module is flat.

Finally, (locally in X)

Ω1
X/S = π∗Ω1

AAn
S

=
n⊕

1=1

OXdϕi

and

π̃∗Ω1
AAn
S̃

=
n⊕
i=1

O
X̃
dϕ̃i

surjects to Ω1

X̃/S̃
. In fact, if ω̃ ∈ Ω1

X̃/S̃
,

ω̃ −
n∑
i=1

λ̃idϕ̃i ∈ im(Ω1
X/S

·p−−→ Ω1

X̃/S̃
)

for some λ̃i ∈ OX̃ and, as above, one can modify the λ̃i to get

ω̃ =
n∑
i=1

(λ̃i + p · µ̃i)dϕ̃i.

As π̃∗Ω1
AAn
S̃

−−→ Ω1

X̃/S̃
is injective as well, π̃ is étale.

2

8.14. Lemma. Let X be a smooth S-scheme and

D =
r∑
j=1

Dj

be a normal crossing divisor over S. Let X̃ be a lifting of X to S̃ and D̃j ⊆ X̃
subschemes with

D̃j ⊗S̃ S = Dj

for j = 1, . . . , r. Then the following conditions are equivalent:
a)

D̃ =
r∑
j=1

D̃j ⊂ X̃

is a lifting of D ⊂ X to S̃.

b) The components of D̃ are Cartier divisors in X̃.

c) If in (8.13,d) one knows that D |U is the zero-set of ϕ1 · . . . · ϕs, then
one can choose π̃ : Ũ −−→ AAn

S̃
, such that D̃j |Ũ is the zero set of π̃∗(tj).
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Proof: If D̃ ⊂ X̃ is a lifting of D ⊂ X, then the flatness of X̃ and D̃j over S̃
implies that the ideal sheaf J

D̃j
of D̃j is flat over S̃. We have again an exact

sequence
0 −−→ p · J

D̃j
−−→ J

D̃j
−−→ JDj −−→ 0

where JDj is the ideal sheaf of Dj , and an isomorphism

p : JDj −−→ p · J
D̃j
.

If ϕ̃j is a lifting of ϕj to J
D̃j

, then for any g̃ ∈ J
D̃j

one has g = λ · ϕj and

g̃ − λ̃ · ϕ̃j ∈ p · ID̃j

is of the form p · µ̃ · ϕ̃j = p(µ · ϕj) for some µ̃ ∈ O
X̃

. Hence ϕ̃j is a defining

equation for D̃j .
By (8.13,d) b) implies c) and obviously c) implies a).

2

8.15. Definition. Using the notations from (8.14,c) and (8.13,d) we define for
a lifting D̃ ⊂ X̃ of D ⊂ X to S̃ the sheaf

Ω1

X̃/S̃
(log D̃)

to be the O
X̃

-sheaf generated by

dϕ̃j
ϕ̃j

for j = 1, . . . , s and dϕ̃j for j = s+ 1, . . . , n.

8.16. Properties.
a) For all a the sheaves

Ωa
X̃/S̃

(log D̃) =
a∧

Ω1

X̃/S̃
(log D̃)

are locally free over O
X̃

.
b) One has an exact sequence of O

X̃
-modules

0 −−→ p · Ωa
X̃/S̃

(log D̃) −−→ Ωa
X̃/S̃

(log D̃) −−→ ΩaX/S(log D) −−→ 0

and an O
X̃

-isomorphism

p : ΩaX/S(log D) −−→ p · Ωa
X̃/S̃

(log D̃).
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8.17. Proposition. Let X be a smooth S-scheme.

a) Locally in the Zariski topology X has a lifting X̃ to S̃.

b) If X̃ is a lifting of X to S̃, if X̃ is affine and Y a complete intersection in
X, then there exists a lifting Ỹ of Y to S̃ and an embedding Ỹ ⊂ X̃.

c) In particular, if D is a S-normal crossing divisor on X then locally in
the Zariski topology D ⊂ X has a lifting D̃ ⊂ X̃ to S̃.

Proof: Locally X is a complete intersection in an affine space over S. Hence
a) follows from b). In b) we may assume that Y is a divisor, let us say the zero
set of ϕ ∈ OX . We can choose Ỹ to be the zero set of any lifting ϕ̃ ∈ O

X̃
of ϕ.

In fact, the flatness follows easily from (8.13,c) or from the following argument.
Choose

π : X −−→ AAn
S = Spec OX [t1, . . . , tn]

with ϕ = π∗(t1). By (8.13,d) π extends to an étale map π̃ : X̃ −−→ AAn

S̃
with

ϕ̃ = π̃∗(t1).
2

8.18. Isomorphisms between liftings

Let in the sequel X be a smooth S-scheme, D ⊂ X be an S-normal crossing
divisor and let, for i = 1, 2, D̃(i) ⊂ X̃(i) be two liftings of D ⊂ X to S̃.

8.19. Notations. A morphism u : X̃(1) → X̃(2) is called an isomorphism of
liftings

u : (X̃(1), D̃(1)) −−→ (X̃(2), D̃(2))

if u |X= idX and if

u∗(O
X̃(2)(−D̃(2))) = O

X̃(1)(−D̃(1)).

8.20. Remark. We have seen in (8.12) that (X̃(i))top = (X)top and hence u
is the identity on the topological spaces. Henceforth, giving u is the same as
giving the morphism

u∗ : O
X̃(2) −−→ OX̃(1)

of sheaves of rings on (X)top. The assumption u|X = idX forces u∗ to be an
isomorphism.

8.21. Lemma. Locally in the Zariski topology there exists an isomorphism of
liftings

u : (X̃(1), D̃(1)) −−→ (X̃(2), D̃(2)).
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Proof: Locally the diagonal ∆ ⊂ X × X is a complete intersection and we
can lift it to

∆̃ ⊂ X̃(1) × X̃(2).

For example, if ϕ1, . . . , ϕn are local parameters on X and ϕ̃(i)
1 , . . . , ϕ̃

(i)
n liftings

in O
X̃(i) such that D(i) is the zero locus of ϕ(i)

1 · . . . · ϕ
(i)
s , then we can choose

∆̃ to be defined by

ϕ̃
(1)
j ⊗ 1− 1⊗ ϕ̃(2)

j for j = 1, . . . , n.

We have isomorphisms of liftings

p1 : ∆̃ −−→ X̃(1), p2 : ∆̃ −−→ X̃(2)

and u = p2 ◦ p−1
1 satisfies

u∗(O
X̃(2)(−D̃(2))) = O

X̃(1)(−D̃(1)).

2

Let
u, v : (X̃(1), D̃(1)) −−→ (X̃(2), D̃(2))

be two isomorphisms of liftings. For x̃ ∈ O
X̃(2) one has

(u∗ − v∗)(p · x̃) = p(u∗ − v∗)(x̃) = p(id− id)(x) = 0

therefore (u∗ − v∗)|p·O
X̃(2) = 0. Of course, the map

OX = O
X̃(2)/p · OX̃(2) −−→ OX = O

X̃(1)/p · OX̃(1)

induced by (u∗ − v∗) is zero as well, and (u∗ − v∗) factors through

(u∗ − v∗) : OX −−→ p · O
X̃(1) = p(OX).

For x, y ∈ OX with liftings x̃, ỹ ∈ O
X̃(2) one has

(u∗−v∗)(x̃ · ỹ) = u∗(x̃) ·u∗(ỹ)−v∗(x̃) ·v∗(ỹ) = x · (u∗−v∗)(ỹ)+y · (u∗−v∗)(x̃).

Hence p−1 ◦ (u∗ − v∗) : OX −−→ OX is a derivation and factors through

OX
d−−→ Ω1

X/S −−→ OX

where we denote the second morphism by (u∗ − v∗) again. If t̃(i)j is a local

equation for D̃(i)
j , i = 1, 2, with reduction tj ∈ OX , then

u∗(t̃(2)
j ) = t̃

(1)
j · (1 + p · λ)
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and
v∗(t̃(2)

j ) = t̃
(1)
j (1 + p · µ).

Hence
(u∗ − v∗)(dtj) = tj · (λ− µ) ∈ tj · OX

and p−1 ◦ (u∗ − v∗) even factors through

OX
d−−→ Ω1

X/S(log D) −−→ OX .

8.22. Proposition. Keeping the notations from (8.19) let

u : (X̃(1), D̃(1)) −−→ (X̃(2), D̃(2))

be an isomorphism of liftings. Then

{v : (X̃(1), D̃(1)) −−→ (X̃(2), D̃(2)); v isomorphism of liftings }

is described by the affine space

u∗ + HomOX (Ω1
X/S(log D),OX).

Proof: It just remains to show that for

ϕ ∈ HomOX (Ω1
X/S(log D),OX)

we can find v. Define
v∗ : O

X̃(2) −−→ OX̃(1)

by
v∗(x̃) = u∗(x̃)− p · ϕ(dx).

If t̃(i)j is as above an equation of D̃(i)
j ,

v∗(t̃(2)
j ) = t̃

(1)
j · (1 + p · λ)− p · t · γ for some γ ∈ OX ,

or
v∗(t̃(2)

j ) = t̃
(1)
j (1 + p(λ− γ))

and v∗ satisfies the conditions posed in (8.19.).

2

8.23. Proposition. Let X be an affine scheme, smooth over S and let D be
a normal crossing divisor over S. Let D̃(i) ⊂ X̃(i) be two liftings of D ⊂ X to
S̃. Then there exists an isomorphism of liftings

u : (X̃(1), D̃(1)) −−→ (X̃(2), D̃(2)).
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Proof: Of course, (8.22) just says that the isomorphisms of liftings over a
fixed open set form a “torseur” under the group

HomOX (Ω1
X/S(log D),OX)

and, since X is affine and

H1(X,HomOX (Ω1
X/S(log D),OX)) = 0

one obtains (8.23). However, to state this in the elementary language used up
to now, let us avoid this terminology:

From (8.21) we know that there is an affine open cover U = {Xα} of X and
isomorphisms of liftings

uα : (X̃(1)
α , D̃(1)

α ) −−→ (X̃(2)
α , D̃(2)

α ).

By (8.22) p−1 ◦ (u∗α − u∗β) defines a 1-cocycle with values in the sheaf

HomOX (Ω1
X/S(log D),OX).

Since
H1(X,HomOX (Ω1

X/S(log D),OX) = 0

we find
ϕα ∈ Γ(Xα,HomOX (Ω1

X/S(log D),OX))

in some possibly finer cover {Xα} such that

p−1 ◦ (u∗α − u∗β) = ϕα − ϕβ .

Hence the isomorphisms of liftings u∗α − p · ϕ∗α glue together to u : X̃1 → X̃2.
2

§ 9 The Frobenius and its liftings

Everything in this lecture is either elementary or taken from [12].

Let S be a noetherian scheme defined over IFp and let X be a noetherian
S-scheme.

9.1. Definition. The absolute Frobenius of S is the endomorphism

FS : S −−→ S

defined by the following conditions.
F is the identity on the topological space and

F ∗S : OS −−→ OS
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is given by F ∗S(a) = ap. In particular for x ∈ OX and λ ∈ OS one has

F ∗X(λx) = λpxp = F ∗S(λ) · F ∗X(x),

and therefore one has a commutative diagram

X
FX−−−−→ X

f

y yf
S −−−−→

FS
S

For X ′ = X ×FS S this allows to factorize FX :

X
F−−−−→ X ′

pr1−−−−→ X

Z
ZZ~

f f ′
y yf
S −−−−→

FS
S

with FX = pr1 ◦ F and f ′ = pr2. By abuse of notations we write

FS = pr1 : X ′ −−→ X.

F is called the relative Frobenius (relative to S). For

x⊗ λ ∈ OX′ = OX ⊗FS OS one has F ∗(x⊗ λ) = xp · λ

and for
x ∈ OX one has F ∗S(x) = x⊗ 1.

9.2. Remark. The absolute Frobenius FS is a morphism of schemes. In fact,
F ∗S : OS,s −−→ OS,s satisfies

F ∗
−1

S (mS,s) = {x ∈ OS,s; xp ∈ mS,s} = mS,s

for any prime ideal mS,s, and hence it is a local homomorphism on the local
rings. If S = SpecA, then FS is induced by the p-th power map A→ A.

9.3. Properties.
a) Since FS : (S)top → (S)top is the identity,

FS : (X ′)top → (X)top

is an isomorphism of topological spaces, as well as

F : (X)top → (X ′)top.
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b) If t1, . . . , tm are locally on X, generators of OX , i.e.

OX = OS [t1, . . . , tm]/<f1,...,fs>

and f =
∑
λi · ti , for ti = ti11 · . . . · timm , and λi ∈ OS , then one has

F ∗S(f) =
∑

λpi t
i .

Hence
OX′ = OX ⊗FS OS = OS [t1, . . . , tm]/<F∗

S
(f1),...F∗

S
(fs)> .

For g =
∑

µit
i ∈ OX′ one has

F ∗(g) =
∑

µit
p·i where tp·i = tp·i11 · . . . · tp·imm .

c) If X is smooth over S, one has locally étale morphisms π : X → AAn
S , hence

a diagram, where the right hand squares are by definition cartesian:

X
F−−−−→ X ′

FS−−−−→ X

π

y yπ′ yπ
AAn
S

F−−−−→ (AAn
S)′ FS−−−−→ AAn

S

Z
ZZ~

y y
S

FS−−−−→ S

For
AAn
S = SpecOS [t1 . . . tn]

we have
(AAn

S)′ = SpecOS [t1 . . . tn]

and F−1O(AAn
S

)′ is the subsheaf of OAAn
S

given by OS [tp1, . . . , t
p
n]. Hence F∗OAAn

S

is freely generated over O(AAn
S

)′ by

F∗(ta1
1 · . . . · tann ) for 0 ≤ ai < p.

We have an isomorphism f : X −−→ X ′ ×(AAn
S

)′ AA
n
S and the left upper square in

the diagram is cartesian as well.
In fact, for x ∈ X we may assume that the maximal ideal mX,x ⊂ OX,x is
generated by t1, . . . tn and, if Ox is the local ring of x in X ′ ×(AAn

S
)′ AAn

S , then
the maximal ideal mx of Ox has the same generators. Hence

f∗ : Ox −−→ OX,x

is a local homomorphism inducing a surjection

mx −−→ mX,x/m
2
X,x.
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d) The sheaf F∗OX is again a locally free OX -module. Using the notation from
part c) it is generated by

F∗π
∗(ta1

1 . . . tann ) for 0 ≤ ai < p.

Therefore, for any locally free sheaf F on X, the sheaf F∗F is locally free over
OX′ . For example, if D is a normal crossing divisor on X, then F∗ΩaX/S(log D)
is locally free.

9.4. Definition. When S has a lifting S̃ to ZZ/p2 (see (8.5)), a lifting F̃
S̃

of
FS is a finite morphism

F̃
S̃

: S̃ −−→ S̃

whose restriction to S is FS .

Similarly, if X and X ′ have liftings X̃ and X̃ ′ to S̃, a lifting F̃ of the rela-
tive Frobenius F is a finite morphism

F̃ : X̃ −−→ X̃ ′

which restricts to F .

In particular, (8.13,c) gives rise to an exact sequence of O
X̃′

-modules

0 −−→ F̃ ∗p · OX̃ −−→ F̃ ∗OX̃ −−→ F∗OX −−→ 0

together with an O
X̃′

-isomorphism

p : F∗OX −−→ F̃ ∗p · OX̃ = p · F̃ ∗OX̃ .

9.5. Assumptions. For the rest of this lecture we assume S to be a scheme
over IFp with a lifting S̃ to ZZ/p2 and a lifting

F̃
S̃

: S̃ −−→ S̃

of the absolute Frobenius.

Moreover we keep the assumptions made in (8.9). Hence X is supposed to
be smooth over S and D ⊂ X is a normal crossing divisor over S. We write
D′ = F ∗S(D) for FS : X ′ → X.

9.6. Example. If k is a perfect field, S = Spec k and S̃ = Spec W2(k), then
one takes

F̃ ∗
S̃

(x+ y · p) = xp + yp · p .

Furthermore, in this case FS is an isomorphism of fields and X ′ is isomorphic
to X. In particular, X has a lifting to S̃ = Spec W2(k) if and only if X ′ does.
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9.7. Proposition. Let D ⊂ X be an S-normal crossing divisor of the smooth
S-scheme X. Let

D̃′ ⊂ X̃ ′ be a lifting of D′ ⊂ X ′

to S̃. Then locally in the Zarisky topology

D ⊂ X has a lifting D̃ ⊂ X̃

to S̃ such that F lifts to

F̃ : X̃ −−→ X̃ ′ with F̃ ∗O
X̃′

(−D̃′) = O
X̃

(−p · D̃).

Proof: By (8.17,c) we know that a lifting D̃ ⊂ X̃ exists locally. Let

π : X −−→ AAn
S = Spec OS [t1, . . . , tn]

be étale and Dj be the zero set of ϕj = π∗(tj). By (8.14,c) we can choose
liftings of ϕj to ϕ̃j ∈ OX̃ and of

ϕ′j = F ∗S(ϕj) = ϕj ⊗ 1

to ϕ̃′j such that D̃j is defined by ϕ̃j and D̃′j by ϕ̃′j . We can define

F̃ ∗ by F̃ ∗(ϕ̃′j) = ϕ̃pj .

