
A panorama of rough analysis�

by Nicolas Perkowski

Freie Universität Berlin

July 16, 2024

Abstract

These are lecture notes for a mini course on rough analysis taught at the 9th Regional
Summer School on Applied Mathematics in Sinaia in 2024. The material is too much
to cover during the school, and the concrete focus will depend on the students' inter-
ests. The notes are work in progress and not in polished, final form.
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Introduction

Let us discuss a few model problems that will guide us through the lecture:

Example 1. (SDEs driven by fractional Brownian motion) Fractional Brownian
motion is a class of self-similar Gaussian processes introduced by Mandelbrot and van
Ness [MvN68] to model natural time series. Apart from the self-similarity, an important
feature are the long-range correlations.

A continuous and centered Gaussian process (Bt)t>0 with B0=0 is called a fractional
Brownian motion with Hurst parameter H 2 (0; 1) if it has the covariance

E[BsBt] =¡(s; t) :=
1
2
(s2H+ t2H ¡ jt¡ sj2H):

It is not entirely trivial to see that ¡ is indeed a covariance function (i.e. positive definite),
but one can show that

¡(s; t)=

Z
R
�(s; r)�(t; r)dr;

for

�(s; r)=
1


(H +1/2)

¡
(s¡ r)+

H¡1/2¡ (¡r)+
H¡1/2�

;

and from that representation we easily obtain that ¡ is indeed positive definite. Fractional
Brownian motion is neither a semimartingale nor a Markov process unless H=

1

2
, for which

the covariance becomes ¡(s; t)= s^ t and thus B is a Brownian motion.

Here is a simulation of the fractional Brownian motion, provided by ChatGPT:
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>>> import numpy as np
import matplotlib.pyplot as plt

def generate_fbm(n, H):
#Generate fractional Brownian motion using the Cholesky method
t = np.linspace(0, 1, n+1)
R = np.zeros((n+1, n+1))
for i in range(n+1):

for j in range(n+1):
R[i, j] = 0.5 * (t[i]**(2*H) + t[j]**(2*H) - abs(t[i] -

t[j])**(2*H))
try:

L = np.linalg.cholesky(R)
except np.linalg.LinAlgError:

# Add a small value to the diagonal for numerical stability
R += np.eye(n+1) * 1e-10
L = np.linalg.cholesky(R)

W = np.random.normal(size=n+1)
fBm = np.dot(L, W)
return t, fBm

# Set parameters
n = 1000 # Number of time steps
hurst_indices = [0.2, 0.5, 0.8]

plt.figure(figsize=(12, 8))
# Generate and plot fractional Brownian motion for each Hurst index
for H in hurst_indices:

t, fBm_values = generate_fbm(n, H)
plt.plot(t, fBm_values, label=f'H={H}')

plt.title('Fractional Brownian Motion for Different Hurst Indices')
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
#The next command is only needed to run the code in Texmacs.
#Otherwise replace it by plt.show()
pdf_out(plt.gcf())
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>>>

We see that the roughness of the trajectory increases as H decreases. We would like to
solve (multidimensional!) stochastic differential equations with fractional Brownian noise,

dYt= b(Yt)dt+�(Yt)dBt; Y0=x:

The paths of B are almost surely not of finite variation, and therefore the meaning of
the integral

R
0

t
�(Ys)dBs is unclear. If B is a Brownian motion

�
H =

1

2

�
, then of course

we can interpret the integral by Itô calculus or as a Stratonovich integral. But for H =/
1

2
,

B is no semimartingale and therefore we cannot use Itô calculus. We thus require an
integration theory that allows to make sense of

R
0

t
�(Ys)dBs for rough processes B that are

not semimartingales (or Dirichlet processes, if you know what that is).

Example 2. (Homogenization) Consider a sufficiently chaotic dynamical system (deter-
ministic) of the form

X_ = f(X); X(0)� �;

where � is an invariant measure (i.e. X(t)� � for all t> 0), and let

Y_ "(t)= b(Y "(t);X(t/")); Y "(0)=x0;

i.e. the slow dynamics of Y " depend on the fast, chaotic dynamics X(t/"). We could for
example think of Y " as ocean temperatures and X(t/") as air temperatures, in different
places across earth. On the scale in which ocean temperatures change, the air temperature
fluctuates very rapidly. Under suitable assumptions we have lim"!0Y

"=Y 0, where

Y_ 0(t)= b�(Y 0(t)); Y 0(0)=x0;

with

b�(y)=

Z
b(y; x)�(dx):

If b�� 0, we can consider longer time scales by going to Z"=Y "(t/ "
p

). Assume from now
on for simplicity1 that b(y; x) = b(y)x (abuse of notation) is linear in x. Then we could
consider the case of constant b(x)� b first, for which

Z"(t)=x0+ b
1

"
p
Z
0

t

X(s/")ds:

If X is sufficiently mixing, we can show that the integral on the right hand side converges
to a Brownian motion B [Liv96]. What if b is not constant? In that case we might expect
that Z"!Z0 solving

Z0(t)=x0+

Z
0

t

b(Zs
0)dBs:

In certain situations this is nearly correct, although there will typically be a correction
in the drift [KM17]. But how can we prove this? Since Z" is purely deterministic up the
randomness in the initial condition for X, we cannot make use of Itô calculus for this
problem. Therefore, we would like a theory which �lifts� the convergence 1

"
p
R
0

�
X(s/")ds!

B to the convergence Z"!Z0.
Simulation of

R
0

t
X1(s)ds for t� 1, where X =(X1;X2;X3) is the Lorenz 63 system, a

well known chaotic dynamical system. Simulation provided by ChatGPT.

