
Solving the ILP using branch-and-cut

Solving ILPs is a main topic in combinatorial optimization. We will take a brief look
at the branch-and-cut approach.

Branch-and-cut makes use of two techniques:

• Cutting planes: to solve an ILP, one considers relaxations of the problem (usu-
ally the LP-relaxation) and repeatedly “cuts” away parts of the polytope (by
adding new constraints) in the hope of obtaining an integer solution. To find
cutting planes one has to solve the separation problem, that means find a vio-
lated, valid inequality of the ILP.

• Branch-and-bound: an enumeration tree of all possible variable settings is
partially traversed, computing local upper bounds and global lower bounds,
which are used to avoid parts of the tree that cannot produce the optimal value.

3000



Solving the ILP using branch-and-cut (2)

c(a) (b) c

c(c) c(d)

x̄ x̄

x̄

f

f

x̄

Adding cutting planes. The last cutting plane is facet-defining and leads to the
optimal integer solution.

3001



Solving the ILP using branch-and-cut (3)

The convex hull of all feasible incidence vectors (the green points in the previous fig-
ure) forms the problem polytope P (the inner, white polytope in the previous figure).
If one considers the inequalities of the ILP, they generally describe a larger polytope
(the yellow polytope), although this polytope does not contain an infeasible integer
point (the red points).

If the solution x̄ of the LP-relaxation is integral, it corresponds to a feasible inci-
dence vector that represents an optimal solution. Otherwise we search for a valid
inequality fx ≤ f0 that “cuts off” the solution x̄ , i. e.,

fy ≤ f0 for all y ∈ P and

f x̄ > f0 .

The set {x | fx = f0} is called a cutting plane.

3002



Solving the ILP using branch-and-cut (4)

The search for a cutting plane is called the separation problem. Any cutting plane
found is added to the linear program and the linear program is solved again.

There is a special class of cutting planes we are interested in, namely the facets of
the problem polytope. As we know, facets of a d-dimensional polytope are faces of
dimension d − 1. They are in a sense the “best” cutting planes since they directly
bound the problem polyhedron. Hence, it is important to identify the classes of
facet-defining inequalities.

3003



Solving the ILP using branch-and-cut (5)

We generally compute cutting planes for two reasons:

1. A class of contraints in our ILP formulation is too large (i.e., exponentially large)
to write down (we relax the LP-relaxation further).

2. The inequalities in the original ILP formulation are not sufficient to yield an inte-
ger solution. Hence we search for valid inequalities that cut off those fractional
solutions.

For example consider the number of mixed cycles in the MWT problem. It grows
exponentially with the size of the graph. Instead of writing them all down, we relax
the problem first by omitting them, and then compute cutting planes by checking
whether they are violated. [Indeed we do something slightly different, since the mixed cycle

inequalities do not always describe facets of the MWT-polytope.]

3004



ILP using branch-and-cut (6)

How often do we have to repeat that? Are we guaranteed to find a solution? The
following theorem by Grötschel, Lovász, and Schrijver gives a partial answer:

Theorem. For any proper class of polyhedra, the optimization problem is polynomi-
ally solvable if and only if the separation problem is polynomially solvable.

This basically says, that for NP-complete problems there is little hope to guarantee
a quick termination of the cutting plane algorithm.

3005



ILP using branch-and-cut (7)

Either we just do not know enough classes of facet-defining inequalities, or we can-
not solve the separation problem for one of these classes in polynomial time.

Hence we repeat the cutting step either until an integer solution is found that fulfills
all constraints (which would be optimal for the original problem), or until we get
stuck, that means we cannot find a violated inequality for any of our classes of valid
inequalities.

3006



ILP using branch-and-cut (8)

In this case we branch . That is, we choose a variable xi and solve two sub-cases,
namely the case xi = 0 and the case xi = 1. Repeated application produces a
enumeration tree of possible cases.

We call an upper bound for the original ILP local , if it is obtained from considering a
subproblem in the enumeration tree.

If the solution found for a subproblem is feasible for the original problem and has a
higher score than any solution found so far, then it is recorded and its value becomes
the new global lower bound for the original objective function. Remember that the
feasibility of a new solution has to be carefully checked, since we fixed a number of
variables on our way to the subproblem.

3007



ILP using branch-and-cut (9)

Subsequently, we only pursue subproblems whose local upper bound is greater or
equal to the global lower bound.

This is an example of the branch-and-bound paradigm for solving hard combinato-
rial problems.

Branch-and-bound is a divide-and-conquer approach to solving a problem by di-
viding it into smaller problems. The local solution of a subproblem gives rise to a
lower bound for the best possible score for the original problem, if the solution of the
subproblem also solves the original problem.

The highest such local score attained so far gives rise to a global lower bound for
the original problem and is used to skip parts of the enumeration tree in which the
current global lower bound can’t be beaten.

3008



ILP using branch-and-cut (10)

General strategy:

smaller
problem

smaller
problem

smaller
problem

smaller
problem

smaller
problem

Repeatedly
cut & solve

Repeatedly
cut & solve

Repeatedly
cut & solve

Repeatedly
cut & solve

Repeatedly
cut & solve

Repeatedly
cut & solve

xi=0 xi=1
branch

smaller
problem

branchbranch

bound

feasible solution
from smaller
problem gives
local upper
bound

xj=1xj=0xk=1xk=0

problem
Original maintain global lower bound

relax

The details are a bit more involved and are skipped here. We now take the initial
MWT problem as an example to point out the important steps in branch-and-cut
algorithms.

3009