By the explicit description of F in (9.3,c) F̃ restricts to F and

F̃ ∗O
X̃′

(−D̃′) = O
X̃

(−p · D̃).

2

9.8. Remark. We have seen in (8.12) that (X̃)top = (X)top and
(X̃ ′)top = (X ′)top. By (9.3,a) we have (X)top ' (X ′)top and hence we can
regard a lifting F̃ as a morphism

F̃ ∗ : O
X̃′
−−→ O

X̃

of sheaves of rings over (X ′)top.

Similarly to (8.22) we have

9.9. Proposition. Keeping notations and assumptions from (9.7) assume that

D ⊂ X has a lifting D̃ ⊂ X̃

to S̃ and let F̃ 0 : X̃ → X̃ ′ be one lifting of F with

F̃ ∗0OX̃′(−D̃
′) = O

X̃
(−p · D̃).
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Then

{F̃ : X̃ −−→ X̃ ′; F̃ ∗O
X̃′

(−D̃′) = O
X̃

(−p · D̃), F̃ lifting of F}

is described by the affine space

F̃ ∗0 + HomOX′ (Ω
1
X′/S(log D′), F∗OX).

Proof: As in (8.22) for isomorphisms of liftings one finds that F̃ ∗− F̃ ∗0 is zero
on p · O

X̃
and induces the zero map from OX′ to OX . Hence F̃ ∗ − F̃ ∗0 induces

F̃ ∗ − F̃ ∗0 : OX′ −−→ p · OX .

For x̃′, ỹ′ ∈ O
X̃′

one has

(F̃ ∗ − F̃ ∗0)(x̃′ · ỹ′) = F (x′)(F̃ ∗ − F̃ ∗0)(ỹ′) + F (y′)(F̃ ∗ − F̃ ∗0)(x̃′)

and
p−1(F̃ ∗ − F̃ ∗0) : OX′ −−→ OX

factorizes through
OX′

d−−→ Ω1
X′/S −−→ OX

where the right hand side morphism is OX′ -linear and is again denoted by
(F̃ ∗ − F̃ ∗0). For ϕ̃j ∈ OX̃ and ϕ̃′j ∈ OX̃′ , local parameters for D̃j and D̃′j
respectively, which lift ϕj and ϕ′j = ϕj ⊗ 1, one has

F̃ ∗(ϕ̃′j) = ϕ̃pj · (1 + p · λ̃)

and
F̃ ∗0(ϕ̃′j) = ϕ̃pj · (1 + p · λ̃0)

for some λ̃, λ̃0 ∈ OX̃ . Therefore

(F̃ ∗ − F̃ ∗0)(ϕ̃′j) = ϕ̃pj (p(λ̃− λ̃0))

and
(F̃ ∗ − F̃ ∗0)(dϕ̃′j) = p−1 ◦ (F̃ ∗ − F̃ ∗0)(ϕ̃′j) ∈ OX(−p ·Dj).

Hence
(F̃ ∗ − F̃ ∗0) : Ω1

X′/S −−→ OX
extends to

(F̃ ∗ − F̃ ∗0) : Ω1
X′/S(log D′) −−→ OX .

Conversely, for
ϕ ∈ HomOX′ (Ω

1
X′/S(log D′),OX)
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we define
F̃ ∗ = F̃ ∗0 + ϕ∗ by F̃ ∗(x̃) = F̃ ∗0(x̃)− p(ϕ(dx)).

We have

OX′(−D′)
d−−→ Ω1

X′/S(log D′)(−D′) ϕ−−→ OX(−p ·D)

and
F̃ ∗(O

X̃′
(−D̃′)) = O

X̃
(−p · D̃).

2

9.10. Corollary. Under the assumption of (9.7) assume that X is affine and
that

D ⊂ X has a lifting D̃ ⊂ X̃

to S̃. Then there is a lifting F̃ : X̃ → X̃ ′ of F with

F̃ ∗O
X̃′

(−D̃′) = O
X̃

(−p · D̃).

Proof: One repeats the argument used to prove (8.23), replacing X̃(1) by X̃
and X̃(2) by X̃ ′ and using (9.7) and (9.9) instead of (8.21) and (8.22).

2

9.11. Remark. Let X be a smooth S-scheme, X̃ ′ a lifting of X ′ and X̃(i), for
i = 1, 2, two liftings of X to S̃. Assume that we have a lifting

F̃ 2 : X̃(2) −−→ X̃ ′

and isomorphisms

u : X̃(1) −−→ X̃(2) and v : X̃(1) −−→ X̃(2),

both lifting the identity. Then, considering again O
X̃′
,O

X̃(1) and O
X̃(2) as

sheaves of rings on (X ′)top, one has

O
X̃′

F̃∗2−−→ O
X̃(2)

(u∗−v∗)−−−−−→ O
X̃(1)

and
(u∗ − v∗) ◦ F̃ ∗2(x̃′) = (u∗ − v∗)(d(F ∗(x′))) = 0

since F ∗(x′) is a p-th power. We find:

(F̃ 2 ◦ u)∗ = (F̃ 2 ◦ v)∗ : O
X̃′
−−→ O

X̃(1) .

In other words, (F̃ 2 ◦ u)∗ does not depend on the choice of u.
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In (9.10) we used the fact that, for X ′ affine, the higher cohomology
groups of coherent sheaves are zero to obtain the existence of the lifting

F̃ : X̃ −−→ X̃ ′

of F . We have more generally:

9.12. Corollary. Let X be a smooth scheme and D ⊂ X be a normal crossing
divisor over S. Given liftings

D̃ ⊂ X̃ and D̃′ ⊂ X̃ ′ of D ⊂ X and D′ ⊂ X ′

(respectively) to S̃, the exact obstruction for lifting F to

F̃ : X̃ −−→ X̃ ′ with F̃ ∗O
X̃′

(−D̃′) = O
X̃

(−p · D̃)

is a class

[F
X̃′,D̃′

] ∈ H1(X ′,HomOX′ (Ω
1
X′/S(log D′), F∗OX))

which does not depend on (X̃, D̃).

Proof: By (9.7) or (9.10) one can cover X̃ by affine X̃α such that F lifts to
F̃α on X̃α with the required property for D. Then by (9.9) (F̃ ∗α−F̃ ∗β) describes
a 1-cocycle with values in

HomOX′ (Ω
1
X′/S(log D′), F∗OX).

Changing the F̃α corresponds to changing the cocycle by a coboundary. We
define [F

X̃′,D̃′
] to be the cohomology class of this cocycle. If [F

X̃′,D̃′
] = 0 one

finds for a possibly finer cover {X ′α}

ϕα ∈ Γ(X ′α,HomOX′ (Ω
1
X′/S(log D′), F∗OX))

such that the F̃ ∗α + ϕα glue together to give F̃ : X̃ → X̃ ′.

If X̃(i) are two liftings, X̃(i)
α coverings and F̃

(i)
α liftings of F , for i = 1, 2

we can apply (8.21) or (8.23) to get isomorphisms of liftings

uα : X̃(1)
α −−→ X̃(2)

α .

By (9.11) we have on X̃ ′α ∩ X̃ ′β

(F̃ (2)
α ◦ uα)∗ − (F̃ (2)

β ◦ uβ)∗ = (F̃ (2)
α ◦ uα)∗ − (F̃ (2)

β ◦ uα)∗ =

u∗α ◦ (F̃ (2)∗
α − F̃ (2)∗

β ) ∈ Γ(X ′α ∩X ′β ,HomOX′ (Ω
1
X′/S(log D′), F∗OX))

As u∗α is the identity on X ′α the cocycle defined by F̃ (2)
α and F̃

(2)
α ◦ uα are the

same and F̃
(2)
α and F̃

(1)
α define the same cohomology class.

2
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9.13. The Cartier operator

Let X be a smooth scheme over S and F : X → X ′ be the Frobenius relative
to S. The key observation is that the differential d in the de Rham complex
Ω•X/S is OX′ -linear as, using the notations of (9.1),

dF ∗(x⊗ 1) = dxp = 0.

If D is a normal crossing divisor over S, the homology sheaves

Ha = Ha(F∗Ω•X/S(log D))

are OX′ -modules computed by the following

9.14. Theorem (Cartier, see [9] [34]).
One has an isomorphism of OX′-modules

C−1 : Ω1
X′/S(log D′) −−→ H1(F∗Ω•X/S(log D))

such that:
a) For x ∈ OX one has

C−1(d(x⊗ 1)) = xp−1dx in H1.

b) If t is a local parameter defining a component of D, then

C−1

(
d(t⊗ 1)
t⊗ 1

)
=
dt

t
in H1.

c) C−1 is uniquely determined by a) and b).

d) For all a ≥ 0 one has an isomorphism

a∧
C−1 : ΩaX′/S(log D′) −−→ Ha(F∗Ω•X/S(log D))

obtained by wedge product from C−1.

Proof: c) is obvious since Ω1
X′/S(log D′) is generated by elements of the form

d(x⊗ 1) and
d(t⊗ 1)
t⊗ 1

.

For the existence of C−1 let us first assume that D = ∅. Then

(x+ y)p−1(dx+ dy)− xp−1dx− yp−1dy = df

where for

γi ∈ IFp with γi ≡
1
p

(
p
i

)
mod p
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we take

f =
p−1∑
i=1

γi · xi · yp−i =
1
p

[(x+ y)p − xp − yp].

Moreover, one has

(y · x)p−1d(y · x) = xp · yp−1dy + yp · xp−1dx

and d(xp−1dx) = 0. Hence, the property a) defines C−1.

For D 6= ∅, b) is compatible with the definition of C−1 on Ω1
X′/S . In fact,

C−1

(
t⊗ 1 · d(t⊗ 1)

t⊗ 1

)
= F ∗(t⊗ 1)C−1

(
d(t⊗ 1)
t⊗ 1

)
= tp

dt

t
.

Having defined C−1, we can define
∧a

C−1 as well. As in (9.3,c) we have locally
a cartesian square

X
F−−−−→ X ′

π

y yπ′
AAn
S

F−−−−→ (AAn
S)′

with π and π′ étale. Hence to show that
∧a

C−1 is an isomorphism it is enough
to consider the case

X = AAn
S = Spec OS [t1, . . . tn]

and D to be the zero set of t1 · . . . · tr.

If Ba is the IFp-vector space freely generated by

ti11 · . . . · tinn · ωα1 ∧ . . . ∧ ωαa
for

0 ≤ iν < p for ν = 1, . . . , n

1 ≤ α1 < α2 . . . < αa ≤ n

ων =
{

dtν
tν

ν = 1, . . . , r
dtν ν = r + 1, . . . , n

then B•, with the usual differential is a subcomplex of F∗Ω•X/S(log D). One
has F∗Ω•X/S(log D) = OX′⊗IFp B• and (9.14) follows from the following claim.

2

9.15. Claim. One has
i) H0(B•) = IFp .

ii) H1(B•) has the basis {ω1, . . . , ωr, t
p−1
r+1ωr+1, . . . , t

p−1
n ωn} .

iii) Ha(B•) =
∧a

H1(B•).
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Proof: For n = 1, this is shown easily:
Obviously ker (d : B0 −−→ B1) = IFp. For D = ∅ let us write K• = B•. One has

K1 =< tidt; i = 0, . . . , p− 1 >IFp

and
dK0 =< dti+1 = (i+ 1) · tidt; i = 0, . . . , p− 2 >IFp .

For D 6= ∅ write L• = B•. One has

L1 =< ti
dt

t
; i = 0, . . . , p− 1 >IFp

and
dL0 =< dti = i · ti · dt

t
; i = 1, . . . p− 1 >IFp .

In both cases (9.15) is obvious. For n > 1 one can write

B• = L ⊗IFp L• ⊗ . . .⊗IFp L•︸ ︷︷ ︸
r times

⊗IFp K• ⊗ . . .⊗IFp K•︸ ︷︷ ︸
n−r times.

.

By the Künneth formula (A.8)

Ha(B•) =
∑∑n

i=1
εi=a

= Hε1(L•)⊗ . . .⊗Hεr (L•)⊗ . . .⊗Hεn(K•).

which implies a), b) and c).
2

9.16. Notation. Following Deligne-Illusie, we define

Ω•X/S(A,B) = Ω•X/S(log (A+B))(−A)

where A+B is a normal crossing divisor over S.

9.17. Corollary. The Cartier operator induces an isomorphism

ΩaX′/S(A′, B′) −−→ Ha(F∗Ω•X/S(A,B))

Proof: By (2.7) the residues of

d : OX(−A) −−→ Ω1
X/S(log (A+B))(−A) = Ω1

X/S(A,B)

along the components of A are all 1 and by (2.10)

Ω•X/S(log (A+B))(−p ·A) −−→ Ω•X/S(A,B)

is a quasi isomorphism. Since

F∗Ω•X/S(log (A+B))(−p ·A) = F∗Ω•X/S(log (A+B))⊗OX′ OX′(−A
′)

we can apply (9.14).
2
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9.18. Duality

Let us keep the notation from (9.16). The wedge product

Ωn−iX/S(log D)⊗ ΩiX/S(log D) ∧−−→ ΩnX/S ⊗OX(D)

is a perfect duality of locally free sheaves. Hence one obtains:

9.19. Lemma. Ωn−iX/S(A,B)⊗ ΩiX/S(B,A) ∧−−→ ΩnX/S is a perfect duality.

9.20. Lemma. One has a perfect duality

F∗Ωn−iX/S(A,B)⊗ F∗ΩiX/S(B,A) −−→ ΩnX′/S

given by

F∗Ωn−iX/S(A,B)⊗ F∗ΩiX/S(B,A) −−→
∧

F∗ΩnX/S −−→ H
n −−→

C
ΩnX′/S

where C is the Cartier operator.

Proof: In fact, this is nothing but duality for finite flat morphisms ([30], p
239). One has

F∗Ωn−iX/S(A,B) = F∗HomOX (ΩiX/S(B,A),ΩnX/S)
' HomOX′ (F∗Ω

i
X/S(B,A),ΩnX′/S)

and (9.20) is just saying that F∗ΩnX/S −−→ ΩnX′/S is given by the Cartier oper-
ator. One can do the calculations by hand.

As in the proof of (9.14) it is enough to consider X = AAn
S , A the zero set

of t1 · . . . · ts and B the zero set of ts+1 . . . tr. Define, for a > 0, Ba(A,B) to be
the IFp-vector space generated by all

ϕ = ti11 . . . · tinn · ωα1 ∧ . . . ∧ ωαa

with

ων =
{

dtν
tν

for ν = 1, . . . s, . . . , r
dtν for ν = r + 1, . . . , n

where the indices are given by

0 < iν ≤ p for ν = 1, . . . , s
0 ≤ iν < p for ν = s+ 1, . . . , r, . . . , n
and by 1 ≤ α1 < α2 < . . . < αa ≤ n.

Similarly we have Ba(B,A) by taking as index set

0 ≤ iν < p for ν = 1, . . . , s and ν = r + 1, . . . , n
0 < iν ≤ p for ν = s+ 1, . . . , r
and 1 ≤ α1 < α2 < . . . < αa ≤ n.
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For a = n− i the only generator δ of Bi(B,A) with C(ϕ ∧ δ) 6= 0 is

δ = tj11 · . . . · tjnn ωβ1 ∧ . . . ∧ ωβi

with
{β1, . . . , βi} ∪ {α1, . . . , αn−i} = {1, . . . , n}

and

iν + jν =
{

p for ν = 1, . . . , r
p− 1 for ν = r + 1, . . . , n.

2

9.21. Remark. For ϕ ∈ Bn−i−1(A,B) and δ ∈ Bi(B,A) the explicit descrip-
tion of the duality in the proof of (9.20) shows that (up to sign)

C(dϕ ∧ δ) = C(ϕ ∧ dδ).

Hence we obtain as well:

9.22. Corollary. Under the duality in (9.20) the transposed of the differential
d is again d (up to sign).

§ 10 The proof of Deligne and Illusie [12]

We keep the assumptions from Lectures 8 and 9. Hence X is supposed to be
a smooth noetherian S-scheme, D ⊂ X a S-normal crossing divisor, and S is
a noetherian scheme over ZZ/p which admits a lifting S̃ to ZZ/p2 as well as a
lifting F̃

S̃
: S̃ → S̃ of the absolute Frobenius FS .

10.1. The two term de Rham complex

is defined as
τ≤1 F∗Ω•X/S (log D).

Hence, as explained in (A.26), it is the complex

F∗OX −−→ Z1

where
Z1 = Ker (F∗Ω1

X/S (log D) −−→ F∗Ω2
X/S (log D)).

One has a short exact sequence of complexes

0 −−→ H0 −−→ τ≤1 F∗Ω•X/S (log D) −−→ H1[−1] −−→ 0
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given by
0 −−−−→ H0 −−−−→ F∗OXy

Z1 −−−−→ H1 −−−−→ 0
where H0 = OX′ and H1 is OX′ - isomorphic to Ω1

X′/S(log D) via the Cartier
operator (9.14).