1. The techniques we develop allow to deal with general b(x; y) by considering �infinite-dimensional rough paths�.
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>>> import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

# Parameters for the Lorenz system
sigma = 10
rho = 28
beta = 8/3

# Lorenz system equations
def lorenz(t, state):

x, y, z = state
dxdt = sigma * (y - x)
dydt = x * (rho - z) - y
dzdt = x * y - beta * z
return [dxdt, dydt, dzdt]

# Time settings
t_start = 0
t_end = 5000
dt = 0.01
t = np.arange(t_start, t_end, dt)
transient_cutoff = int(20 / dt) # First 20 time steps to omit

# Initial conditions
initial_state = [0.1, 0.1, 0.1]

# Solve the system
solution = solve_ivp(lorenz, [t_start, t_end], initial_state, t_eval=t,
method='RK45')

# Extract the x-component
x = solution.y[0]

# Integrate x(t) over time
integrated_x = np.cumsum(x) * dt

# Omit the first 20 time steps
t = t[transient_cutoff:]
integrated_x = integrated_x[transient_cutoff:]

# Plot integrated x(t)
plt.figure(figsize=(8, 6))
plt.plot(t, integrated_x, label='Integrated x(t)')
plt.title('Integrated x(t) over Time')
plt.xlabel('Time')
plt.ylabel('Integrated x(t)')
plt.legend()
plt.tight_layout()
pdf_out(plt.gcf())
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Observe the similarity to the plot of Brownain motion
�
H =

1

2

�
in the first example,

up to the scale on x- and y-axis, which we did not rescale here.

Example 3. (Machine learning with time series data) The goal in machine learning
is to learn a function F from given data points

(Xi; F (Xi))i=1;:::;n;

or possibly only given noisy observations, say F (Xi)+ �i. If the data points Xi consist of
time series, we could enhance them to paths in a suitable way and then make the ansatz

F (X)=��(y;X);

where ��(y; S(X)) is the solution Y at time 1 of the controlled differential equation

Yt= y+

Z
0

t

f�(Ys)dXs;

where f� is a nonlinear function that is parametrized by a neural network and that can
be learned. We optimize f� by (stochastic) gradient descent methods, with the goal of
minimizing some loss

P
i=1
n `(��(y; S(Xi)); Yi).

Example 4. (Interface growth) In the pictures below you see different growing inter-
faces. In a 1986 landmark paper in physics by Kardar, Parisi and Zhang [KPZ86] it was
conjectured that the fluctuations in such interface grofwth can, in a certain regime, be
modelled by an SPDE which now is called the KPZ equation: h:R+�Rd!R,

@th=�h+ jrhj2+ �;

where � is a space-time white noise, i.e. a centered generalized Gaussian process with
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E[�(f)�(g)] = hf ; giL2(R+�Rd). This is a singular SPDE, because the noise makes the
solution irregular and only in d=1 it is even a function, in higher dimensions it could only
be a generalized function (Schwartz distribution)2. And even in d=1, which corresponds
to the pictures below (two-dimensional phases, one-dimensional interface), h is non-smooth
and x 7! h(t; x) is only as regular as a Brownian motion and therefore jrhj2 makes no
sense. Itô theory does not help with this problem, because the singularity appears in the
space variable and there is no useful flow of information (filtration).

In that case there is a simple trick to make sense of h: If we define w= eh (�Cole-Hopf
transformation�), then w formally solves the stochastic heat equation

@tw=�w+w�;

which is linear and well-posed as an Itô SPDE. Therefore, we can simply define h := logw
(luckily w is strictly positive for positive initial conditions) and this gives us the right
object to work with. But in this way we do not get an equation for h. We will find a
way of dealing directly with the nonlinearity jrhj2 and to solve an equation for h. This
has the advantage that it directly generalizes to other situations where the Cole-Hopf
transformation is not available, and also for certain problems (for example scaling limits,
nonlinear coercive bounds) it is more useful to work with h than with eh.

Stochas3sche	Analysis	
Prof.	Dr.	Nicolas	Perkowski	

Modellproblem:	Beschreibung	von	Wachstumsprozessen	

	

Figure 1. Growing interfaces. Image credit: Löwe et al., Geophys. Res. Letters, Vol. 34, L21507,
2007 (upper left), Nils Berglund (lower left), iStockphoto.com/rudigobbo (right)

Example 5. (Branching population in random environment) SPDEs also arise as
scaling limits of population models: Consider independent continuous time random walkers
on Zd, which can branch into new particles or die, according to a random landscape. More
precisely, let (�(x))x2Zd be an i.i.d. family of centered random variables with sufficiently
many moments. If a particle is at site x and �(x) is positive, then we interpret this as a

2. It is expected/in some sense shown that in d>3 there is no nontrivial solution to the SPDE, and �h is Gaussian
and a solution of @th= ��h+ �� for some effective parameters �; � > 0�. The physically most relevant case d=2

(three-dimensional phases) is more subtle and finer details of the equation should determine whether solutions are
Gaussian or not.
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favorable environment and the particle can reproduce with rate �(x)+=max f�(x); 0g. If
the reproduction event happens, then the particle splits into two new independent particles,
which both follow the same dynamics as the other particles. If however �(x)< 0, then the
environment is unfavorable and the particle is being killed with rate �(x)¡. On large scales
and for large numbers of particles this system approaches the parabolic Anderson model

@tu=
1
2
�u+u�;

on R+�Rd, where � is a space white noise and independent of time. The issue with this
equation is that � is a Schwartz distribution of low regularity, and u also does not have
much regularity and in particular the product u� is ill-posed in dimension d> 2.

Maybe also discuss Anderson Hamiltonian.

Example 6. (Regularization by noise) Consider the SDE

dYt= b(Yt)dt+ "dBt; Y0=x;

where again B is a fractional Brownian motion. Since the noise is additive (�(x)= " � Id in
the notation of the first example), there are no issues with interpreting this equation if b
is a measurable function. For "=0 we know from Cauchy-Lipschitz theory of ODEs that
essentially we need Lipschitz continuous b to solve this equation3. But if H =

1

2
, i.e. B is

Brownian motion, then this SDE is (strongly) well-posed even if b is only bounded and
measurable [Zvo74, Ver81]. This is because B regularizes b, for example x 7!