10.2. Definition. A splitting of τ≤1F∗Ω•X/S(log D) is a diagram

τ≤1F∗Ω•X/S(log D) σ−−−−→ K•xθ
H0 ⊕H1[−1]

where K• is the Čech complex

C•(U , τ≤1F∗Ω•X/S(log D))

associated to some affine open cover U of X ′, where σ is the induced morphism,
hence a quasi-isomorphism (see (A.6)), and where θ is a quasi-isomorphism.
We may assume, of course, that

Hi σ−−→ Hi θ−1

−−→ Hi

is the identity for i = 0, 1.

10.3. Example. Assume that D ⊂ X and D′ ⊂ X ′ both lift to

D̃ ⊂ X̃ and D̃′ ⊂ X̃ ′

on S̃ and that F lifts to F̃ : X̃ → X̃ ′ in such a way that

F̃ ∗O
X̃′

(−D̃′) = O
X̃

(−p · D̃).

For example, if S = Spec k for a perfect field k and if D ⊂ X has a lifting
D̃ ⊂ X̃ then as we have seen in (9.6) D′ ⊂ X ′ has a lifting as well. By (9.12)
the existence of F̃ is equivalent to

[F
X̃′,D̃′

] = 0 in H1(X ′,HomOX′ (Ω
1
X′/S(log D′), F∗OX)).

For example it automatically exists if this group vanishes.

Anyway, if the liftings D̃, X̃, D̃′, X̃ ′ and F̃ exist, the morphism

F̃ ∗ : Ω1

X̃′/S̃
(log D̃′) −−→ Ω1

X̃/S̃
(log D̃)
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verifies
F̃ ∗|

p·Ω1
X̃′/S̃

(log D̃′)
= 0.

In fact,
F ∗ : Ω1

X′/S(log D′) −−→ Ω1
X/S(log D)

is given by F ∗(d(t ⊗ 1)) = d(tp) and hence it is the zero map. We have a
commutative diagram

Ω1
X′/S(log D′)

p−−−−→
'

p · Ω1

X̃′/S̃
(log D̃′)yF∗ yF̃∗

Ω1
X/S(log D)

p−−−−→
'

p · Ω1

X̃/S̃
(log D̃)

and hence the vertical morphisms are both zero. The same argument shows
that the factorization

F̃ ∗ : Ω1
X′/S(log D′) −−→ Ω1

X̃/S̃
(log D̃)

takes values in
p · Ω1

X̃/S̃
(log D̃) = p · Ω1

X/S(log D).

The induced map

p−1 ◦ F̃ ∗ : Ω1
X′/S(log D′) −−→ Ω1

X/S(log D)

can be written in coordinates as follows. For x ∈ OX let x̃ ∈ O
X̃

be a lifting
of x and let x̃′ ∈ O

X̃′
be a lifting of x′ = x⊗ 1. One writes

F̃ ∗(x̃′) = x̃p + p(u(x̃, x̃′))

for some u(x̃, x̃′) ∈ OX . Then

p−1 ◦ F̃ ∗(dx̃′) = xp−1dx+ du(x̃, x̃′).

In particular the image of p−1 ◦ F̃ ∗ lies in

Z1 ⊂ F∗Ω1
X/S(log D)

and the composition with Z1 −−→ H1 gives back the Cartier operator.

In this example, i.e. if the liftings D̃, X̃, D̃′, X̃ ′ and F̃ all exist, we can take
U = {X ′} and define

θ : OX′ ⊕ Ω1
X′/S(log D′)[−1] −−→ τ≤1F∗Ω•X/S(log D)
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by
OX′ −−−−→ F∗OXy0

yd
Ω1
X′/S −−−−−→

p−1◦F̃∗
Z1

and, by (9.14), θ is a quasi-isomorphism.

10.4. Notation. We call a cohomology class

ϕ ∈ IH1(X ′,HomOX′ (H
1, F∗OX)→ HomOX′ (H

1, Z1))

a splitting cohomology class, if ϕ maps to the identity in

H0(X ′,HomOX′ (H
1,H1)) = IH1(X ′,HomOX′ (H

1,H1)[−1]).

10.5. Proposition. The splittings of

τ≤1F∗Ω•X/S(log D)

are in one to one correspondence with the splitting cohomology classes

ϕ ∈ IH1(X ′,HomOX′ (H
1, F∗OX) −−→ HomOX′ (H

1, Z1)).

Proof: Let ϕ be a splitting cohomology class, realized as cocycle

ϕαβ ∈ Γ(X ′αβ ,HomOX′ (H
1, F∗OX))

and
ψα ∈ Γ(X ′α,HomOX′ (H

1, Z1))

for some affine open cover U = {X ′α} of X ′. Hence, using the notations from
(A.6) for the differential in the Čech complex, δϕ = 0 and dϕ − δψ = 0. By
assumption ψα induces the identity in

Γ(X ′α,HomOX′ (H
1,H1)).

Then θ = (id, (ϕαβ , ψα)) is the map wanted, i.e.

OX′
id−−−−→

⊕
U %α∗F∗OX |X′α

0

y yδ⊕d
H1 (ϕαβ ,ψα)−−−−−−→

⊕
U %αβ∗F∗OX |X′

αβ
⊕
⊕
U %α∗ Z

1|X′αy y(−δ⊕d, 0⊕−δ)

0 −−−−→
⊕
U %αβγ∗F∗OX |X′αβγ ⊕

⊕
U %αβ∗ Z

1|X′
αβ
.
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where
%α1,···αr : X ′α1,···αr −−→ X ′

denotes the embedding, and where

(−δ ⊕ d, 0⊕−δ)(xαβ , zα) = (−δ(x), d(x)− δ(z)).

Conversely, let for some U

τ≤1(F∗Ω•X/S(log D)) σ−−→ K• θ←−− H0 ⊕H1[−1]

be a splitting. AsH1 isOX′ -locally free, σ⊗id and θ⊗id are quasi-isomorphisms
of the corresponding complexes tensored with HomOX′ (H

1,OX′). We obtain
therefore maps

H0
(
X ′,HomOX′ (H

1,H1)
)

= IH1
(
X ′,H1 ⊗HomOX′ (H

1,OX′)[−1]
)

y
IH1
(
X ′,

[
H0 ⊕H1[−1]

]
⊗HomOX′ (H

1,OX′)
)

y'
IH1
(
X ′, τ≤1F∗Ω•X/S(log D)⊗HomOX′ (H

1,OX′)
)

y=

IH1(X ′,HomOX′ (H
1, F∗OX)→ HomOX′ (H

1, Z1))y
H0
(
X ′,HomOX′ (H

1,H1)
)

where the last map comes from the short exact sequence in (10.1). By definition
of a splitting, the composed map is the identity. Therefore, the image of

idH1 ∈ H0(X ′,HomOX′ (H
1,H1))

is a splitting cohomology class ϕ. Obviously, the both constructions are inverse
to each other.

2

10.6. Remark. In (10.2) one could have replaced in the definition of a splitting
the Čech complex by any complex K• bounded below and quasi-isomorphic to
τ≤1F∗Ω•X/S(log D). Then we would have proven as in (10.5), that a splitting
cohomology class defines a splitting. However, to get the converse, we need
that σ and θ define a map from

IH0(X ′,HomOX′ (H
1,OX′)⊗K•)
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to
IH1(X ′,HomOX′ (H

1,OX′)⊗ τ≤1F∗Ω1
X/S(log D)).

This is of course the case when K• is a complex of OX′ -modules, but not in
general. One needs a bit more knowledge on the derived category; in particular
one needs the global Hom ( , ) in this category.

10.7. Main theorem. Let X be a smooth scheme over S and D ⊂ X be a
S-normal crossing divisor. Then

a) A lifting D̃′ ⊂ X̃ ′ of D′ ⊂ X ′ to S̃ defines a splitting cohomology class

ϕ = ϕ
(X̃′,D̃′)

.

b) Every splitting cohomology class ϕ is of the shape ϕ = ϕ
(X̃′,D̃′)

for some

lifting D̃′ ⊂ X̃ ′ of D′ ⊂ X ′ to S̃.

We will only need part a) in the proof of Theorem (8.3). Even if it
might be more elegant to use more formal arguments we will give the necessary
calculations in an explicit way for cycles in the Čech-cohomology.

Proof: a) Let U = {Xα} be an affine cover of X, such that the Xαβ are affine,
and such that (8.17) and (9.10) give liftings

D̃α ⊂ X̃α of Dα ⊂ Xα

to S̃ and liftings
F̃α : X̃α −−→ X̃ ′ of F : X −−→ X ′

satisfying
F̃ ∗αOX̃′(−D̃

′) = O
X̃α

(−p · D̃α).

For X̃αβ = X̃α|Xαβ (8.23) implies the existence of isomorphisms of liftings

uαβ : X̃αβ −−→ X̃βα

As in the proof of (9.12) one uses (9.9) to define

ϕαβ = p−1 ◦ (F̃ ∗α − (F̃ β ◦ uαβ)∗) ∈ Γ(X ′αβ ,HomOX′ (Ω
1
X′/S(log D′), F∗OX))

and by (9.11) ϕαβ is a cocycle. On X̃α we obtained in (10.3) a map

ψα = p−1 ◦ F̃ ∗α ∈ Γ(X ′α,HomOX′ (Ω
1
X′/S(log D′), Z1))

lifting the Cartier operator C−1.

2
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10.8. Claim. One has

p−1 ◦ F̃ ∗β |X′βα = p−1 ◦ (F̃ β ◦ uαβ)∗

in
Γ(X ′βα,HomOX′ (Ω

1
X′/S(log D′), Z ′)).

Proof: For x̃′ ∈ O
X̃′

and x̃β ∈ OX̃β we can write

F̃ ∗β(x̃′) = x̃pβ + p · u(x̃β , x̃′).

Since u∗αβ |p·OXαβ is the identity, one obtains

u∗αβF̃
∗
β(x̃′) = u∗αβ(x̃β)p + p · u(x̃β , x̃′).

By (10.3) we have

p−1 ◦ F̃ ∗β(dx̃′) = xp−1dx+ du(x̃β , x̃′) = p−1 ◦ (F̃ β ◦ uαβ)∗.

2

Now (10.8) is just saying that δψ = dϕ and therefore (ϕαβ , ψβ) defines a
cohomology class ϕ

(X̃′,D̃′)
in

IH1(X ′,HomOX′ (Ω
1
X′/S(log D′), F∗OX) −−→ HomOX′ (Ω

1
X′/S(log D′), Z1)).

By construction its image in

H0(X ′,HomOX′ (Ω
1
X′/S(log D′),H1))

is given by (ψβ) and hence it is the Cartier operator.

b) Conversely, let (ϕαβ , ψα) be the cocycle giving the splitting cohomology class
ϕ for some affine covering U ′ = {X ′α}. First we want to add some coboundary
to get a new representative of ϕ.

By (8.17), (9.10) and (8.21) we can assume that we have:

i) Liftings to S̃ :

D̃α ⊂ X̃α of Dα = D|Xα ⊂ Xα = X|X′α ,

D̃′α ⊂ X̃ ′α of D′α = D′|X′α ⊂ X
′
α

and
F̃α : X̃α −−→ X̃ ′α of Fα = F |Xα : Xα −−→ X ′α

with
F̃ ∗α : O

X̃′α
(−D̃′α) = O

X̃α
(−p · D̃α).
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ii) Isomorphisms of liftings:

u′αβ : X̃ ′αβ −−→ X̃ ′βα and uαβ : X̃αβ −−→ X̃βα

were we keep the notation X̃ ′αβ = X̃ ′α|Xαβ .

For x̃′ ∈ O
X̃′
αβ

we can write u
′∗
αβ(x̃′) = x̃′ + p · λαβ(x̃′). Then

F̃ ∗αu
′∗
αβ(x̃′) = F̃ ∗α(x̃′) + p · F ∗λαβ(x̃′) = F̃ ∗α(x̃′) + p · λαβ(x̃′)p.

Since d(λαβ(x̃′)p) = 0 the explicit description of p−1 ◦ F̃ ∗α in (10.3) gives

10.9. Claim. One has p−1 ◦ F̃ ∗α|X′αβ = p−1 ◦ (u′αβ ◦ F̃α)∗ in

Γ(X ′αβ ,HomOX′ (Ω
1
X′/S(log D′), Z1)).

Define

θα = p−1 ◦ F̃ ∗α ∈ Γ(X ′α,HomOX′ (Ω
1
X′/S(log D′), F∗OX)).

Replacing U ′ by some finer cover if necessary we find

fα ∈ Γ(X ′α,HomOX′ (Ω
1
X′/S(log D′), F∗OX))

such that dfα = θα − ψα.

10.10. Claim. For σ′αβ = ϕαβ + δfα the cohomology class ϕ is represented by
the cocycle (σ′αβ , θα).

Proof: This is obvious since

(σ′αβ , θα) = (ϕαβ + δfα, ψα + dfα).

2

The main advantage of σ′αβ is that it comes in geometric terms:
Write, using (9.9)

σαβ = p−1 ◦
(

(u′αβ ◦ F̃α)∗ − (F̃ β ◦ uαβ)∗
)

in
Γ
(
X ′αβ ,HomOX′ (Ω

1
X′/S(log D′) , F∗OX)

)
.

Applying (10.9) to the first and (10.8) to the second summand one gets

dσαβ = θα − θβ = dfα − dfβ + ψα − ψβ = d(fα − fβ) + dϕαβ .
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Hence gαβ = σαβ − ϕαβ − (fα − fβ) is closed and lives in

Γ
(
X ′αβ ,HomOX′ (Ω

1
X′/S(log D′),OX′)

)
.

By (8.22) u′∗αβ − gαβ defines a new isomorphism of liftings

v′αβ : X̃ ′αβ −−→ X̃ ′βα.

As F̃ ∗α = pF ∗ on p · OX′α , one has p−1 ◦ F̃ ∗α ◦ gαβ = gαβ and

σ′αβ = ϕαβ + (fα − fβ) = σαβ − gαβ =

p−1 ◦
[
(u′αβ ◦ F̃α)∗ − (F̃ β ◦ uαβ)∗ − F̃ ∗α · gαβ

]
.

One obtains

10.11. Claim. σ′αβ = p−1 ◦
[
(v′αβ ◦ F̃α)∗ − (F̃ β ◦ uαβ)∗

]
.

The proof of (10.7) ends with

10.12. Claim. The cocycle condition for σ′αβ allows the glueing of X̃ ′α to X̃ ′

using v′αβ .

Proof: One has to show that

v′αγ = v′βγ ◦ v′αβ

or, by (8.22), that the homomorphism defined there verifies

v′∗αβ ◦ v′∗βγ − v′∗αγ = 0.

Since F̃ ∗α is injective, it is enough to show that

p−1 ◦ F̃ ∗α ◦ [v′∗αβ ◦ v′∗βγ − v′∗αγ ] = 0

as homomorphism in

HomOX′ (Ω
1
X′/S(log D′), F∗OX).

The cocycle condition for σ′ is

p−1 ◦ [F̃ ∗α ◦ v′∗αβ − u∗αβ ◦ F̃ ∗β − F̃ ∗α ◦ v′∗αγ + u∗αγ ◦ F̃ ∗γ + F̃ ∗β ◦ v′∗βγ − u∗βγ ◦ F̃ ∗γ ] = 0.

Since
F̃ ∗α ◦ v′∗αβ − u∗αβ ◦ F̃ ∗β

is a homomorphism from OX′ to p · OX , we can replace it by

[F̃ ∗α ◦ v′∗αβ − u∗αβ ◦ F̃ ∗β ] ◦ v∗βγ
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as v∗βγ is the identity on OX′
βγ

. Similarly, we can add some u∗αβ at the right
hand side (see (9.11)) and get

0 = p−1 ◦ [F̃ ∗α ◦ v′∗αβ ◦ v′∗βγ − u∗αβ ◦ F̃ ∗β ◦ v′∗βγ − F̃ ∗α ◦ v′∗αγ+

+u∗αγ ◦ F̃ ∗γ − u∗αβ ◦ F̃ ∗β ◦ v′∗βγ − u∗αβu∗βγ ◦ F̃ ∗γ ]

where all the summands are morphisms from O
X̃′γ
−−→ O

X̃α
. This is the same

as
0 = p−1 ◦ F̃ ∗α ◦ (v′∗αβ ◦ v′∗βγ − v′∗αγ) + p−1 ◦ (u∗αγ − u∗αβu∗βγ)F̃ ∗γ .

By (9.11) the term on the right is zero and

0 = p−1 ◦ F̃ ∗α ◦ (v′∗αβ ◦ v′∗βγ − v′∗αγ).

2

10.13. Splittings of the de Rham complex.

Let us generalize (10.2) to τ≤iF∗Ω•X/S(log D) for i > 1. As remarked in (10.6)
one can, using the derived category, replace the complex K• in the follow-
ing definition by any complex K• bounded below and quasi-isomorphic to
τ≤iF∗Ω•X/S(log D).

10.14. Definition. A splitting of τ≤iF∗Ω•X/S(log D) is a diagram

τ≤iF∗Ω•X/S(log D) σ−−−−→ K•xθ⊕
j≤iHj [−j]

where K• is the Čech complex

C•(U , τ≤iF∗Ω•X/S(log D))

associated to some affine cover U of X (and hence σ a quasi-isomorphism) and
where θ is a quasi-isormorphism. Here again,⊕

j≤i

Hj [−j]

is the complex with zero differential and with Hj in degree j and τ≤i is the
filtration explained in (A.26).

10.15. Example. Let us return to the assumptions made in (10.3), i.e. that the
liftings D̃, X̃, D̃′, X̃ ′ and especially F̃ exist. We had defined there a morphism

ψ = p−1 ◦ F̃ ∗ : Ω1
X′/S(log D′) −−→ Z1
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which was a lifting of C−1.

We define
ψj(ω1 ∧ . . . ∧ ωj) = ψ(ω1) ∧ ψ(ω2) ∧ . . . ∧ ψ(ωj)

where ωl ∈ Ω1
X′/S(log D′). Since ψ(ωl) is closed, the image of ψj lies in Zj

and, since the Cartier operator was defined as
∧j

C−1 the map ψj induces the
Cartier operator on in

HomOX′ (Ω
j
X′/S(log D′),Hj).

10.16. Theorem. Let X be a smooth S-scheme, D ⊂ X be a normal crossing
divisor over S and let

D̃′ ⊂ X̃ ′ be a lifting of D′ ⊂ X ′

to S̃. Then the splitting cohomology class ϕ
(X̃′,D̃′)

of (10.7,a) induces a splitting
of

τ≤iF∗Ω•X/S(log D) for i < p = char (S).

In particular, if p > dimS X, it induces a splitting of the whole de Rham
complex

F∗Ω•X/S(log D).

Proof: Let (ϕαβ , ψα) be a Čech cocycle for (ϕ
X̃′,D̃′

) where we regard
(ϕαβ , ψα) as an OX′ -homomorphism:

(ϕ,ψ) : Ω1
X′/S(log D′) −−→ C1(F∗OX)⊕ C0(Z1).

We define

(ϕ,ψ)⊗j(ω1,⊗ · · · ⊗ ωj) ∈ Cj(τ≤iF∗Ω•X/S(log D))

for all 0 < j ≤ i and all

ω1 ⊗ · · · ⊗ ωj ∈
j⊗
1

Ω1
X′/S(log D′)

by the following inductive formula:
For any cocycle

b := (bj , . . . , b0), bl ∈ Cl(F∗Ωj−lX/S(log D)),

with
dbj−s + (−1)j−sδbj−s−1 = 0 for all 0 ≤ s ≤ j,

we define
b⊗ (ϕ,ψ)(ωj+1) = (aj+1, . . . , a0) =: a,
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with
al ∈ Cl(F∗Ωj+1−l

X/s (log D)),

by the rule
aj+1−s := (−1)sbj−s ∪ ϕ+ bj+1−s ∪ ψ

where

(bj−s ∪ ϕ)α0...αj+1−s := (bj−s)α0...αj−s · ϕαj−s,αj+1−s(ωj+1)

and
(bj+1−s ∪ ψ)α0...αj+1−s := (bj+1−s)α0...αj+1−s · ψαj+1−s(ωj+1).

One has
daj+1−s + (−1)j+1−sδaj−s = 0

and therefore a is a Čech cocycle.

We have, for j ≤ i, a diagram

(Ω1
X′/S(log D′))⊗ j (ϕ,ψ)⊗ j

−−−−−−−→ Cj(τ≤iF∗Ω1
X/S(log D))closedyπj y

ΩjX′/S(log D′)
∧j

C−1

−−−−−−−→ Hj

and any section δj of πj allows to define

θj = (
j∧
C−1)−1 ◦ δj ◦ (ϕ,ψ)⊗j .

The splitting
θ :
⊕
j≤i

Hj [−j] −−→ K• is θ =
⊕
j≤i

θj [−j].

Such sections δj exist for j ≤ i < char (S):

δj(ω1 ⊗ . . .⊗ ωj) =
1
j!

∑
s∈Σj

sign (s) · ωs(1) ∧ . . . ∧ ωs(j),

where Σj denotes the symmetric group.
2

10.17. Corollary. Let D = A + B in (10.16). Then for i < p the splitting
cohomology class ϕ

(X̃,D̃)
induces a splitting of

τ≤iF∗Ω•X/S(A,B)
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as well, i.e. a quasi-isomorphism

θ :
⊕
j≤i

ΩjX′/S(A′, B′)[−j] −−→ K•(A,B)

where K•(A,B) is the Čech complex of

τ≤iF∗Ω•X/S(A,B).

Proof: As in (9.17) one obtains from (2.7) and (2.10) a quasi-isomorphism

F∗Ω1
X/S(log (A+B))⊗OX′ OX′(−A

′)

‖

F∗(Ω•X/S(log (A+B))(−p ·A))y
F∗Ω•X/S(A,B) .

For K•, the Čech complex of τ≤iF∗Ω•X/S(log D), we have a quasi-isomorphism

K• ⊗OX′ OX′(−A) −−→ K•(A,B)

and the existence of θ follows from (10.16).

2

10.18. Remark. In (10.3) and (10.15) we have seen that if both D′ ⊂ X ′ and
D ⊂ X lift to D̃′ ⊂ X̃ ′ and D̃ ⊂ X̃, and if F lifts to: F̃ : X̃ → X̃ ′ with

F̃ ∗O
X̃′

(−D̃′) = O
X̃

(−p · D̃),

then
ψ = p−1 ◦ F̃ ∗ : Ω1

X′/S(log D′) −−→ Z1 ⊂ Ω1
X/S(log D)

lifts the Cartier operator, and gives an especially nice splitting of

τ≤1F∗Ω•X/S(log D).

This defines
l∧
ψ : ΩlX′/S(log D′) −−→ Zl ⊂ ΩlX/S(log D)

lifting the Cartier operator, and therefore one obtains a quasi-isomorphism:⊕
j

ΩjX′/S(log D′)[−j]
∧•

ψ
−−−→ F∗Ω•X/S(log D),
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which gives via (10.17) a quasi-isomorphism

⊕
j

ΩjX′/S(A′, B′)[−j]
∧•

ψ
−−−→ F∗Ω•X/S(A,B)

if D = A+B. In particular, there is here no restriction on dimS X in this case.

In general one has

10.19. Proposition. Let X, A and B be as in (10.17). Then the splitting
cohomology class ϕ

(X̃′,D̃′)
induces a splitting of

F∗Ω•X/S(A,B)

when dimS X ≤ p and S is affine.

Proof: Of course this is nothing but (10.17) if dimS X < p.
For dimS X ≥ p, we observe first that whenever j : U → X is the embedding
of an open set such that (X − U) is a divisor, then for coherent sheaves F on
U and G on X one has

HomOX (j∗F ,G)x =

 HomOX (F ,G|U )x for x ∈ U

0 for x ∈ (X − U),

that is
HomOX (j∗F ,G) = j!HomOX (F ,G|U ).

Let us consider the OX′ -maps defined in (10.17) for 0 ≤ l ≤ p− 1:

ΩlX′/S(B′, A′) −−→ Cl(F∗OX) + · · ·+ C0(Zl)

(ϕα0...αl , . . . , ϕα0)

with the cocycle condition

dϕα0...αk + (−1)lδϕα0...αk−1 = 0.

The composite map

ΩlX′/S(B′, A′) −−→ C0(Zl) −−→ C0(Hl)

is just
∧l

C−1.
Applying for 1 ≤ k ≤ l ≤ p− 1 the functor HomOX′ (−,Ω

n
X′/S), where

n = dimS X, one obtains OX′ -linear maps (see (9.19) and (9.20))

(jα0...αk)!F∗Ω
n−(l−k)
X/S (A,B)

ϕ∨α0...αk−−−−−→ Ωn−lX′/S(A′, B′)
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and therefore OX′ -maps

F∗Ω
n−(l−k)
X/S (A,B)

ϕ∨α0...αk−−−−−→ Ck(Ωn−lX′/S(A′, B′)).

For k = 0, one has an exact sequence

0 −−→ Zl −−→ F∗ΩlX/S(B,A) −−→ F∗Ωl+1
X/S(B,A),

and applying (9.20) again, one obtains that

HomOX′ (Z
l,ΩnX′/S) =

F∗Ωn−lX/S(A,B)

dF∗Ωn−l−1
X/S (A,B)

which gives similarly a OX′ -linear map

F∗Ωn−lX/S(A,B)

dF∗Ωn−l−1
X/S (A,B)

ϕ∨α0−−→ C0(Ωn−lX′/S(A′, B′)).

The cocycle condition tells us that

ϕ∨α0...αk
◦ d+ (−1)lδϕ∨α0...αk−1

= 0.

This means that ϕ∨ defines a map of complexes

τ≥n−lF∗Ω•X/S(A,B)[(n− l)] −−→ τ≤lC•(Ωn−lX′/S(A′, B′)),

where

τ≥n−lF∗Ω•X/S(A,B)[(n− l)] :=

F∗Ωn−lX/S(A,B)

dF∗Ωn−lX/S(A,B)
−−→ F∗Ωn−l+1

X/S (A,B) −−→ · · · −−→ F∗ΩnX/S(A,B).

The composite map

Hn−l −−→ τ≥n−lF∗Ω•X/S(A,B)[(n− l)] −−→ C•(Ωn−lX′/S(A′, B′))

is given by
∧n−l

C. As τ≥n−l maps to τ≥n−l+1 , we find in this way a
OX′ -map

τ≥n−p+1F∗Ω•X/S(A,B)
ϕ∨−−→

n⊕
i=n−p+1

C•(ΩiX′/S(A′, B′))[−i]

which is a quasi-isomorphism. In particular, for any open set U ′ ⊂ X ′ and any
OX′ -sheaf F ′ one has

IHl(U ′, τ≥n−p+1F∗Ω•X/S(A,B)⊗F ′) =
n⊕

i=n−p+1

H l−i(U ′,ΩiX′/S(A′, B′)⊗F ′).
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Consider now n = p as needed to finish the proof of (10.19). From the exact
sequence

0 −−→ H0 −−→ F∗Ω•X/S(A,B) −−→ τ≥1F∗Ω•X/S(A,B) −−→ 0

we obtain an exact sequence of hypercohomology groups

IHp(F∗Ω•X/S(A,B)⊗Hp
∨

) −−→
p⊕
a=1

Hp−a(ΩaX′/S(A′, B′)⊗Hp
∨

) −−→

−−→ Hp+1(H0 ⊗Hp
∨

)

where Hp∨ := HomOX′ (H
p,OX′).

As dimS X = p and S is affine, one has Hp+1(H0 ⊗ Hp∨) = 0, and there-
fore

p∧
C ∈ H0(ΩpX′/S(A′, B′)⊗Hp

∨
)

lifts to some
Γ ∈ IHp(F∗Ω•X/S(A,B)⊗Hp

∨
).

Representing Γ by a Čech cocycle

Hp [Γ]−−→ Cp(F∗OX) + · · ·+ C0(F∗Ω
p
X/S(A,B)),

and taking a common refinement U of the Čech covers defining ϕ and Γ, one
obtains altogether a quasi-isomorphism

(ϕ, [Γ] ◦
p∧
C−1) :

⊕
j

ΩjX′/S(A′, B′)[−j] −−→ C•(F∗Ω•X/S(A,B)).

2

10.20. Remark. If dimS X = n > p, and S is affine, one considers the exact
sequence

0 −−→ τ≤n−pF∗Ω•X/S(A,B) −−→ F∗Ω•X/S(A,B) −−→ τ≥n−p+1Ω•X/S(A,B) −−→ 0

giving the short exact sequences

IHq(F∗Ω•X/S(A,B)⊗Hq
∨

) −−→
n⊕

a=n−p+1

Hq−a(ΩaX′/S(A′, B′)⊗Hq
∨

) −−→

−−→ Hq+1(τ≤n−pF∗Ω•X/S(A,B)⊗Hq
∨

)

for all p ≤ q ≤ n. If n− p ≤ p− 1, then

Hq+1(τ≤n−pF∗Ω•X/S(A,B)⊗Hq
∨

) =
n−p⊕
a=0

Hq+1−a(ΩaX′/S(A′, B′)⊗Hq
∨

).
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If those groups are vanishing, then the same argument as above shows that
one obtains a splitting of F∗Ω•X/S(A,B).

For example, take D = ∅. For n = p+ 1, one requires the vanishing of

Hp+1(Hp
∨

), Hp(Ω1
X′/S ⊗H

p∨) and of Hp+1(Ω1
X′/S ⊗H

p+1∨),

that is, via duality, the vanishing of

H0(ΩpX′/S ⊗ Ωp+1
X′/S) and H1(Ωp⊗2

X′/S).

Using (10.19) it is now quite easy to prove theorem (8.3) and some
generalizations.

10.21. Theorem. Let f : X → S be a smooth proper S-scheme, dimS X ≤ p,
and let D ⊂ X be a S-normal crossing divisor. Assume that there exists a
lifting

D̃′ ⊂ X̃ ′ of D′ ⊂ X ′

to S̃. Let D = A+B. Then one has:

a) The OS-sheaves
Eab1 = Rbf∗ΩaX/S(A,B)

are locally free and compatible with arbitrary base change.

b) The Hodge to de Rham spectral sequence

Eab1 =⇒ IRa+bf∗Ω•X/S(A,B)

degenerates in E1.

Proof: Assuming a), part b) follows if one knows that IRlf∗Ω•X/S(A,B) is a
locally free OS-module of rank∑

a+b=l

rankOS (Eab1 ).

Hence for a) and b) we can assume S to be affine.

(10.17), for i = dimS X < p, or (10.19) for dimS X = p imply that

IRlf∗Ω•X/S(A,B) = IRlf ′∗(F∗Ω
•
X/S(A,B)) =

⊕
a

Rl−af ′∗Ω
a
X′/S(A′, B′).

Hence, if a) holds true for f : X → S, then

IRlf∗Ω•X/S(A,B) =
⊕
a

F ∗SR
l−af∗ΩaX/S(A,B)
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is locally free of the right rank and one obtains b).

By “cohomology and base change” ([50], II §5, for example), there exist for
a = 0, . . . , l bounded complexes E•a of vector bundles on S, such that

Hl(E•a) = Rl−af∗ΩaX/S(A,B)

and, for any affine map ϕ : T −−→ S,

Hl(ϕ∗E•a) = Rl−afT∗ΩaXT /T (AT , BT )

where XT , AT , BT , X
′
T , fT : XT → T and f ′T : X ′T → T are obtained by

pullback from X, A, B, X ′, f and f ′ : X ′ → S.

For example, Rl−af ′∗Ω
a
X′/S(A′, B′) is given by Hl(F ∗SE•a) and hence

IRlf∗Ω•X/S(A,B) by the l-th homology of the complex

F ∗SE• for E• =
⊕
a

E•a .

To prove a), we have to show that for all l, the sheaf

Hl(E•) =
⊕
a

Hl(E•a)

is locally free. If this is wrong, then we take l0 to be the maximal l with Hl(E•)
not locally free. Hence, if ∂• denotes the differential in E•, ker ∂l0 is a vector
bundle, let us say of rank r, but the image of

∂l0−1 : E l0−1 −−→ ker ∂l0

is not a subbundle.

For some closed point s ∈ S one finds an infinitesimal neighbourhood Ŝ, for
example one of the form

Ŝ = Spec(OS,s/mµ
S,s) for µ >> 0,

such that im(∂l0−1|Ŝ) is not a subbundle of ker(∂l0 |Ŝ). Let us write Ŝ = SpecR
where R is an Artin ring. For any R-module M let lg(M) denote the lenght.

∂l0−1 is represented by a matrix ∆l0−1. For the point s ∈ Ŝ one has

h = rankk(s)Hl0(E• ⊗ k(s)) >
lg(Hl0(E• ⊗R))

lg(R)
.

Let n0 ⊂ R be the ideal generated by the (r − h+ 1) minors of ∆l0−1. Then

Hl0(E• ⊗R/n0)
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is free of rank h as an R/n0-module. If n′0 ⊂ n0 ⊂ R is another ideal with
n′0 6= n0, then

lg(Hl0(E• ⊗R/n′0)) < h · lg(R/n′0).

Repeating this construction, starting with R/n0 instead of R we find after
finitly many steps some ideal n such that the R/n modules

Hl(E• ⊗R/n)

are free of rank h(l) over R/n for all l, but for some l′ and for all ideals n′ ⊂ n
with n′ 6= n one has

lg(Hl
′
(E• ⊗R/n′)) < h(l′) · lg(R/n′) .

In particular, this holds true for the ideal n′ of R generated by F ∗
Ŝ
n. Let us

write T ′ = Spec(R/n′) and T = Spec(R/n). We have affine morphisms

T ′
δ−−−−→ T

j−−−−→ T ′y y y
S

FS−−−−→ S
=−−−−→ S .

Hl(E•|T ) is free of rank h(l) over R/n for all l and hence

Hl(δ∗j∗E•|T ′) = Hl((F ∗SE•)|T ′)

is free of rank h(l) over R/n′. The Hodge to de Rham spectral sequence implies
that

lg(Hl(E•|T ′)) =
∑
a

lg(Rl−afT ′∗ΩaXT ′/T ′(AT ′ , BT ′)) ≥

≥ lg(IRlfT ′∗Ω•XT ′/T ′(AT ′ , BT ′)).