R
0

t
b(x+Bs)ds

has higher regularity than b because of the oscillatory nature of B which means that

3. For divergence free b, div b=0, the theory of renormalized solutions [DL89] provides a weaker form of well-
posedness if for example b2W 1;1.
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the path spends little time at singularities of b. Here is an illustration for d = 1 and
b(x)= sgn(x), provided by ChatGPT:

>>> # Correcting the LaTeX syntax for matplotlib
import numpy as np
import matplotlib.pyplot as plt

# Define the integrand
def f(x, B_t):

return np.mean(np.sign(x + B_t))

# Generate a fixed sample of Brownian motion on [0, 1]
t = np.linspace(0, 1, 1000)
B_t = np.cumsum(np.sqrt(1/1000) * np.random.randn(1000))

# Compute the values for the function x -> integral(sign(x + B_s) ds)
x_values = np.linspace(-1, 1, 500)
f_values = [f(x, B_t) for x in x_values]

# Compute the values for the function x -> sign(x)
sign_values = np.sign(x_values)

# Plot the results
plt.figure(figsize=(10, 7))
plt.plot(x_values, f_values,
label=r'$\int_0^1 \mathrm{sign}(x+B_s) ds$')
plt.plot(x_values, sign_values, label=r'$\mathrm{sign}(x)$',
linestyle='--')
plt.title(r'Comparison of $x \mapsto \int_0^1 \mathrm{sign}(x+B_s) ds$ and $x \mapsto \mathrm{sign}(x)$'
plt.xlabel('x')
plt.ylabel('Function value')
plt.legend()
pdf_out(plt.gcf())
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See also this picture by Flandoli:
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Figure 2. Regularizing effect of Brownian motion. By Flandoli [Fla11].

Since fractional Brownian motion for H<
1

2
is even more oscillatory, we would hope to

see even better regularization properties, and maybe even allow generalized functions b,
such as a Dirac delta or a white noise. But the proofs in [Zvo74, Ver81] are based on the
relation between Brownian motion and heat equation, and they completely break down in
the fractional case H =/

1

2
.

In this course we will learn a set of tools with a common �philosophy� that will allow
us to solve all of the above and many other problems.

In Examples 1, 2, 4, 5 the common problem is a lack of regularity. This is somewhat
similar to the problem that we have when constructing the Itô integral: Since the Brownian
motion is not of finite variation, it is not immediately clear how to make sense of

R
0

t
HsdBs.

But then we can use the flow of information generated by the underlying filtration together
with the martingale structure of B to make sense of the integral for adapted H. But in our
examples martingale arguments seem quite hopeless. Instead, we will introduce regularity
based pathwise arguments to make sense of the first two examples. For that purpose we
have to go what we could do with classical analysis tools and find new arguments and
techniques to deal with very irregular equations (because we want to study very irregular
noise), which requires us to shift perspective on what is an oscillatory path. To learn the
philosophy of the pathwise approach, we first focus on stochastic ordinary equations and
Lyons's rough path theory [Lyo98]. Then we will discuss ramifications and applications
of our new perspective that go well beyond making sense of and studying convergence
results for differential equations with irregular noise, and more precisely we will cover
Example 3. Then we will briefly discuss extensions from paths functions of multidimen-
sional variables, giving a glimpose into Hairer's theory of regularity structures [Hai14].
We focus on regularity structures due to their similarity with the rough path approach;
the alternative paracontrolled approach [GIP15] may be easier to learn at first, but would
require us to introduce too many tools from Fourier analysis. Finally, we will see that the
main workhorse of rough path theory, the sewing lemma, has a stochastic extension due
to Lê [Lê20] which allows us, among many other applications, to see the regularizing effect
of fractional Brownian motion.

The material in these notes is too much to cover during the school and, depending on
the audience's wishes, we can focus on certain aspects and discuss other parts more briefly.
Conventions and notation Throughout these notes, (
; F ; (Ft)t>0; P) is a filtered
probability space satisfying the usual conditions.

We write a. b if there exists a constant C > 0, independent of a and b, such that
a 6 Cb. Similarly for & and '. For example, it follows from Hölder's inequality that
(x+ y)p6 2p¡1(xp+ yp) for p> 1 and x; y> 0, so we would write (x+ y)p.xp+ yp. If we

10 Introduction



want to stress that the implicit constant depends on one of the (unimportant) variables,
we denote it with a subscript. For example (x+ y)p.pxp+ yp.
bxc=max fk 2Z: k6xg.
Multi-index notation: � 2N0

d, then @� = @1
�1���@d

�d and x� = x1
�1 � ::: � xd

�d and j�j =
�1+ ���+ �d and �! = �1! � ::: � �d!.

1 The sewing lemma and Young integration

We start with the simpler example of the stochastic differential equation

dYt= b(Yt)dt+�(Yt)dBt; Y0=x; (1.1)

where B is a fractional Brownian motion of Hurst index H >
1

2
. Let us first derive the

Hölder regularity of the fractional Brownian motion:

Lemma 1.1. If B is a fractional Brownian motion of Hurst index H, then almost surely
(Bt)t2[0;T ]2C�([0; T ]) for all �2 (0;H) and all T > 0, where

C�([0; T ]) =C�([0; T ];R)=

(
f 2C([0; T ]): kf k�= sup

06s<t6T

jf(t)¡ f(s)j
jt¡ sj� <1

)

is the space of �-Hölder continuous functions.

Proof. We have

E[jBt¡Bsj2] = ¡(t; t)+¡(s; s)¡ 2¡(s; t)
= t2H+ s2H ¡ (s2H+ t2H ¡ jt¡ sj2H)
= jt¡ sj2H:

Since Bt¡Bs is Gaussian, we get for Z�N (0; 1) and p> 0

E[jBt¡Bsjp]1/p = E[jjt¡ sjHZ jp]1/p

= jt¡ sjHE[jZ jp]1/p

' jt¡ sjH:

For p > 1/H we thus obtain from Kolmogorov's continuity criterion [KS91, RY99] that
B has an �-Hölder continuous modification for any � 2 (0; H ¡ 1/ p). Since B itself is
continuous, it is indistinguishable from this modification, and thus B is a.s. �-Hölder
continuous for any �2 (0;H ¡ 1/p). Since p> 0 is arbitrary, the claim follows. �

The Young integral [You36] provides a way of defining integralsZ
0

t

XsdZs

for X;Z of infinite variation, as long as X and Z have �compatible regularities�. For H>
1

2

we will use the Young integral to solve SDEs driven by fractional Brownian motion [Lyo94].
We will also see that for H61/2 the Young approach no longer works and in that case

we will use rough path integration to solve the SDE (at least if H>1/4). Both rough path
integration and Young integration rely on the following fundamental and beautiful result:

The sewing lemma and Young integration 11



Theorem 1.2. (Sewing lemma) Let (X ; k�k) be a Banach space, let T > 0 and consider
the simplex

�T = f(s; t)2 [0; T ]2: s6 tg;

and let �:�T!X be continuous1.1 and such that �t;t=0 for all t2 [0; T ]. We assume that
there exist constants C; "> 0 such that for all 06 s<u< t6T:

k��s;u;tk := k�s;t¡�s;u¡�u;tk6C jt¡ sj1+":

Then, there exists a unique function I�: [0; T ]!X with I�0=0 and such that

kI�s;t¡�s;tk.C jt¡ sj1+"; 06 s< t6T ; (1.2)

where the notation I�s;t is introduced below. Moreover, I� is continuous and

I�t= lim
n!1

X
k=0

Kn¡1
�tkn^t;tk+1n ^t; t2 [0; T ]; (1.3)

where the convergence is uniform in t and f0= t0n<t1n< ���<tKn
n =T g is any sequence of

partitions with mesh size going to 0, i.e. maxk jtk+1n ¡ tknj! 0.

Notation. For X: [0; T ]!X we write

Xs;t :=Xt¡Xs:

Proof.

1. Construction of I�: We define with tk
n= k2¡nT

Itn=
X
k=0

2n¡1
�tkn^t;tk+1n ^t:

Since tk
n= t2k

n+1<t2k+1
n+1 <t2k+2

n+1 = tk+1
n , we have

kItn¡Itn+1k

=











X
k=0

2n¡1 ¡
�tkn^t;tk+1n ^t¡�t2kn+1^t;t2k+1n+1 ^t¡�t2k+1n+1 ^t;t2k+2

n+1 ^t
�











6
X
k=0

2n¡1 



�t2kn+1^t;t2k+2n+1 ^t¡�t2kn+1^t;t2k+1n+1 ^t¡�t2k+1n+1 ^t;t2k+2
n+1 ^t






=
X
k=0

2n¡1 





��t2kn+1^t;t2k+1n+1 ^t;t2k+2
n+1 ^t








6
X
k=0

2n¡1

C(T2¡n)1+"=CT 1+"2¡n";

and the right hand side does not depend on t and it is summable in n. Therefore,
(In)n is a Cauchy sequence in C([0; T ];X ) (continuity of In follows from continuity
of � and since �s;s= 0), and thus it converges to a limit I�2C([0; T ];X ). This
essentially concludes the main part of the proof. Everything which follows now is
only needed for proving that I� satisfies (1.2) and that this characterizes I�.

2. We can slightly improve the estimate above by noting that for k with tk
n> t we have

�tkn^t;tk+1n ^t¡�tkn^t;t2k+1n+1 ^t¡�t2k+1n+1 ^t;tk+1n ^t=0;

1.1. We equip �T with the subspace topology of [0; T ]2.
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and therefore we only have to sum d2nt/T e terms and this gives the bound

kItn¡Itn+1k6
�
2nt
T

�
C(T2¡n)1+".CtT "2¡n"

whenever 2nt

T
>1/2. Similarly we get for s<t with 2njt¡ sj

T
>1/2 (,2njt¡sj>T /2)

kIs;tn ¡Is;tn+1k.C jt¡ sjT "2¡n": (1.4)

3. I� satisfies (1.2): Let 06s<t6T and let n2N be maximal such that 2¡nT > jt¡sj
(so in particular 2¡nT < 2jt¡ sj, 2njt¡ sj>T /2). Then

kI�s;t¡�s;tk6kI�s;t¡Is;tn k+ kIs;tn ¡�s;tk:

We treat the two terms on the right hand side separately. For the first one we apply
the bound (1.4) and obtain

kI�s;t¡Is;tn k6
X
k=n

1

kIs;tk+1¡Is;tk k.
X
k=n

1

C jt¡ sjT "2¡n".C jt¡ sj1+";

where we applied the simple lemma which follows after this proof. To bound the
remaining term we note that if k is such that s2 (tkn; tk+1n ], then t2 (tkn; tk+2n ) and
thus

kIs;tn ¡�s;tk=k�tkn;tk+1n ^t+�tk+1n ^t;t¡�tkn;s¡�s;tk
6k�tkn;t¡�tkn;tk+1n ^t¡�tk+1n ^t;tk+ k�tkn;t¡�tkn;s¡�s;tk
=k��tkn;tk+1n ^t;tk+ k��tkn;s;tk
.C jt¡ s+2¡nT j1+".C jt¡ sj1+":

Therefore, I� satisfies (1.2).

4. Finally we show that (1.2) uniquely characterizes I� as the limit in (1.3). Indeed,
we have 









I�t¡ X

k=0

Kn¡1
�tkn^t;tk+1n ^t











6X
k=0

Kn¡1 



I�tkn^t;tk+1n ^t¡�tkn^t;tk+1n ^t






.C
X
k=0

Kn¡1
jtk+1n ^ t¡ tkn^ tj1+"

6Cmax
k
jtk+1n ¡ tknj"

X
k=0

Kn¡1

jtk+1n ¡ tknj

=Cmax
k
jtk+1n ¡ tknj"T ;

and by assumption the right hand side converges to zero as n!1. This concludes
the proof. �

Lemma 1.3. (Geometric series) Let �> 0. Then for all n2NX
k=0

n

2k�=
2(n+1)�¡ 1
2�¡ 1 ' 2n�;

X
k=n

1
2¡k�=2¡n�

X
k=0

1
2¡k�=

2¡n�

1¡ 2¡� ' 2
¡n�:

Exercise 1.1. Show that ��s;u;t� 0 for all s<u< t if and only if there exists a function
f : [0; T ]!X such that �s;t= ft¡ fs.
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Remark 1.4. (Additive function) If � is given by the increments of a function, i.e.
�s;t= xt¡ xs for some x: [0; T ]!X , then �s;t=�s;u+ �u;t, and we call � an additive
function. In that case ��s;u;t= xs;t¡ xs;u¡ xu;t= 0 and Itn= xt¡ x0 for all n and thus
I�t=xt¡x0.