On the other hand,

IRlfT ′∗Ω•XT ′/T ′(AT ′ , BT ′) = IRlf ′∗(F∗Ω
•
X/S(A,B)⊗ f ′∗(R/n′)) =

=
⊕
a

Rl−af ′∗(Ω
a
X′/S(A′, B′)⊗ f ′∗(R/n′)).

We can apply base change and find the latter to be⊕
a

Hl(δ∗E•a |T ) = Hl(δ∗E•|T ) .

Since the sheaves Hl(E•|T ) are locally free, we have altogether

lg(Hl(E•|T ′)) ≥ lg(Hl(δ∗E•|T )) =

= lg(δ∗Hl(E•|T )) = h(l) · lg(R/n′) .

For l = l′ this contradicts the choice of n and n′. Hence Hl(E•) is locally free.
2
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10.22. Remark. As shown in [12], 4.1.2. it is enough to assume that for all
a and b the dimension of Hb(Xs,ΩaXs(As, Bs)) is finite for closed points s ∈ S
and that the conjugate spectral sequence

cE
ij
2 = Rif ′T∗Hj(F∗Ω•XT /T (AT , BT )) =⇒ IRi+jfT∗Ω•XT /T (AT , BT )

satisfies
cE

ij
2 = cE

ij
∞ for i+ j = l

and for all T, in order to obtain (10.21).

10.23. Corollary. Let K be a field of characteristic zero, X be a smooth proper
scheme over K and D = A + B be a reduced normal crossing divisor defined
over K. Then the Hodge to de Rham spectral sequence

Eab1 = Hb(X,ΩaX(A,B)) =⇒ IHa+b(X,Ω•X(A,B))

degenerates in E1.

Proof: By flat base change we may assume that K is of finite type over Ql .
Hence we find a ring R, of finite type over ZZ, such that K is the quotient field
over R. Let f : X → SpecR be a proper morphism with X = X ×R K, and A
and B divisors on X with A = A|X and B = B|X .
Replacing SpecR by some open affine subscheme, we may assume that f is
smooth, that D = A+ B is a normal crossing divisor over SpecR and that

IRlf∗Ω•X/SpecR(A,B) and Rbf∗ΩaX/Spec R
(A,B)

are locally free for all l, a and b. Take a closed point s ∈ SpecR with

char k(s) = p > dimS X.

Hence

Xs = X ×R k(s) −−→ S = k(s) , As = A|Xs and Bs = B|Xs

satisfy the assumptions made in (10.21) and∑
a+b=l

rank Rbf∗ΩaX/Spec R
(A,B) = rank IRlf∗Ω•X/Spec R

(A,B).

2

As mentioned in (3.18) the corollary (10.23) finally ends the proof of
(3.2) in characteristic zero, and hence of the different vanishing theorems and
applications discussed in Lectures 5 - 7. A slightly different argument, avoiding
the use of (3.19) or (3.22) can be found at the end of this lecture.
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As promised we are now able to prove (3.2,b and c) for fields of character-
istic p 6= 0 as well.

Proof of (3.2,b) and c) in characteristic p 6= 0: Recall, that on the
projective manifold X we considered the invertible sheaves

L(i) = L(i,D) = Li(−[
i ·D
N

]) where

D =
r∑
j=1

αiDj

is a normal crossing divisor and L an invertible sheaf with LN = OX(D).
For N prime to char k, we constructed in §3, for i = 0, . . . , N − 1, integrable
logarithmic connections

∇(i) : L(i)−1
−−→ Ω1

X(log D(i))⊗ L(i)−1

with poles along

D(i) =
r∑
j=1

i·αj
N 6∈ZZ

Dj .

The residue of ∇(i) along Dj ⊂ D(i) is given by multiplication with

(i · αj −N · [
i · αj
N

]) ·N−1.

If A and B are reduced divisors such that A,B and D(i) have pairwise no
common component then we want to prove:

2

10.24. Claim. Let k be a perfect field, N prime to char k = p and assume
that p ≥ dim X. If X,D,A and B admit a lifting to W2(k), then the spectral
sequence

Eab1 = Hb(X,ΩaX(log (A+B +D(i)))(−B)⊗ L(i)−1
) =⇒

IHa+b(X,Ω•X(log (A+B +D(i)))(−B)⊗ L(i)−1
)

degenerates in E1.

Proof: Let F : X → X ′ be the relative Frobenius morphism and L′, D′, A′
and B′ be the sheaf and the divisors on X ′ obtained by field extensions. Then

F ∗L′(i,D
′) = F ∗L′(i) = Lp·i(−p · [ i ·D

N
])
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contains

L(p·i) = Lp·i(−[
p · i ·D
N

]).

Since p is prime to N one has D(i) = D(p·i). The connection

∇(p·i)−1 : OX(−B)⊗ L(p·i)−1
−−→ Ω1

X(log (A+B +D(i)))(−B)⊗ L(p·i)−1

induces a connection with the same poles on

OX(−B)⊗ F ∗L′(i)
−1

whose residues along Dj ⊂ D(i) are given by multiplication with

N−1 · p · i · αj − [
p · i · αj
N

] + ([
p · i · αj
N

]− p[ i · αj
N

]) .

Obviously this number is zero modulo p. Since

[
p · i · αj
N

] ≤ p · i · αj
N

< p · ([ i · αj
N

] + 1) = p · [ i · αj
N

] + p

(2.10) implies that the complexes

Ω•X (log (A+B +D(i)))(−B)⊗ F ∗L′(i)
−1

and
Ω•X(log (A+B +D(i)))(−B)⊗ L(p·i)−1

are quasi-isomorphic.

10.25. Claim. The complex

F∗(Ω•X(log (A+B +D(i)))(−B)⊗ F ∗L′(i)
−1

)

is isomorphic to the complex

F∗(Ω•X(log (A+B +D(i)))(−B))

tensorized with L′(i)−1
.

Proof: Let π : Y → X be the cyclic cover obtained by taking the N -th root
out of D, let F : Y → Y ′ be the relative Frobenius of Y . We have the induced
diagram

Y
F−−−−→ Y ′

π

y yπ′
X

F−−−−→ X ′
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and, on X ′ − Sing(Dred),

π′∗OY ′ = Ker(d : π′∗F∗OY −−→ π′∗F∗Ω
1
Y ) =

Ker(d : F∗(
N−1⊕
j=0

L(j)−1
) −−→ F∗(

N−1⊕
j=0

Ω1
X(log D(j))⊗ L(j)−1

)).

Since F ∗ of the i-th eigenspace L′(i) of π′∗OY ′ lies in the p · i-th eigenspace
L(i·p) of π∗OY one has

L′(i)−1
= Ker(∇(p·i) : F∗L(p·i)−1 −−→ F∗(Ω1

X(log D(i))⊗ L(p·i)−1
))

= Ker(∇(p·i) : (F∗OX)⊗ L′(i)−1 −−→ (F∗Ω1
X(log D(i)))⊗ L′(i)−1

)

By the Leibniz rule ∇(p·i) restricted to (F∗OX)⊗L′(i)−1
is nothing but d⊗ id

as claimed.

2

From (10.19) and by base change

dim IHl(X,Ω•X(log (A+B +D(i)))(−B)⊗ L(p·i)−1
) =

dim IHl(X ′, F∗(Ω•X(log (A+B +D(i)))(−B)⊗ L(p·i)−1
)) =∑

a+b=l

dimHb(X ′, ωaX′(log (A′ +B′ +D′(i)))(−B′)⊗ L′(i)
−1

=

∑
a+b=l

dimHb(X,ωaX(log (A+B +D(i)))(−B)⊗ L(i)−1
≥

dim IHl(X,Ω•X(log (A+B +D(i)))(−B)⊗ L(i)−1
).

For some ν > 0 one has pν ≡ 1 mod N . Repeating the argument ν − 1 times
one finds

dim IHl(X,Ω•X(log (A+B +D(i)))(−B)⊗ L(i)−1
) ≥

dim IHl(X,Ω•X(log (A+B +D(i)))(−B)⊗ L(pν−1·i)−1
) ≥ · · ·

· · · ≥
∑
a+b=l

dimHb(X,ΩaX(log (A+B +D(i)))(−B)⊗ L(i)−1
) ≥

dim IHl(X,Ω•X(log (A+B +D(i)))(−B)⊗ L(i)−1
) .

Hence all the inequalities must be equalities and one obtains (10.24).

2
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2. Proof of (3.2,b) and c) in characteristic 0:

The arguments used in (10.23) to reduce (10.23) to (10.21) show as well that
3.2,b and c in characteristic 0 follow from (10.24).

2

§ 11 Vanishing theorems in characteristic p.

In this lecture we start with the elegant proof of the Akizuki-Kodaira-Nakano
vanishing theorem, due to Deligne, Illusie and Raynaud [12]. Then we will
discuss some generalizations. However they only seem to be of interest if one
assumes that one has embedded resolutions of singularities in characteristic p.

11.1. Lemma. Let k be a perfect field, let X be a proper smooth k-scheme and
D a normal crossing divisor, both admitting a lifting D̃ ⊂ X̃ to W2(k). Let M
be a locally free OX-module. Then, for l < char(k) one has∑
a+b=l

dim Hb(X,ΩaX(log D)⊗M) ≤
∑
a+b=l

dim Hb(X,ΩaX(log D)⊗F ∗XM).

Proof: By (10.16) we have

dim IHl(X,Ω•X(log D)⊗ F ∗XM) =
∑
a+b=l

dim Hb(X ′,ΩaX′(log D′)⊗M′)

for the sheaf M′ = pr1
∗M on X ′ = X ×FS S and D′ = D ×FS S. By base

change the right hand side is∑
a+b=l

dim Hb(X,ΩaX(log D)⊗M).

The Hodge to de Rham spectral sequence implies that the left hand side is
smaller than or equal to∑

a+b=l

dim Hb(X,ΩaX(log D)⊗ F ∗XM).

2

11.2. Corollary. Under the assumptions of (11.1) assume that M is invert-
ible. Then∑
a+b=l

dim Hb(X,ΩaX(log D)⊗M) ≤
∑
a+b=l

dim Hb(X,ΩaX(log D)⊗Mp).
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11.3. Corollary (Deligne, Illusie, Raynaud, see [12]).
For a+b < Min {char(k), dim X} and L ample and invertible, one has under
the assumptions of (11.1.)

Hb(X,ΩaX(log D)⊗ L−1) = 0.

Proof: For ν large enough, and L−1 =M one has

Hb(X,ΩaX(log D)⊗Mpν ) = 0

for b < dim X. By (11.2) one has

Hb(X,ΩaX(log D)⊗Mpν−1
) = 0

and after finitely many steps one obtains (11.3)
2

The following corollary is, as well known in characteristic zero, a direct ap-
plication of (11.3) for a = 0. It will be needed in our discussion of possible
generalizations of (11.3).

11.4. Corollary. Let k be a perfect field, let X be a proper smooth k-scheme
with dimX ≤ char k and let L be a numerically effective sheaf (see (5.5)).
Assume that A is a very ample sheaf, such that X and A lift to X̃ and Ã over
W2(k), with Ã very ample over S̃. Then one has:

a) AdimX+1 ⊗ L⊗ ωX is generated by global sections.

b) AdimX+2 ⊗ L⊗ ωX is very ample.

Proof: By (11.3) and Serre duality H1(X,AdimX ⊗L⊗ ωX) = 0. Hence one
has a surjection

H0(X,AdimX+1 ⊗ L⊗ ωX) −−→ H0(H,AdimX ⊗ L⊗ ωH)

where H is a smooth zero divisor of a general section of A. Since A lifts to
W2(k), we can choose H such that it lifts to W2(k) as well. By induction on
dim X we can assume that

AdimX ⊗ L⊗ ωH

is generated by global sections and, moving H, we obtain a).
Part b) follows directly from a) (see [30], II. Ex.7.5).

2

11.5. Proposition. Let k be a perfect field of characteristic p > 0, let X be a
proper smooth k-variety, let D be an effective normal crossing divisor and L be
an invertible sheaf on X. Assume that (X,D) and L admit liftings to W2(k)
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and that one has:

(∗) For some ν0 ∈ IN and all ν ≥ 0 the sheaf Lν0+ν ⊗OX(−D) is ample.

Then, for a+ b < dim X ≤ char k one has

Hb(X,ΩaX(log D)⊗ L−1) = 0.

Proof: By (5.7), the assumption (∗) implies that L is numerically effective.
Let us choose µ0 such that Lµ0·ν0(−µ0 ·D) is very ample and

Lµ0·ν0(−µ0 ·D)⊗ ω−1
X and Lµ0·ν0(−µ0 ·D +Dred)⊗ ω−1

X

are both ample. From (11.4) we find for n = dimX that both,

Lµ0·ν0(n+3)+ν(−µ0(n+ 3) ·D) and Lµ0·ν0(n+3)+ν(−µ0(n+ 3) ·D +Dred)

are very ample for all ν ≥ 0. Hence the assumption (∗) in (11.5) can be re-
placed by

(∗∗) For some ν0 ∈ IN and all ν ≥ 0 the sheaves Lν0+ν ⊗ OX(−D) and
Lν0+ν ⊗OX(−D +Dred) are very ample.

Choose η ∈ IN − {0} such that N = pη + 1 > ν0 and [DN ] = 0. Let H be
the zero set of a general section of LN ⊗ OX(−D). In §3 we constructed an
integrable logarithmic connection ∇(i) on the sheaf

L(i)−1
= L−i([ i · (D +H)

N
]) .

Let F : X → X ′ be the relative Frobenius morphism and L′, D′,H ′ the sheaf
and the divisors on X ′, obtained by field extension via FSpec k : k → k from
L, D and H.

As we have seen in the proof of (10.24) and in (10.25) one has an inclusion of
complexes

(F∗Ω•X(log (D +H)))⊗ L′(i)
−1
−−→ F∗(Ω•X(log (D +H))⊗ L(p·i)−1

).

This inclusion is a quasi-isomorphism and as in (10.24) one obtains from (10.19)
and base change the inequalities

dim IHl(X,Ω•X(log (D +H))⊗ L(1)−1
) ≤∑

a+b=l

dimHb(X,ΩaX(log (D +H))⊗ L(1)−1
) =



§ 11 Vanishing theorems in characteristic p. 131

∑
a+b=l

dimHb(X ′,ΩaX′(log (D′ +H ′))⊗ L′(1)−1

) =

dim IHl(X,Ω•X(log (D +H))⊗ L(p)−1
) ≤ · · ·

dim IHl(X,Ω•X(log (D +H))⊗ L(pγ)−1
) ≤∑

a+b=l

Hb(X,ΩaX(log (D +H))⊗ L(pγ)−1
)

for all γ > 0. For γ = η we have pη = N − 1 and

L(pη) = L(N−1) = LN−1(−[ (N−1)·(D+H)
N ]) =

= LN−1(−D − [−DN + (N−1)·H
N ]) = LN−1(−D +Dred).

Hence L(pη) is ample and from (11.3) we obtain, for

l < dim X ≤ char k,

that ∑
a+b=l

Hb(X,ΩaX(log (D +H))⊗ L(pη)−1
) = 0.

Since L(1) = L we obtain for a+ b < dim X ≤ char k

Hb(X,ΩaX(log (D +H))⊗ L−1) = 0.

Finally, since LN ⊗OX(−D) lifts to W2(k), we can choose H such that H and
D|H both lift to W2(k) and the exact sequence

Hb−1(H,Ωa−1
H (log D)|H)⊗ L−1) −−→ Hb(X,ΩaX(log D)⊗ L−1) −−→

−−→ Hb(X,ΩaX(log (D +H))⊗ L−1).

allows to prove (11.5) by induction.
2

11.6. Remarks..
a) By (5.7) and (5.4,d) the assumption (∗) in (11.5) implies that L is numeri-
cally effective and of maximal Iitaka dimension.

b) If, on the other hand, L is numerically effective and of maximal Iitaka
dimension, then there exists some effective divisor D such that the sheaf

Lν0+ν ⊗OX(−D)

is ample for some ν0 ∈ IN and all ν ≥ 0. However, in general, this divisor is
not a normal crossing divisor and henceforth (11.5) is of no use.

If one assumes that the embedded resolution of singularities holds true over k
and even over W2(k), (11.5) would give an affirmative answer to
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11.7. Problem. Let k be a perfect field of characteristic p > 0, let X be a
proper smooth k-variety and L an invertible sheaf. Assume that X and L admit
liftings to W2(k), that L is numerically effective and that κ(L) = dimX.

Does this imply that

Hb(X,L−1) = 0 for b < dimX ≤ char k ?

11.8. Remark.
a) If dimX = 2 then (11.5) gives an affirmative answer to the problem (11.7),
since we have imbedded resolution of singularities for curves on surfaces. In
the surface case however, [12], Cor. 2.8, gives the vanishing of Hb(X,L−1), for
b < 2, without assuming that L lifts to W2(k).
b) As mentioned in Lecture 1 and 8, even if we restrict ourselves to the case
where L is semi-ample and of maximal Iitaka dimension, we do not know the
answer to problem (11.7) for higherdimensional X.

§ 12 Deformation theory for cohomology groups

In this lecture we will recall D. Mumford’s description of higher direct image
sheaves, already used in (10.21), and their base change properties and, follow-
ing Green and Lazarsfeld [26], deduce the deformation theory for cohomology
groups.

12.1. Theorem (Mumford). Let g : Z −−→ Y be a projective flat morphism
of noetherian schemes, let Y0 ⊂ Y be an affine open subscheme,

Z0 = g−1(Y0) , g0 = g|Z0

and let B be a locally free sheaf on Z. Then there exists a bounded complex
(E•, δ•) of locally free OY0 modules of finite rank such that

Hb(E• ⊗ F) = Rbg0∗(B|Z0 ⊗ g∗0F)

for all coherent sheaves F on Y0.

In order to construct E•, D. Mumford uses in [50], II, §5, the description
of higher direct images by Čech complexes. The “ Coherence Theorem” of
Grauert-Grothendieck allows to realize (E•) as a complex of locally free sheaves
of finite rank. The proof of (12.1) can be found as well in [30], III, §12.
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From (12.1) one obtains easily the base change theorems of Grauert and
Grothendieck, as well as the ones used at the end of Lecture 10.

12.2. Example. Let y ∈ Y0 be a point and F = k(y). For Zy = g−1(y) one
obtains

Hb(E• ⊗ k(y)) =−−−−→ Hb(Zy, B|Zy )

τ

x η

x
Hb(E•)⊗ k(y) =−−−−→ Rbg∗(B)⊗ k(y),

where η is the base change morphism ([30], III, 9.3.1). In general, due to the
fact that the images of

δb−1 : Eb−1 −−→ Eb and δb : Eb −−→ Eb+1

are not subbundles of Eb and Eb+1, τ and hence η will be neither injective nor
surjective.

12.3. Example. Let X be a projective manifold, defined over an algebraically
closed field k and let Y ⊂ Pic0(X) be a closed subscheme,

Z = X × Y and g = pr2 : Z −−→ Y.

Recall that on Z we have a Poincaré bundle P (see for example [50]), i.e. an
invertible sheaf P such that

P|g−1(y) ' Ny,

if Ny is the linebundle on X corresponding to

y ∈ Y ⊂ Pic0(X).

In more fancy terms, the functor

T 7−→ Pic(X × T/T )

is represented by a locally noetherian group-scheme Pic(X), whose connected
component containing zero is Pic0(X). The invertible sheaf P is the restriction
of the universal bundle on X × Pic(X) to

X × Y ⊂ X × Pic0(X)

(see [28]). For y ∈ Y let Ty,Y = (my,Y /m
2
y,Y )∗ be the Zariski tangent space.

We have an exact sequence

0 −−→ T ∗y,Y −−→ Oy,Y /m2
y,Y −−→ k(y) −−→ 0.

Since
g∗(T ∗y,Y )⊗OZ P = g∗(T ∗y,Y )⊗Ny
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one obtains the exact sequence

0 −−→ g∗(T ∗y,Y )⊗Ny −−→ g∗(Oy,Y /m2
y,Y )⊗ P −−→ Ny −−→ 0

on X ' g−1(y). If, identifying X with g−1(y),

ζ ∈ H1(X, g∗(T 1
y,Y )) = H1(X,OX)⊗ T ∗y,Y

is the extension class of this sequence, the induced edge morphism

Hb(X,Ny) −−→ Hb+1(X, g∗(T ∗y,Y )⊗Ny) = Hb+1(X,Ny)⊗k(y) T
∗
y,Y

is the cup-product with ζ.

12.4.

Keeping the notations from (12.3), let M be a locally free sheaf on X and
B = P ⊗ pr∗1M. Since the exact sequence

0 −−→ g∗(T ∗y,Y )⊗Ny ⊗M −−→ g∗(Oy,Y /m2
y,Y )⊗ B −−→ Ny ⊗M −−→ 0

is obtained from

0 −−→ g∗(T ∗y,Y )⊗Ny −−→ g∗(Oy,Y /m2
y,Y )⊗ P −−→ Ny −−→ 0

by tensorproduct with M, the induced edge morphism

Hb(X,M⊗Ny) −−→ Hb+1(X,M⊗Ny)⊗k(y) T
∗
y,Y

is again the cup-product with ζ. Let us finally remark that ζ induces a mor-
phism

Ty,Y
ζ−−−−→ H1(X,OX)

which, due to the universal property of P is injective. In fact, if we represent
τ ∈ Ty,Y by a morphism

ζ ′ : D = Spec k[ε] −−→ Y with ζ ′(< ε >) = y ,

where k[ε] = k[t]/t2 is the ring of dual numbers, then for τ 6= 0 the pullback
of P to X ×D is non trivial and hence the extension class ζ(τ) of

0 −−−−→ Ny
·ε−−−−→ P|X ×D −−−−→ Ny −−−−→ 0

is non zero. If Y = Pic0(X) one has dimTy,Y = dimH1(X,OX) and ζ is
surjective as well.

12.5. Notations. For X,M as above let us write

Sb(X,M) = {y ∈ Pic0(X);Hb(X,Ny ⊗M) 6= 0}.
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The first part of the following lemma is well known and an easy consequence
of the semicontinuity of the dimensions of cohomology groups. To fix notations
we will prove it nevertheless.

12.6. Lemma.
a) Sb(X,M) is a closed subvariety of Pic0(X).

b) If Y ⊂ Sb(X,M) is an ireducible component and

m = Min{dimHb(X,Ny ⊗M); y ∈ Y },

then the set
U = {y ∈ Y ; dimHb(X,Ny ⊗M) = m}

is open and dense in Y .

c) For y ∈ U and ζ : Ty,Y ↪→ H1(X,OX) as in (12.4) the cup-products

ζ(Ty,Y )⊗Hb−1(X,Ny ⊗M) −−→ Hb(X,Ny ⊗M)

and
ζ(Ty,Y )⊗Hb(X,Ny ⊗M) −−→ Hb+1(X,Ny ⊗M)

are both zero.

Proof: For any open affine P0 ⊂ Pic0(X) let E• be the complex from (12.1)
describing the higher direct images of

B|X×Po = pr∗1M⊗P|X×Po

and there base change. If we write

Wb = Coker(δb−1 : Eb−1 −−→ Eb),

then for F coherent on P0 we have

Wb ⊗F = Coker(δb−1 : Eb−1 ⊗F −−→ Eb ⊗F)

and an exact sequence

0 −−→ Hb(E• ⊗F) −−→Wb ⊗F −−→ Eb+1 ⊗F −−→Wb+1 ⊗F −−→ 0.

If Sb(X,M) 6= Pic0(X), then Sb(X,M) is just the locus where Wb → Eb+1

is not a subbundle. Obviously this condition defines a closed subscheme of P0.
For y ∈ Y ∩ P0 = Y0 we have

dimHb(E• ⊗ k(y)) = −rank(Eb+1) + dim(Wb ⊗ k(y)) + dim(Wb+1 ⊗ k(y))

and the open set U in b) is nothing but the locus where both,

Wb ⊗OY0 and Wb+1 ⊗OY0
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are locally free OY0 modules. On U the sequence

0 −−→ Hb(E•|U ) −−→Wb|U −−→ Eb+1|U −−→Wb+1|U −−→ 0

is an exact sequence of vector bundles and

Hb(E• ⊗F) = Hb(E|U )⊗F

for all coherent OU modules F . In particular for y ∈ U the exact sequence

0 −−→ E• ⊗ T ∗y,Y −−→ E• ⊗Oy,Y /m2
y,Y −−→ E• ⊗ k(y) −−→ 0

induces

Hb(E• ⊗ T ∗y,Y ) −−−−→ Hb(E• ⊗Oy,Y /m2
y,Y ) −−−−→ Hb(E• ⊗ k(y))

=

y =

y =

y
Hb(E•)⊗ T ∗y,Y −−−−→ Hb(E•)⊗Oy,Y /m2

y,Y −−−−→ Hb(E•)⊗ k(y)

and the edge morphisms

Hi(E• ⊗ k(y)) −−→ Hi+1(E• ⊗ T ∗y,Y )

are zero for i = b and b− 1. Using (12.1) we have identified in (12.4) this edge
morphism with the cup-product

Hi(X,M⊗Ny) −−→ Hi+1(X,M⊗Ny)⊗k(y) T
∗
y,Y

with the extension class ζ ∈ H1(X,OX)⊗ T ∗y,Y .
2

12.7. Corollary(Green, Lazarsfeld [26]). If Y ⊂ Sb(X,M) is an irre-
ducible component and y ∈ Y is a point in general position then

codimPic0(X)(Y ) ≥ codim(Γ ⊂ H1(X,OX))

where

Γ = {ϕ ∈ H1(X,OX); α ∪ ϕ = 0 and β ∪ ϕ = 0 for all

α ∈ Hb−1(X,Ny ⊗M) and β ∈ Hb(X,Ny ⊗M)}.

12.8. Remark. Even if one seems to loose some information, in the applica-
tions of (12.7) in Lecture 13 we will replace Γ by the larger space

{ϕ ∈ H1(X,OX); β ∪ ϕ = 0 for all β ∈ Hb(X,Ny ⊗M)}

in order to obtain lower bounds for codimPic0(X)(Sb(X,M)) for certain invert-
ible sheaves M.
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§ 13 Generic vanishing theorems [26], [14]

In this section we want to use (12.7) and Hodge-duality to prove some bounds
for

codimPic0(X)(S
b(X,M))

for the subschemes Sb(X,M) introduced in §12. In particular, we lose a little
bit the spirit of the previous lectures, where we tried to underline as much as
possible the algebraic aspects of vanishing theorems. Everything contained in
this lecture is either due Green-Lazarsfeld [26] or to H. Dunio [14]. The use of
Hodge duality will force us to assume that X is a complex manifold. Without
mentioning it we will switch from the algebraic to the analytic language and
use the comparison theorem of [56] whenever needed.

13.1. Notations. Let X be a projective complex manifold. The Picard group
Pic(X) is H1(X,O∗X) and, using the exponential sequence, Pic0(X) is identified
with

H1(X,OX)/H1(X,ZZ).

Let P be the Poincaré bundle on X × Pic0(X), and g = pr2. If

ζ : Ty,Pic0(X) −−→ H1(X,OX)

is the extension class of

0 −−→ g∗Ty,Pic0(X) ⊗Ny −−→ g∗(Oy,Pic0/m2
y,Pic0)⊗ P −−→ Ny −−→ 0

then ζ is the identity. Let

Alb(X) = H0(X,Ω1
X)∗/H1(X,ZZ)

be the Albanese variety of X and

α : X −−→ Alb(X)

be the Albanese map. The morphism α induces an isomorphism

α∗ : H0(Alb(X),Ω1
Alb(X)

) −−→ H0(X,Ω1
X).

In particular,

dimα(X) = rankOX (im(H0(X,Ω1
X)⊗Cl OX −−→ Ω1

X)) .

13.2. Theorem (Green-Lazarsfeld [26]). Let X be a complex projective
manifold and

Sb(X) = {y ∈ Pic0(X); Hb(X,Ny) 6= 0}.
Then

codimPic0(X)(S
b(X)) ≥ dim(α(X))− b.

In particular, if N ∈ Pic0(X) is a generic line bundle, then Hb(X,N ) = 0 for
b < dimα(X).
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Proof: Using (12.7) or (12.8) one obtains (13.2) from
2

13.3. Claim. Assume that Hb(X,Ny) 6= 0 then for

Γ = {ϕ ∈ H1(X,OX); β ∪ ϕ = 0 for all β ∈ Hb(X,Ny)}

one has
codim(Γ ⊂ H1(X,OX)) ≥ dim(α(X))− b.

Proof:

Step 1:Ny is a flat unitary bundle on X, obtained from a unitary representation
of the fundamental group. In particular the conjugation of harmonic forms
with values in Ny gives a complex antilinear isomorphism, the so called Hodge
duality,

ι : Hb(X,ΩaX ⊗Ny) −−→ Ha(X,ΩbX ⊗N−1
y )

(see (13.5) and (13.6) for generalizations). Moreover, if ϕ ∈ H1(X,OX) and if
ω = ϕ̄ ∈ H0(X,Ω1

X) is the Hodge-dual of ϕ, then for β ∈ Hb(X,ΩaX ⊗Ny) one
has

ι(β ∪ ϕ) = ι(β) ∧ ω ∈ Ha(X,Ωb+1
X ⊗N−1

y ).

Hence
ι(Γ) = Γ̄ ⊂ H0(X,Ω1

X)

is the subspace of forms ω ∈ H0(X,Ω1
X) such that

β ∧ ω = 0 for all β ∈ H0(X,ΩbX ⊗N−1
y ).

Step 2: Consider the natural map

γ : H0(X,Ω1
X)⊗OX −−→ Ω1

X .

Since all one-forms are pullback of one-forms on α(X) ⊂ Alb(X), the subsheaf
im(γ) of Ω1

X is of rank dimα(X) and

r = rankγ(Γ⊗OX) = dim Γ− rank(ker(γ) ∩ Γ⊗OX) ≥

dim Γ− dim ker(γ) = dim Γ− (dimH0(X,Ω1
X)− dimα(X))

= dimα(X)− codim(Γ ⊂ H1(X,OX)) .

We assumed that H0(X,ΩbX ⊗N−1
y ) 6= 0. Hence we have at least one element

β ∈ H0(X,ΩbX ⊗N−1
y ) and β ∧ γ(Γ⊗OX) = 0.

Since
(∧bΩ1

X)⊗ (∧n−bΩ1
X) −−→ ΩnX



§ 13 Generic vanishing theorems [26], [14] 139

is a nondegenerate pairing, for n = dimX, we find some meromorphic differ-
ential form

δ ∈ Ωn−bX ⊗ Cl (X) with δ ∧ β 6= 0.

Hence δ lies in

Ωn−bX ⊗ Cl (X)− {γ(Γ⊗OX) ∧ Ωn−b−1
X ⊗ Cl (X)}.

This however is only possible if n− b ≤ n− r or b ≥ r. Altogether we find

b ≥ dimα(X)− codim(Γ ⊂ H1(X,OX)).

2

13.4.

If one tries to use the same methods for Sb(X,M) one has to make sure that
Hb(X,M⊗Ny) is in Hodge duality with H0(X,ΩbX⊗M′⊗N ∗y ) for some sheaf
M′. As shown in (3.23) this holds true for the sheaves L(i) arising from cyclic
coverings, at least if one considers ΩbX(log D) instead of ΩbX . More generally
one has:

13.5. Theorem (K. Timmerscheidt [59]). Let D be a normal crossing
divisor on X, let V be a locally free sheaf and

∇ : V −−→ Ω1
X(log D)⊗ V

an integrable logarithmic connection. Assume that for all components Di of D,
the real part of all eigenvalues of resDi(∇) lies in (0, 1)
(which implies that conditions (*) and (!) of (2.8) are satisfied, and that V is
the canonical extension defined by Deligne [10]).
Assume moreover that the local constant system

V = ker(∇ : V|U −−→ Ω1
U ⊗ V|U )

is unitary for U = X −D. Then one has:
a) The Hodge to de Rham spectral sequence

Eab1 = Hb(X,ΩaX(log D)⊗ V) −−→ IHa+b(X,Ω•X(log D)⊗ V)

degenerates at E1.
b) There exists a Cl - antilinear isomorphism

ι : Hb(X,ΩaX(log D)⊗ V) −−→ Ha(X,ΩbX(log D)⊗ V∗(−Dred))

such that for ϕ ∈ H1(X,OX) and ω = ϕ ∈ H0(X,Ω1
X) the diagram

Hb(X,ΩaX(log D)⊗ V) ι−−−−→ Ha(X,Ωb(log D)⊗ V∗(−Dred))

∪ϕ
y ∧ω

y
Hb+1(X,ΩaX(log D)⊗ V) ι−−−−→ Ha(X,Ωb+1

X (log D)⊗ V∗(−Dred))

commutes.
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13.6. Examples.
a) If D = 0 and if Ny is the invertible sheaf corresponding to y ∈ Pic0(X),
then Ny has an integrable connection ∇, whose kernel is a unitary rank one
local constant system. In this case (13.5) is wellknown and proven by the usual
arguments from classical Hodge-theory, applied to Ny ⊗N ∗y see [11].
b) If the sheaf V in (13.5) is of the form V = L(i)−1

for

D =
r∑
j=1

αjDj and LN = OX(D),

then the assumptions made in (13.5) are satisfied whenever

i · αj
N

/∈ ZZ for j = 1, ..., r.

Hence, using the notations from (3.2), one has D(i) = D(N−i) = Dred and

L(i)(−Dred) = Li(−[
i ·D
N

]−Dred) = Li(−{ i ·D
N
}) =

Li([−i ·D
N

]) = Li−N ([
(N − i) ·D

N
]) = L(N−i)−1

Hence (3.2) and (3.23) imply (13.5) for M = L(i)−1
.

c) Finally, for M = L(i)−1 ⊗Ny one can use (13.6,a) on the finite covering Y
of X obtained by taking the N−th root out of D and the arguments used to
prove (3.23) imply (13.5)in that case.

13.7. Corollary (H. Dunio [14]). Keeping the assumptions made in (13.5)
and the notations introduced in (13.1) and (12.5) one has

codimPic0(X)(Sb(X,V)) ≥ dim(α(X))− b.