So, k��s;u;tk measures �how far � is from being an additive function�. If k��s;u;tk.
jt ¡ sj1+", then in general � is not an additive function, but the sewing lemma shows
that there exists a unique (up to addition of constants) additive function I� such that
kI�s;t¡�s;tk. jt¡ sj1+". This additive function is obtained by �sewing together� �, since
I�t= limn!1

P
k=0
Kn¡1�tkn^t;tk+1n ^t.

Exercise 1.2. Show that if x: [0; T ]!R is �-Hölder continuous for � > 1, then x is
constant: xt=x0 for all t2 [0; T ].

Corollary 1.5. (Young integral) Let T > 0 and let �; � 2 (0; 1] be such that �+ � > 1.
Let Y 2C�([0; T ]) and X 2C�([0; T ]). Then the Young integralZ

0

t

YsdXs= lim
n!1

X
k=0

2n¡1

YtknXtk
n^t;tk+1n ^t; tk

n= k2¡nT ;

exists and it is the unique function starting from 0 at t=0 and such that for all [s; t]� [0;T ]:��������Z
s

t

YrdXr¡YsXs;t

��������. kY k�kXk� jt¡ sj�+�: (1.5)

Moreover, 







Z
0

�
YsdXs










�

. (1+T�)(jY0j+ kY k�)kXk�: (1.6)

Proof. We define

�s;t :=Ys(Xt¡Xs);

which is continuous in (s; t), satisfies �t;t=Yt(Xt¡Xt)=0, and

j��s;u;tj=jYs(Xt¡Xs)¡Ys(Xu¡Xs)¡Yu(Xt¡Xu)j
=j(Ys¡Yu)(Xt¡Xu)j
6kY k�kXk� ju¡ sj�jt¡uj�
6kY k�kXk� jt¡ sj�+� ;

and since �+ � > 1 we can apply the sewing lemma. To prove (1.6) we use (1.5) and the
�-Hölder continuity of X:��������Z

s

t

YrdXr

��������6��������Z
s

t

YrdXr¡YsXs;t

��������+ jYsXs;tj

.kY k�kXk� jt¡ sj�+�+ jY0;sXs;tj+ jY0Xs;tj
6T�kY k�kXk� jt¡ sj�+ kY k�T�kXk� jt¡ sj�+ jY0jkXk� jt¡ sj�
.(1+T�)(jY0j+ kY k�)kXk� jt¡ sj� ;

which concludes the proof. �

Exercise 1.3. Let Xt=Bt(!) for a typical sample path of a Brownian motion. Which Y
can we integrate using the Young integral? Is Yt= f(Bt(!)) for a smooth function f ok?
Or Yt=Yt(!), where Y solves the Itô SDE dYt= b(Yt)dt+�(Yt)dBt?
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Remark 1.6. If X is of finite variation (e.g. Lipschitz continuous), then by definition the
Young integral agrees with the Lebesgue-Stieltjes integral

R
0

�
YsdXs (since both are limits

of the same sums).

Remark 1.7. (Young integral in Banach spaces) We constructed the Young integral
for real-valued Y ; X. But let X ; Y be Banach spaces and let L(X ; Y) be the space of
bounded linear operators from X to Y. Then for Y 2C�([0;T ];L(X ;Y)) andX 2C�([0;T ];

X ) the Young integral
R
0

�
YsdXs2C�([0; T ];Y) can be constructed in the same way and it

satisfies the same estimates.

If we want use Young integration to solve the equation

dYt= b(Yt)dt+�(Yt)dXt

for X 2C�([0; T ]) (for example X =B(!) for a fractional Brownian motion with Hurst
index H > �), then we should assume that �(Y ) 2 C�([0; T ]) with � > 1¡ �. We will
see that for nice functions � the path �(Y ) has the same regularity as Y , and therefore
we need Y 2C�([0; T ]). Then

R
0

�
�(Ys)dXs2C�([0; T ]), and since

R
0

�
b(Ys)ds is Lipschitz,

also Y 2C�([0; T ]) and this means that we could at best take � =�, which leads to the
requirement �> 1¡� or equivalently �> 1/2. We call this the Young regime.

The Young integral estimates are already sufficient to solve linear equations. To handle
nonlinear equations we need to understand how nonlinearities interact with Hölder regu-
larity. To state the result we need the following function space and norm:

Cb

(Rd;Rn) := ff 2Cb
c(Rd;Rn): kf kCb
<1g;

where we recall that b
c=maxfk2Z:k6 
g and that @�=@1
�1���@d

�d and j�j=�1+ ���+�d
for �2N0

d, with which

kf kCb
 :=
X

j�j6b
c
k@�f k1+ max

j�j=b
c
sup
x=/ y

j@�f(x)¡ @�f(y)j
jx¡ y j
¡b
c

:

In words, Cb

(Rd;Rn) is the space of functions which are b
c times continuously differen-

tiable with bounded partial derivatives, and the partial derivatives of order b
c are 
¡b
c
Hölder continuous. For 
=1 this means that f is Lipschitz continuous. For 
= b
c this
means that the partial derivatives of order b
c are continuous. We also write

kY kCb� := kY k�+ kY k1

for �2 (0; 1] and Y 2C�([0; T ]).