Proof: Again, it is sufficient to give a lower bound for

codim(Γ ⊂ H1(X,OX))

where

Γ = {ϕ ∈ H1(X,OX); β ∪ ϕ = 0 for all β ∈ Hb(X,Ny ⊗ V)},

or using (13.5,b), for
codim(Γ̄ ⊂ H0(X,Ω1

X))

where
Γ̄ = {ω ∈ H0(X,Ω1

X);β ∧ ω = 0 for all

β ∈ H0(X,ΩbX(log D)⊗N ∗y ⊗ V∗(−Dred))}.
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As in (13.3), if
γ : H0(X,Ω1

X)⊗OX −−→ Ω1
X

is the natural map, one has

r = rank(γ(Γ̄⊗OX)) ≥ dimα(X)− codim(Γ̄ ⊂ H0(X,Ω1
X)).

Assume that one has some

0 6= β ∈ H0(X,ΩbX(log D)⊗N ∗y ⊗ V∗(−Dred)).

Let v1, ...., vs be a basis of

N ∗y ⊗ V∗(−Dred)⊗ Cl (X),

then one has β =
∑s
i=1 βivi for some βi ∈ ΩbX ⊗Cl (X) and βi ∧ ω = 0 for all i

and all
ω ∈ γ(Γ̄⊗OX)⊗ Cl (X).

As in (13.3) this is only possible if b ≥ r.
2

13.8. Example. If L is an invertible sheaf on X and if D is a normal crossing
divisor let N ∈ IN be larger than the multiplicities of the components of D. If
LN = OX(D) then V = L−1 satisfies the assumptions made in (13.7) and

Hb(X,L−1 ⊗Ny) = 0

for y ∈ Pic0(X) in general position and b < dimα(X).
On the other hand, (5.12,e) tells us, that

Hb(X,L−1 ⊗Ny) = 0

for all y ∈ Pic0(X) and b < κ(L). Hence (13.7) is only of interest if

dimα(X)− κ(L) > 0.

In this situation the bounds given in (13.7) can be improved. The generic
vanishing theorem remains true for

b < dimα(X) + κ(L)− dimα′(Z)

where Z is a desingularization of the image of the rational map

Φν : X −−→ IP(H0(X,Lν))

for ν sufficiently large (see (5.3)) and where

α′ : Z −−→ Alb(Z)
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is the Albanese map of Z. To be more precise:

13.9. Assumptions and Notations. Let X be a complex projective mani-
fold, let L be an invertible sheaf on X, let

D =
r∑
j=1

αjDj

be a normal crossing divisor and let N be a natural number with

0 < αj < N for j = 1, ..., r.

Assume that either LN (−D) is semi-ample or that (more generally) LN (−D)
is numerically effective and

κ(LN (−D)) = ν(LN (−D))

( see (5.9) and (5.11)). For some µ > 0 the rational map ( see (5.3))

Φµ : X −−→ Φµ(X) ⊂ IP(H0(X,Lµ))

has an irreducible general fibre and dim(Φµ(X)) = κ(L). For such a µ let Z be
a desingularization of Φµ(X) and X ′ a blowing up of X such that the induced
rational map

Φ′ : X ′ −−→ Z

is a morphism of manifolds. Φ′∗ defines a morphism

Φ∗ : Pic0(Z) −−→ Pic0(X ′) = Pic0(X)

and Φ∗(Pic0(Z)) is an abelian subvariety of Pic0(X) independent of the desin-
gularization choosen. Let

α : X −−→ Alb(X) and α′ : Z −−→ Alb(Z)

be the Albanese maps.

13.10. Theorem (H. Dunio [14]). Under the assumptions made in (13.9)
one has:

a) Sb(X,L−1) = 0 for b < κ(L).

b) Sb(X,L−1) lies in the subgroup of Pic0(X), which is generated
by torsion elements and by Φ∗(Pic0(Z)), for b = κ(L).

c) codimPic0(X)(Sb(X,L−1)) ≥ dim α(X)− dim α′(Z) +κ(L)− b.
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Proof: a) is nothing but (5.12,e) and it has already be shown twice in these
notes. Nevertheless, when we prove (13.10,c) it will come out again.

First of all, since Sb(X,L−1) is compatible with blowing ups of X, we
may assume that the rational map Φ : X → Z is a morphism. Moreover, as
in the proof of (5.12), we can assume that LN (−D) is semi-ample or even,
replacing N and D by some common multiple, that

LN (−D) = OX(H)

where H is a non singular divisor and D +H a normal crossing divisor. Since

L = L(1,D) = L(1,D+H)

we can as well assume that LN = OX(D). By (13.5,b) or (13.6,c) the space

Hb(X,L−1 ⊗Ny)

is Hodge dual to

H0(X,ΩbX(log D)⊗ L(N−1)−1
⊗N−1

y ).

Let GbΦ ↪→ ΩbX(log D) be the largest subsheaf which over some open non empty
subvariety of X coincides with

Φ∗ΩκZ ∧ Ωb−κX (log D).

Of course GbΦ = 0 for b < κ = κ(L) and δ ∈ GbΦ ⊗ Cl (X) if and only if δ is a
meromorphic b-form with δ ∧ Φ∗Ω1

Z = 0.

Since L(N−1) ⊆ LN−1 and since

(L(N−1))N = OX(N ·Dred −D),

we have κ(L(N−1)) = κ(L) and (L(N−1))µ contains LN for some µ > 0.

13.11. Claim. IfM is an invertible sheaf such thatMµ contains LN for some
µ > 0, then

H0(X,GbΦ ⊗M−1 ⊗N−1
y ) = H0(X,ΩbX(log D)⊗M−1 ⊗N−1

y ).

Proof: The methods used to prove (13.11) are due to F. Bogomolov [6].
A section β ∈ H0(X,ΩbX(log D)⊗M−1 ⊗N−1

y ) gives an inclusion

β :M−−→ ΩbX(log D)⊗N−1
y

and we have to show that Φ∗Ω1
Z ∧ β(M) = 0.
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If τ : X ′ −−→ X is generically finite and D′ = τ∗D a normal crossing divi-
sor, then τ∗ΩbX(log D) is a subsheaf of ΩbX′(log D′). In fact, if (locally) D′

is the zero set of x′1, ...., x
′
r and if x is a local parameter on X defining one

component of D, then

τ∗x =
r∏
j=1

x′
νj
j and τ∗

dx

x
=

r∑
j=1

νj
dx′j
x′j
∈ ΩbX′(log D′).

Hence β induces

β′ : τ∗M−−→ ΩbX′(log D′)⊗ τ∗(N−1
y ).

Since
β′(τ∗M) ∧ τ∗Φ∗Ω1

Z = 0

implies that
β(M) ∧ Φ∗Ω1

Z = 0,

we can replace X by X ′ whenever we like. For example, if

s0, ...., sκ ∈ H0(X,Lν) ⊂ H0(X,Mµ)

are choosen such that the functions
s1

s0
, ....,

sκ
s0

are algebraic independent, we can take X ′ as a desingularization of the covering
obtained by taking the µ-th root out of s0, s1, ...., sκ. Hence to prove (13.11)
we may assume that M itself has sections

s0, ...., sκ with f1 =
s1

s0
, ...., fκ =

sκ
s0

algebraic independent. From (13.5) we know that d(β(si)) = 0, which by the
Leibniz rule implies

0 = d(β(si)) = d(fi · β(s0)) = d(fi) ∧ β(s0).

However, d(f1), ...., d(fκ) are generators of Φ∗Ω1
Z over some non empty open

subset.
2

Part a) of (13.10) follows from (13.11) since for b < κ the sheaf GbΦ = 0.

If b = κ then
GbΦ = Φ∗ωZ ⊗OX(∆)

for some effective divisor ∆ on X, not meeting the general fibre F of Φ. Hence,
for y ∈ Sκ(X,L−1) (13.11) implies that L(N−1)−1 ⊗ N−1

y |F has a non trivial
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section and therefore N−1
y |F = L(N−1)|F . The divisor D + H does not meet

the general fibre F and, as we claimed in (13.10,b), N · y ∈ Φ∗(Pic0(Z)).

13.12. Remark. If L is semi-ample and b > κ, then a similar argument shows
that L(N−1)−1 ⊗ N−1

y |F ⊗ Ωb−κF has a non trivial section. This implies, as we
have seen in the proof of (13.2), that those Ny|F are corresponding to points
y in a subvariety of Pic0(F ) of codimension larger than or equal to

dim(α(F ))− b+ κ = dim(α(X))− dim(α(Z))− b+ κ,

which gives (13.10,c).

We instead generalise the argument used in step 2 of the proof of (13.3):
If

Γ = {ϕ ∈ H1(X,OX); β ∪ ϕ = 0 for all β ∈ Hb(X,L−1 ⊗Ny)}

then the Hodge dual of Γ is

Γ̄ = {ω ∈ H0(X,Ω1
X); β ∪ ω = 0 for all β ∈ H0(X,GbΦ ⊗ L(N−1)−1

⊗N−1
y )}.

If γ is the composed map

H0(X,Ω1
X)⊗OX −−→ Ω1

X −−→ Ω1
X/Z

then
H0(X,GbΦ ⊗ L(N−1)−1

⊗N−1
y ) 6= 0

implies that

γ(Γ̄⊗OX) ∧ β̄ = 0 for some β̄ ∈ Ωb−κX/Z ⊗ Cl (X)

or, in other terms, that

Ωn−bX/Z ⊗ Cl (X) 6= γ(Γ̄⊗OX) ∧ Ωn−b−1
X/Z ⊗ Cl (X).

Again this is only possible for

n− b ≤ n− κ− rank(γ(Γ̄⊗OX))

or
b− κ ≥ rank(γ(Γ̄⊗OX)).

However,

rank(γ(Γ̄⊗OX)) ≥ dim(α(X))− dim(α′(Z))− codim(Γ̄ ⊂ H0(X,Ω1
X))

and (13.10,c) follows from (12.7)
2
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13.13. Remarks.
a) If Z(ϕ) denotes the zero locus of a global one-form ϕ and

w(X) = Max{codimXZ(ϕ);ϕ ∈ H0(X,Ω1
X)},

then a second result of Green and Lazarsfeld [26] says that, for a generic line
bundle

N ∈ Pic0(X) and a+ b < w(X),

one has
Hb(X,ΩaX ⊗N ) = 0.

b) In [27] Green and Lazarsfeld obtain moreover a more explicit description of
the subvarieties Sb(X) of Pic0(X). They show that the irreducible components
of Sb(X) are translates of subtori of Pic0(X). This description generalizes re-
sults due to A. Beauville [5], who studied S1(X) and showed the same result
in this case.

c) Finally, C. Simpson recently gave in [58] a complete description of the Sb(X)
and similar “degeneration loci”. In particular he showed that the components
of Sb(X) are even translates of subtori of Pic0(X) by points of finite order, a
result conjectured and proved for b = 1 by A. Beauville.

d) Writing these notes we would have liked to prove the generic vanishing
theorems for invertible sheaves in the algebraic language used in the first part.
However, we were not able to replace the use of Hodge duality by some alge-
braic argument.
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APPENDIX: Hypercohomology and spectral sequences

1.

In this appendix, we list some formal properties of cohomology of complexes
that we are using throughout these notes. However we do not pretend making
a complete account on this topic. In particular, we avoid the use of the derived
category, which is treated to a broad extend in the literature (see [60], [29], [7],
[8], [33], [31]).

2.

Through this section X is a variety over a commutative ring k.

3.

We consider complexes F• of sheaves of O-modules, where O is a sheaf of
commutative rings. For example

O = ZZ , O = k or O = structure sheaf of X.

Any map of O-modules
σ : F• −−→ G•

between two such complexes induces a map of cohomology sheaves:

Hi(σ) : Hi(F•) −−→ Hi(G•)

where Hi(F•) is the sheaf associated to the presheaf

U 7→ ker Γ(U,F i)→ Γ(U,F i+1)
im Γ(U,F i−1)→ Γ(U,F i)

in the given topology.
One says that σ is a quasi-isomorphism if Hi(σ) is an isomorphism for all i.

4.

We will only consider complexes F• which are bounded below, that means
F i = 0 for i sufficiently negative.

5. Example: the analytic de Rham complex.

X is a complex manifold. Then the standard map

Cl −−→
(
OX → Ω1

X → Ω2
X → Ω3

X → · · ·
)
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from the constant sheaf Cl to the analytic de Rham complex Ω•X is a quasi-
isomorphism as by the so called “Poincaré lemma”

Hi(Ω•X) = 0 for i > 0, and H0(Ω•X) = Cl .

6. Example: the Čech complex.

Let U = {Uα;α ∈ A}, for A ⊂ IN, be some open covering of the variety
X defined over k. To a bounded below complex F• one associates its Čech
complex G• defined as follows.

Gi :=
⊕
a≥0

Ca(U ,F i−a)

where
Ca(U ,F i−a) =

∏
α0<α1<...<αa

%∗F i−a|Uα0...αa
.

Here, for any
Uα0...αa := Uα0 ∩ . . . ∩ Uαa

% denotes the open embedding

% = %α0...αa : Uα0...αa −−→ X,

and for any sheaf F , one writes %∗F for the sheaf associated to the presheaf

U 7→ Γ(Uα0...αa ∩ U,F).

As F i = 0 for i << 0, the direct sum in the definition of G has finitely many
summands.

The differential ∆ of G• is defined by

∆(s) = (−1)iδs+ dF•s for s ∈ Ca(U ,F i−a),

where δ is the Čech differential defined by

(δs)α0...αa+1 =
a+1∑

0

(−1)lsα0...α̂l...αa+1 |Uα0...αa+1

and dF• is the differential of F•. Then the natural map

σ : F• −−→ G•

defined by
F i %−−→

∏
α∈A

%∗F i|Uα = C0(U ,F i)

is a quasi-isomorphism.
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To show this one considers first a single sheaf F (see [30], III 4.2) and
then one computes that, whenever one has a double complexx x x

−−−−→ K1,i−1 −−−−→ K1,i −−−−→ K1,i+1 −−−−→x x x xdvert
−−−−→ K0,i−1 −−−−→ K0,i −−−−→ K0,i+1 −−−−→x x x
−−−−→ F i−1 −−−−→ F i −−−−→ F i+1 −−−−→ . . . −−−−→

dhor

such that F i −−→ K•,i is a quasi-isomorphism for all i, then F• −−→ D• is a
quasi-isomorphism as well, where D• is the associated double complex:

Di :=
⊕
a

Ka,i−a −−→ Di+1 :=
⊕
a

Ka,i+1−a

with differential (−1)idvert + dhor.

7.

If F• and G• are two complexes of O-modules bounded below one defines the
tensor product F• ⊗ G• by

(F• ⊗ G•)i :=
⊕
a

Fa ⊗ Gi−a

with differential from

Fa ⊗ Gi−a to Fa+1 ⊗ Gi−a ⊕Fa ⊗ Gi+1−a. given by

d(fa ⊗ gi−a) = dfa ⊗ gi−a + (−1)afa ⊗ dgi−a.
As both F• and G• are bounded below, a takes finitely many values, and
(F• ⊗ G•) is a complex of O-modules bounded below.

8.

If in 7 we assume moreover that locally the O-modules Fa and Gb are free and
dFa−1 as well as dGb−1 are subbundles for all a and b, then locally one has
some decomposition

Fa = dFa−1 ⊕ Ha(F•) ⊕ F ′a
Gb = dGb−1 ⊕ Hb(G•) ⊕ G′b

where
d : F ′a −−→ dFa
d : G′b −−→ dGb
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are isomorphisms. In particular,

Fa ⊗ Gb = d(Fa−1 ⊗ dGb−1 + Fa−1 ⊗Hb +Ha ⊗ Gb−1)
⊕ Ha(F•)⊗Hb(G•)
⊕ (dFa−1 +Ha(F•))⊗ G′b
⊕ F ′a ⊗ (dGb−1 +Hb(G•))
⊕ F ′a ⊗ G′b

and therefore one has the Künneth decomposition

Hi(F• ⊗ G•) =
⊕
a

Ha(F•)⊗Hi−a(G•).

9.

The map σ : F• −−→ I• is called an injective resolution of F• if I• is a complex
of O-modules bounded below, σ is a quasi-isomorphism, and the sheaves Ii are
injective for all i, i.e.:

HomO(B, Ii) −−→ HomO(A, Ii)

is surjective for any injective map A −−→ B of sheaves of O-modules. It is an
easy fact that if O is a constant commutative ring, for example O = ZZ, O = k,
then every complex of O-modules which is bounded below admits an injective
resolution (see [33], (6.1)).

10.

From now on we assume that O is a constant commutative ring. Let F• be a
complex of O-modules, bounded below. One defines the hypercohomology group
IHa(X,F•), to be the O-module

IHa(X,F•) :=
ker Γ(X, Ia)→ Γ(X, Ia+1)
im Γ(X, Ia−1)→ Γ(X, Ia)

.

One verifies that this definition does not depend on the injective resolution
choosen (see [30] III, 1.0.8).

In particular, if σ : F• −−→ G• is a quasi-isomorphism, then σ induces an
isomorphism of the hypercohomology groups:

IHa(X,F•) ∼−−→ IHa(X,G•)

(by taking an injective resolution I• of G• which is also an injective resolution
of F•).

11.

By definition, Ha(X, I) = 0 for a > 0 if I is an injective sheaf. We will verify
in (A.28) that if σ : F• −−→ G• is a quasi-isomorphism and if Ha(X,Gi) = 0
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for all a > 0 and all i, then

IHa(X,F•) =
ker Γ(X,Ga)→ Γ(X,Ga+1)
im Γ(X,Ga−1)→ Γ(X,Ga)

.

We call (G•, σ) an acyclic resolution of F• in this case.

12.

IH transforms short exact sequences

0 −−→ A• −−→ B• −−→ C• −−→ 0

of complexes of O-modules which are bounded below into long exact sequences

· · · −−→ IHi(A•) −−→ IHi(B•) −−→ IHi(C•) −−→ IHi+1(A•) −−→ . . .

of O-modules.

13.

We assume now that the complex F• of O-modules, bounded below, has sub-
complexes

. . . ⊂ Filti−1 ⊂ Filti ⊂ . . . ⊂ F•

(or . . . ⊂ Filti ⊂ Filti−1 ⊂ . . . ⊂ F•)

such that ⋃
i Filti = F•

(or
⋃
i Filt

i = F•)

and such that
Filti = 0 for i << 0

(or Filti = 0 for i� 0).

One says that F• is filtered by the subcomplexes Filti (or Filti). Via (A.12),
this filtration defines a filtration on the hypercohomology groups:

FiltiIHa(X,F•) := im(IHa(X,Filti) −−→ IHa(X,F•))

(or FiltiIHa(X,F•) := im(IHa(X,Filti) −−→ IHa(X,F•))).

This just means that the group IHa(X,F•) has subgroups

. . . ⊂ Filti−1IHa(X,F•) ⊂ FiltiIHa(X,F•) ⊂ . . . ⊂ IHa(X,F•)

(or . . . ⊂ FiltiIHa(X,F•) ⊂ Filti−1IHa(X,F•) ⊂ . . . ⊂ IHa(X,F•)).
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We pass from increasing to decreasing filtrations by setting

Filti := Filt−i.

14.

We define
Gri := Filti/F ilti−1.

One has a diagram of exact sequences

0 0y y
0 −−−→ Filti−1 −−−→ Filti −−−→ Gri −−−→ 0y y

F• identity−−−−−−→ F•y y
0 −−−→ Gri −−−→ F•/F ilti−1 −−−→ F•/F ilti −−−→ 0y y

0 0

which gives via (A.12):

Gri(Filt•IHa(F•)) := FiltiIHa(F•)/F ilti−1IHa(F•)

= IHa(Filti)

IHa(Filti−1)+IHa−1(F•/F ilti)

= ker(IHa(Gri)→IHa+1(Filti−1))
ker(IHa(Gri)→IHa(F•/F ilti−1))

.

We define

Ea−i,i∞ := Gri(Filt•IHa(F•)) and Ea−i,i2 := IHa(Gri).

Obviously Ea−i,i∞ is a subquotient of Ea−i,i2 .

15.

The formations of spectral sequences has the aim to compute Ea−i,i∞ only in
terms of Es,t2 , by filtering the terms IHa+1(Filti−1) and IHa(F•/F ilti−1) ap-
pearing in the description (A.14) by the induced filtrations:

Filtl IHa+1(Filti−1) := im(IHa+1(Filtl) −−→ IHa+1(Filti−1))
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for l ≤ i− 1 and

Filtl IHa(F•/F ilti−1) := im(IHa(Filtl/F ilti−1) −−→ IHa(F•/F ilti−1))

for l ≥ i− 1, and by computing the corresponding graded quotients.

16.

If we assume that for some a, the filtration FiltiIHa(F•) is exhausting, that is:⋃
i

FiltiIHa(F•) = IHa(F•),

then
Gr IHa(F•) =

⊕
i

Ea−i,i∞

is the corresponding graded group. In particular, assume that IHa(F•) and
Ea−i,i∞ are free O-modules (where O is ZZ or k), and that IHa(F•) is of finite
rank. Then

rankOIHa(F•) =
∑
i

rankOEa−i,i∞ .

If Ea−i,i2 is also free, then rankOIHa(F•) ≤
∑
i rankOE

a−i,i
2 and one has

equality if and only if

Ea−i,i∞ = Ea−i,i2 for all i.

17. Example: One step filtration:

0 = Filts−1 ⊂ Filts = F•.

Then IHa(F•) = IHa(Grs) = Ea−s,s∞ = Ea−s,s2 .

18. Example: Two steps filtration:

0 = Filts−2 ⊂ Filts−1 ⊂ Filts = F•

Then one has the exact sequence

0 −−→ Grs−1 −−→ F• −−→ Grs −−→ 0

and
0 −−→ Ea−(s−1),(s−1)

∞ −−→ IHa(F•) −−→ Ea−s,s∞ −−→ 0

with
E
a−(s−1),(s−1)
∞ = IHa(Grs−1)/IHa−1(Grs)

Ea−s,s∞ = ker IHa(Grs) −−→ IHa+1(Grs−1)
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19.

Define the differential d2 as the connecting morphism of the vertical exact
sequence on the right hand side (or of the above horizontal exact sequence) of
the diagram

0 0y y
0 −−−→ Gri−1 −−−→ Filti/F ilti−2 −−−→ Gri −−−→ 0

‖
y y

0 −−−→ Gri−1 −−−→ Filti+1/F ilti−2 −−−→ Filti+1/F ilti−1 −−−→ 0y y
Gri+1

identity−−−−−−→ Gri+1y y
0 0

and the O-module Ea−i,i3 by

Ea−i,i3 =
ker Ea−i,i2

d2−−→ Ea−i+2,i−1
2

im Ea−i−2,i+1
2

d2−−→ Ea−i,i2

.

For ε = 1, 2 and the ε-steps filtration one has

Ea−i,i∞ = Ea−i,iε+1 ,

as we saw in (A.17) and (A.18), and the filtration on IHa(F•) is exhausting.

20.

The right vertical exact sequence of the diagram (A.19) gives a surjection

IHa(Filti+1/F ilti−1)
γ−−→ ker(IHa(Gri+1)→ IHa+1(Gri))

and the middle horizontal sequence induces a morphism

ker(IHa(Gri+1)→ IHa+1(Gri))
d′3−−→ IHa+1(Gri−1)/im IHa(Gri)

Replacing i by i− 1, one obtains maps

IHa(Filti/F ilti−2)
γ−−→ ker(IHa(Gri)→ IHa+1(Gri−1))

d′3−−→ IHa+1(Gri−2)
im IHa(Gri−1)
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where γ is surjective. As the extension

0 −−→ Gri−2 −−→ Filti/F ilti−3 −−→ Filti/F ilti−2 −−→ 0

lifts to an extension

0 −−→ Filti−2/F ilti−4 −−→ Filti/F ilti−4 −−→ Filti/F ilti−2 −−→ 0

the image of d′3 ◦ γ lies in fact in

ker IHa+1(Gri−2)→ IHa+2(Gri−3)
im IHa(Gri−1)→ IHa+1(Gri−2)

= Ea−i+3,i−2
3 ,

as well as the image of d′3. The map d′3 factorizes through Ea−i,i3 . The resulting
map is written as

d3 : Ea−i,i3 −−→ Ea−i+3,i−2
3 .

One defines

Ea−i,i4 =
ker Ea−i,i3

d3−−→ Ea−i+3,i−2
3

im Ea−i−3,i+2
3

d3−−→ Ea−i,i3

.

By construction a class in Ea−i,i3 may be represented by a class in

IHa(Filti/F ilti−2)

and similarly a class in Ea−i,i4 may be represented by a class in

IHa(Filti/F ilti−3).

More generally, one defines inductively in the same vein differentials

Ea−i,ir
dr−−→ Ea−i+r,i−r+1

r ,

and O-modules:

Ea−i,ir+1 :=
ker Ea−i,ir

dr−−→ Ea−i+r,i−r+1
r

im Ea−i−r,i+r−1
r

dr−−→ Ea−i,ir

which are subquotients of Er. A class in Ea−i,ir+1 is represented by a lifting to
IHa(Filti/F ilti−r).

When Filtσ−1 = 0, and Filtσ 6= 0, one defines the induced filtration on Filtσ+ρ

by

Filtl Filtσ+ρ =
{
Filtl if l ≤ σ + ρ
F iltσ+ρ if l ≥ σ + ρ .

Then one has:
Ea−i,i∞ (IHa(Filtσ+%)) = Ea−i,i%+2



156 H. Esnault, E. Viehweg: Lectures on Vanishing Theorems

and the filtration on IHa(Filtσ+%) is exhausting.

21.

This shows that in general, for going from IHa(Filtσ+%) to IHa(F•) one has to
introduce infinitely many r and groups Ea−i,ir , a reason for the notation Ea−i,i∞ .

One says that the spectral sequence with E2 term Ea−i,i2 and d2 differential
d2 (simply noted (Ea−i,i2 , d2)) degenerates in Er if:

The filtration on IHa(F•) is exhausting and Ea−i,i∞ = Ea−i,ir for all i, or equiv-
alently dr+l = 0 for all l ≥ 0.

With this terminology, we have seen in (A.20) that a (% + 1)-steps filtration
defines an E2 spectral sequence which degenerates in E%+2.

22.

Under the assumptions of (A.16), assume moreover that Ea−i,ir is also a free
O-module (for example if O is a field). Then one has:

rankO IHa(F•) ≤
∑
i

rankO Ea−i,ir

for all r, and the spectral sequence degenerates in Er if and only if this is an
equality.

23.

By (A.19), to say that the spectral sequence degenerates in E2 means that for
all i, one has an exact sequence

0 −−→ IHa(Filti−1) −−→ IHa(Filti) −−→ IHa(Gri) −−→ 0,

and of course that the filtration is exhausting.

24.

One says that the spectral sequence (E2, d2) converges to IHa(F•) if it degen-
erates in Er for some r. We sometimes write

(Ea−i,i2 , d2) =⇒ IHa(F•)

instead of “(E2, d2) converges to IHa(F•)”.

25. The Hodge to de Rham spectral sequence.

On F•, a complex of O-modules, bounded below, we define the Hodge filtration
(often called the stupid filtration) by:

FiltiF• = F≥i = Filt−iF•
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where

(F≥i)l =
{

0 if l < i
F l if l ≥ i.

Then Gr−i = Filt−i/F ilt−i−1 = F i[−i] where [α] means:

(F•[α])l = F l+a.

This is the so called shift by α to the right. The E2 spectral sequence reads:

Ea−i,i2 = IHa(Gri) = IHa(F−i[i]) = Ha+i(F−i)

where the differential d2 goes to

IHa+1(Gri−1) = IHa+1(F−(i−1)[i− 1]) = Ha+i(F−i+1)

and is just induced by the differential in the complex.

This spectral sequence is usually rewritten as an E1 spectral sequence by set-
ting

E−i,a+i
1 = Ea−i,i2 or Eα,β1 = Eβ+2α,−α

2

with differentials:
Eβ+2α,−α

2
d2−−−−→ Eβ+2α+2,−α−1

2

‖ ‖

Eα,β1
d1−−−−→ Eα+1,β

1

The E1 spectral sequence obtained is called the Hodge to de Rham spectral
sequence, at least when F• is some de Rham complex on X, possibly with
some poles, possibly with non-trivial coefficients . . .

For a given a, one has
IHa(F•) = IHa(F≤a+1)

where

(F≤i)l =
{
F l if l ≤ i
0 if l > i.

In particular this is a finite complex, on which the Hodge filtration induces a
finite step filtration. Therefore the E1 Hodge to de Rham spectral sequence
always converges.

To say that it degenerates in E1 means that for any i one has exact sequences

0 −−→ IHa(F≥i+1) −−→ IHa(F≥i) −−→ Ha−i(F i) −−→ 0.

Putting those sequences together, one obtains exact sequences

0 −−→ IHa(F≥i+j) −−→ IHa(F≥i) −−→ IHa(F [i,i+j)) −−→ 0
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where

(F [i,i+j))l =
{
F l if l ∈ [i, i+ j)
0 if not.

If moreover, one knows that IHa(F•) is a free O-module of finite rank, as well
as Ha−i(F i), then the E1 Hodge to de Rham spectral sequence degenerates in
E1 if and only if

rankO IHa(F•) =
∑
i

rankO Ha−i(F i).

26. The conjugate spectral sequence.

On F•, a complex of O-modules bounded below, we defined the τ -filtration:

(τ≤iF•)l =

 F
l for l < i

ker d for l = i
0 otherwise.

Then Gri = Hi[−i] is the cohomology sheaf in degree i. The E2 spectral
sequence reads

Ea−i,i2 = IHa(Gri) = Ha−i(Hi)

where the d2 differential goes to

IHa+1(Gri−1) = Ha−i+2(Hi−1).

It is called the conjugate spectral sequence. For a given a, one has

IHa(F•) = IHa(τ≤a+1F•).

However τ≤a+1F• is a finite complex on which the τ -filtration induces a finite
step filtration. Therefore the E2-conjugate spectral sequence always converges.
Furthermore, if σ : F• −−→ G• is a quasi-isomorphism then σ induces quasi-
isomorphisms

τ≤iF• −−→ τ≤iG•

for all i, and therefore σ induces an isomorphism of the conjugate spectral
sequences.

To say that the conjugate spectral sequence degenerates in E2 means
that one has exact sequences

0 −−→ IHa(τ≤i−1) −−→ IHa(τ≤i) −−→ Ha−i(Hi) −−→ 0

for all i. If IHa(F•) is a free O-module of finite rank, as well as IHa−i(Hi), then
the degeneration in E2 is equivalent to

rankOIHa(F•) =
∑
i

rankO Ha−i(Hi).
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27. The Leray spectral sequence.

Let f : X −−→ Y be a morphism between two k-varieties, and let F• be a
complex of O-modules on X, bounded below.

Let F• −−→ I• be an injective resolution. We consider the direct image
functor (already used and defined but not named in 6):

(f∗K)x = lim
−−→
x∈U

H0(f−1(U),K)

for any O-sheaf K on X and any open set U in Y . In particular, by definition
H0(X,K) = H0(Y, f∗K). Therefore one has

IHa(X,F•) =
ker H0(Y, f∗Ia) −−→ H0(Y, f∗Ia+1)
im H0(Y, f∗Ia−1) −−→ H0(Y, f∗Ia)

.

One verifies immediately that, by definition, f∗Ii is an injective sheaf as well,
which allows to write (A.10):

IHa(X,F•) = IHa(Y, (f∗I•)),

where f∗I• is the complex
(f∗I•)l = f∗Il.

One considers the conjugate spectral sequence for (f∗I•):

Ea−i,i2 = Ha−i(Y,Hi(f∗I•)).

One defines
Rif∗F• := Hi(f∗I•).

By definition

(Rif∗F•)x : = lim
−−→
x∈U

ker H0(f−1(U),Ii)→H0(f−1(U),Ii+1)
im H0(f−1(U),Ii−1)→H0(f−1(U),Ii)

= lim
−−→
x∈U

IHi(f−1(U),F•)

In particular, Rif∗F• does not depend on the injective resolution chosen.

The E2 spectral sequence reads

Ea−i,i2 = Ha−i(Y,Rif∗F•),

with d2 differential to Ha−i+2(Y,Ri−1f∗F•), and is called the Leray spectral
sequence for f .
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As the conjugate spectral sequence for (f∗I•) converges to IHa(f∗I•)
(A.26), the Leray spectral sequence for f always converges to IHa(F•).
In particular, if F is just a sheaf for which Rif∗F = 0 for i > 0, one has:

Ha(X,F) = Ha(Y, f∗F) for all a.

28.

Let G• be a complex of O-modules, bounded below, such that Hi(Gj) = 0 for
i > 0 and all j. Then the E1 Hodge to de Rham spectral sequence Eij1 = Hj(Gi)
degenerates in E2 and one has

Ei,0∞ = Ei,02 = ker H0(Gi)→H0(Gi+1)
im H0(Gi−1)→H0(Gi)

= IHi(G•)

= IHi(F•) for any quasi-isomorphism F• −−→ G•.

29.

Take for F• a complex of quasi-coherent sheaves (for example some de Rham
complex). We consider a collection of very ample Cartier divisors Dα with
empty intersection, such that the open covering of X defined by Uα := X−Dα

consists of affine varieties. Then one has:

Ha(X, %∗Fj |Uα0...αi
) = Ha(Uα0...αi ,Fj |Uα0...αi

)

for all a where % : Uα0...αi −−→ X is the natural embedding of the affine set
Uα0...αi . In fact, one has

(Ri%∗Fj)x = lim
−−→
x∈V

Hi(V ∩ Uα0···αi ,Fj)

= 0 for i > 0

and one applies (A.27). By (A.28) one obtains:

IHa(X,F•) =
ker ⊕Ci(U ,Fa−i)→ ⊕ Ci

′
(U ,Fa+1−i′)

im ⊕ Ci′(U ,Fa−1−i′)→ ⊕ Ci(U ,Fa−i)

where
Ci(U ,Fj) = H0(X, Ci(U ,Fj))

=
⊕

α0<...<αi
H0(Uα0...αi ,Fj).
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