Lemma 1.8. Let � 2 (0; 1] and let Y ; Y~ 2 C�([0; T ];Rd). Let � 2 Cb1(Rd;Rn). Then
�(Y )2C�([0; T ];Rn) and

k�(Y )k�6 k�kCb1kY k�:
For � 2Cb2(Rd;Rn) we have

k�(Y )¡�(Y~)k�. k�kCb2(1+ kY ¡Y~k1)kY ¡Y~k�:

Proof. The first bound is easy:

j�(Y )s;tj6 k�kCb1jYs;tj6 k�kCb1kY k�jt¡ sj
�:
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The bound for the difference is a bit more technical. Taylor's formula gives

j�(Y )s;t¡�(Y~)s;tj=
��������Z

0

1

r�(Y~t + �(Yt ¡ Y~t))�(Yt ¡ Y~t)d� ¡
Z
0

1

r�(Y~s + �(Ys ¡ Y~s))�(Ys ¡

Y~s)d�

��������
6
��������Z
0

1

[r�(Y~t+�(Yt¡Y~t))¡r�(Y~s+�(Ys¡Y~s))]�(Yt¡Y~t)d�
��������

+

��������Z
0

1

r�(Y~s+�(Ys¡Y~s))�(Ys;t¡Y~s;t)d�
��������

6k�kCb2jY~t+�(Yt¡Y~t)¡ (Y~s+�(Ys¡Y~s))jkY ¡Y~k1
+2k�kCb1kY ¡Y

~k�jt¡ sj�

.k�kCb2kY ¡Y~k�kY ¡Y~k1jt¡ sj
�+ k�kCb1kY ¡Y

~k�jt¡ sj�

.k�kCb2(1+ kY ¡Y~k1)kY ¡Y~k�jt¡ sj
�:

�

Exercise 1.4. Show that for � 2Cb1 and Y 2C� we have

j�(Y )s;t¡� 0(Ys)Ys;tj6 k�kCb2kY k�
2 jt¡ sj2�:

Deduce that for �> 1

2
we have

�(Yt)=�(Y0)+

Z
0

t

� 0(Ys)dYs:

Theorem 1.9. (Young equation) Let �2 (1
2
;1], let X 2C�([0;T ];Rn) and let b2Cb1(Rd;

Rd) and �2Cb2(Rd;Rd�n). Then for all x02Rd there exists a unique solution Y 2C�([0;T ];

Rd) to the Young integral equation

Yt=x0+

Z
0

t

b(Ys)ds+

Z
0

t

�(Ys)dXs;

:=x0+

Z
0

t

b(Ys)ds+
X
j=1

n Z
0

t

��;j(Ys)dXs
j ; t2 [0; T ]:

Moreover, Y depends locally Lipschitz continuously on (x0; X)2Rd�C�([0; T ];Rn): If Y~

solves the same equation for x~0; X~, then there exists K > 0 depending only on b; �; T and
jx0j; jx~0j and kXk�; kX~ k�, such that for all �02 (1

2
; �):

kY ¡Y~k�06K(jx0¡x~0j+ kX ¡X~ k�):

Proof.

1. We use a Picard iteration on a small time interval. Let �02 (1
2
; �). For � 2 (0;1^T ]

we consider

B� := fY 2C([0; � ];Rd):Y (0)=x0; kY k�06 1g;

where we write kY k�0 and kXk� for the norms restricted to [0; � ]. For Y 2B� we
define

�(Y )t :=x0+

Z
0

t

b(Ys)ds+

Z
0

t

�(Ys)dXs; t2 [0; � ]:
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2. We first show that � leaves B� invariant if � > 0 is sufficiently small. We have
�(Y )0=x0 and by the bound (1.6) for the Young integral

k�(Y )k�0 .
(1:6)

�1¡�
0kbk1+(1+ ��)(j�(x0)j+ k�(Y )k�0)kXk�0

.
Lem.1:8

�1¡�
0kbk1+(1+ ��)(k�k1+ k�kCb1kY k�0)kXk�0

.
(1:7)

�1¡�
0kbk1+ ��¡�

0k�kCb1kXk�;

where we used that

kXk�0= sup
06s<t6�

jXs;tj
jt¡ sj�0

6 sup
06s<t6�

jXs;tj
jt¡ sj� sup

06s<t6�

jt¡ sj�
jt¡ sj�0

= kXk���¡�
0
; (1.7)

and also that � 6 1 so any positive power of � can be bounded by 1. So if � 2 (0;
T ^ 1] is small enough (depending only on b; �;X but not on x0), then � leaves B�

invariant.

3. Next, we show that � is a contraction on the complete metric space (B� ; k�k�)
(possibly after further decreasing the value of �). Note that k�k� is only a seminorm
because kck�=0 for any constant function c. But since in B� we fix the initial value
x0, k�k� becomes a norm. Using the completeness of Rd it is not difficult to show
that (B� ; k�k�) is indeed complete.

To see the contraction property of �, note that �+�0> 1 by assumption (since
�; �0>

1

2
), and therefore the bound for the Young integral below is justified:

k�(Y )¡�(Y~)k�06








Z

0

�
(b(Ys)¡ b(Y~s))ds










�0
+









Z
0

�
(�(Ys)¡�(Y~s))dXs










�0

6�1¡�0kb(Y )¡ b(Y~)k1+ ��¡�
0








Z

0

�
(�(Ys)¡�(Y~s))dXs










�

.
(1:6)

�1¡�
0kb(Y )¡ b(Y~)k1+ ��¡�

0
(1+ ��)k�(Y )¡�(Y~)k�0kXk�

.
Lem.1:8

�1¡�
0kbkCb1kY ¡Y

~k1+ ��¡�
0k�kCb2(1+ kY ¡Y

~k1)

�kY ¡Y~k�0kXk�
6�1¡�0kbkCb1�

�0kY ¡Y~k�0+ ��¡�
0k�kCb2kY ¡Y

~k�0kXk�
.(� kbkCb1+ �

�¡�0k�kCb2kXk�0)kY ¡Y
~k�0;

where we used that since Y and Y~ both start in x0:

kY ¡Y~k16 ��
0kY ¡Y~k�0. 1:

So if � is sufficiently small, then � is indeed a contraction and there exists a unique
fixed point.

4. The length � of the interval on which � is a contraction does not depend on x0, so
now we can interate the construction on [� ;2� ], then on [2� ;3� ], etc., until we reach
[0; T ]. This concludes the proof of existence and uniqueness of solutions. However,
so far we only showed that the solution Y is in C�0([0; T ];Rd). To show that Y is
even �-Hölder continuous we use the fact that Y solves the equation and that the
right hand side of the equation is in C� for any Y 2C�0.

5. The continuous dependence of Y on (x0;X) is left as an exercise. �
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Exercise 1.5. C�([0; T ];Rd) is compactly embedded in C�0([0; T ];Rd) for all �0<�. Use
this to show existence of solutions to Young equations under the assumption that � 2Cb1
(instead of � 2Cb2).

Corollary 1.10. Let (Bt)t2[0;T ] be an n-dimensional fractional Brownian motion of Hurst
parameters H >

1

2
(i.e. the components (B1; :::; Bn) are i.i.d. and each component is a

fractional Brownian motion). Let b2Cb1(Rd;Rd) and � 2Cb2(Rd;Rd�n) and let x02Rd.
Let �2 (1

2
; H) Then there exists a unique (up to indistinguishability) process Y such that

almost surely (Yt)t2[0;T ]2C�([0; T ];Rd) and

Yt=Y0+

Z
0

t

b(Ys)ds+

Z
0

t

�(Ys)dBs;

where the integral against B is a Young integral which is well defined almost surely.
If (Bm)m2N� C1([0; T ];Rd) is a sequence of paths such that almost surely kB ¡

BmkCb�! 0, then Y = limm!1Y
m, where

@tYt
m= b(Yt

m)+�(Yt
m)@tBt

m; Y0
m=Y0:

Remark 1.11. In this result we first freeze the realization B(!) of the noise, and then
we perform deterministic analysis with this given path. This is very different from Itô
stochastic differential equations, which do not make sense for a fixed ! and for which the
solution is only defined �modulo null sets�. Also, if for the Young differential equation we
take the canonical probability space of fractional Brownian motion,


=C�([0; T ];Rn);

for � 2 (1
2
; H), then the map ! 7! Y (!) is continuous. While for Itô SDEs it is only

measurable.

Our theorem excludes the most interesting case H=
1

2
, which corresponds to the Brow-

nian motion. On the exercise sheet we will see that the conditions for the Young integral
are sharp. So, to treat the Brownian case with a similar philosophy and to cover the case
H <

1

2
we need to do more. The solution is to �enrich� the path X by equipping it with

more information. In that way we can construct a continuous pathwise integral which
applies to paths of regularity <1

2
.

2 A crash course in rough path theory
Here we give a very brief introduction to the main ideas and techniques of Terry Lyons's
rough path theory [Lyo98]. We use Gubinelli's approach [Gub04], which is beautifully
exposed in the monograph [FH14], see also [LCL07] for nice lecture notes on rough paths.
We first focus on �mildly rough� noise, such as Brownian motion and, more generally,
fractional Brownian motion with H >

1

3
. Then we discuss the extension to general rough

paths, which is similar in spirit but technically more involved and which makes appear
certain algebraic structures.

2.1 Idea and definition of a rough path
To be able to treat the Brownian motion, we would like to extend the theory of Young
equations to driving signals X 2C�([0; T ];Rn) with �6 1

2
. Unfortunately, a naive solution

is not possible.
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Example 2.1. Consider the case d=n=2 and

Yt
1=

Z
0

t

dXs
1; Yt

2=

Z
0

t

Ys
1dXs

2; (2.1)

with initial condition X(0)=0. This equation has the explicit solution Y 1=X1 and Y 2=R
0

�
X1dX2. For m2N we set

Xt
m=

0@ 1

m
cos(m2t)

1

m
sin(m2t)

1A:
From the exercise sheet we know that (Xm) converges to 0 uniformly and in C� for all
�< 1/2, and that Yt

2;m! t

2
as m!1. But of course, the solution to (2.1) with X � 0

is equal to (0; 0) and not (0; t/2), and therefore Y does not depend continuously on X in
C�-norm if �< 1/2.

The problem is that the fast oscillations of Xm interact with the nonlinearity in our
integral equation and this interaction creates nontrivial effects, even though the amplitude
of Xm is very small.

Note that all paths involved in this example are smooth (C1), so the problem is not
the lack of regularity but the topology in which the sequence (Xm)m2N converges to 0. In
the following we will introduce rough path topologies which help us to overcome this lack
of continuity.

We can imagine two possible approaches for doing so. The naive one would be to try to
find a better suited function space, which contains Brownian paths and paths of solutions
to SDEs and in which the integral

R
0

�
YsdXs becomes a continuous functional (i.e. not to

work with Hölder norms). However, this is impossible! A counterexample by Lyons shows
that there cannot exist a Banach space X of real-valued functions on [0; 1] such that X
contains almost all sample paths of the Brownian motion and such that there exists a
continuous functional X 23(Y ;X) 7!I(Y ;X) with I(Y ;X)=

R
0

1
Ys@sXsds wheneverX 2C1;

see Section 1.5.1 of [LCL07].
The second approach is to accept this lack of continuity, and to enhance the path X

to make the map X 7! Y continuous. To understand this philosophy, let us consider the
following trivial example:

Example 2.2. The map f :R!R,

f(x)=

�
¡1; x< 0;
+1; x> 0;

is obviously discontinuous in 0. The problem is that we can approach 0 from the left or from
the right, and R is not rich enough to encode the information �from where we are coming�.
To obtain a continuous map, we could enhance the input space to encode the information
whether we approach 0 from the left or from the right. More precisely, we consider

X := ((¡1; 0)�f¡g)[ (f0g�f¡;+g)[ ((0;1)�f+g)�R�f¡;+g

where R�f¡;+g is equipped with the product topology (and f¡;+g is equipped with the
discrete topology). Note that R�X , i.e. there exists a (non-canonical) injection � from
R to X by setting �(x)= (x;+) if x> 0 and �(x)= (x;¡) if x< 0. We define

g(x;+)=+1; g(x;¡)=¡1:

Then g is continuous, and we have

f(x)= g(�(x)):
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In other words, we have decomposed f as the concatenation of the continuous map g with
the discontinuous and non-canonical map �.

X

¥
..

Figure 2.1. Commuting diagram.

Example 2.3. To understand how we should enhance our path space letX 2C1([0;T ];Rd)
and let us try to construct

R
0

1
f(Xs)dXs in a way that depends continuously on X in C�

topology for �<1/2, where f :Rd!L(Rd;R) is a smooth bounded function with bounded
derivatives. Since X and f(X) are both Lipschitz continuous, we have along a sequence
of partitions with mesh size going to zero:Z

0

1

f(Xs)dXs= lim
n!1

X
k

f(Xtk
n)Xtk

n;tk+1
n :

We would like to control this integral using only the C�-norm of X, and for that purpose
we want to apply the sewing lemma. With �s;t= f(X(s))Xs;t we get

j��s;u;tj= j¡f(X)s;uXu;tj6 kf kCb1kXk�
2 jt¡ sj2�:

Since �< 1/2, this is not good enough to apply the sewing lemma, and therefore we are
stuck. But we can try to improve the approximation:Z

0

1

f(Xs)dXs=
X
i=1

d Z
0

1

fi(Xs)dXs
i

=
X
k

 X
i=1

d Z
tk
n

tk+1
n

fi(Xtk
n)dXs

i+
X
i=1

d Z
tk
n

tk+1
n

(fi(Xs)¡ fi(Xtk
n))dXs

i

!

=
X
k

24X
i=1

d

fi(Xtk
n)Xtk

n;tk+1
n

i +
X
j=1

d

@jfi(Xtk
n)
X
i=1

d Z
tk
n

tk+1
n

(Xs
j¡Xtk

n
j )dXs

i

35
+
X
k

X
i=1

d Z
tk
n

tk+1
n

0@fi(Xs)¡ fi(Xtk
n)¡

X
j=1

d

@jfi(Xtk
n)(Xs

j¡Xtk
n
j )

1AdXs
i:

For the last term on the right hand side we expect to get

X
k

X
i=1

d Z
tk
n

tk+1
n

O(jtk+1n ¡ tknj2�)dXs
i=
X
k

O(jtk+1n ¡ tknj3�)6max
k
jtk+1n ¡ tknj3�¡1;

which converges to 0 if �> 1

3
(we have not shown fully rigorously that this term is really

of order O(jtk+1n ¡ tknj3�), but it can be justified).
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On the other hand, for the second term on the right hand side we expect to haveX
k

X
i=1

d Z
tk
n

tk+1
n X

j=1

d

@jfi(Xtk
n)(Xs

j¡Xtk
n
j )dXs

i=
X
k

O(jtk+1n ¡ tknj2�);

and if �6 1

2
, then this is not negligible (unlike for the Young case �> 1

2
). This suggests

to consider a different � in the sewing lemma, namely

�s;t := f(Xs)Xs;t+Df(Xs)Xs;t;

where Df =

0BB@ @1f
���
@df

1CCA is the derivative of f and

Xs;t :=

Z
s

t

(Xr¡Xs)
dXr=

�Z
s

t

(Xr
i¡Xs

i)dXr
j

�
i;j=1;:::;d

2Rd
d:

and

Df(X)X=
X
i=1

d

@if(X)Xi;�=
X
i;j=1

d

@ifj(X)Xi;j ; X2Rd
d:

Then

��s;u;t=¡f(X)s;uXu;t+Df(Xs)(Xs;t¡Xs;u)¡Df(Xu)Xu;t; (2.2)

and

Xs;t¡Xs;u=

Z
s

t

(Xr¡Xs)
 dXs¡
Z
s

u

(Xr¡Xs)
 dXr

=

Z
u

t

(Xr¡Xu)
 dXr+Xu
Xu;t¡Xs
Xs;t+Xs
Xs;u

=Xu;t+Xs;u
Xu;t:

Therefore, we obtain in (2.2)

j��s;u;tj 6j¡f(X)s;uXu;t+Df(Xs)Xs;u
Xu;tj+ j¡Df(X)s;uXu;tj
6kf kCb2kXk�

3 jt¡ sj3�+ k�kCb2kXk�kXk2�jt¡ sj
3�=O(jt¡ sj3�): (2.3)

So if �> 1

3
, we can apply the sewing lemma to bound the integral in terms of f , X, and

X. In other words, the knowledge of the functional X allows us to construct the integralR
f(X)dX for all f 2Cb2(Rd; L(Rd;R)) as a continuous functional of (X;X). As we will

see soon, it also allows us to solve differential equations driven by (X;X) and that the
solution depends continuously on the signal.

Exercise 2.1. (Difficult) What could we do if �2 (1
4
;
1

3
]?

Let us write �T = f(s; t)2 [0; T ]2: s6 tg and

C2
2�(�T ;Rd
d) := ff :�T!Rd
d: kf k2�<1g;

where

kf k2� := sup
06s<t6T

jfs;tj
jt¡ sj2� :

Definition 2.4. (Rough path) Let �2 (1
3
;
1

2
] and d2N. A d-dimensional �-rough path

is a pair (X;X)=:X with X 2C�([0; T ];Rd) and X2C22�(�T ;R
d
d), such that Chen's

relation

�Xs;u;t=Xs;u
Xu;t (2.4)
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holds for all 06 s6u6 t6T. We define

9X9� := kXk�+ kXk2�
p

:

We say that a sequence of �-rough paths (Xm) converges to X in �-rough path topology if

lim
m!1

9Xm¡X9� := lim
m!1

¡
kXm¡Xk�+ kXm¡Xk2�

p �
=0:

Remark 2.5.

i. We think of X as postulating �iterated integrals� of X,

Xs;t=

Z
s

tZ
s

r2

dXr1
 dXr2=

Z
s

t

Xr
 dXr¡Xs
Xs;t:

Since X 2C� for �6 1

2
, the right hand side is not well defined in general, so the left

hand side should be read as its definition.

ii. At this point, Chen's rule is simply saying that there exists a function I: [0; T ]!
Rd
d such that

Xs;t= Is;t¡Xs
Xs;t;

see the lemma below.

iii. The space of rough paths is not a linear space, because Chen's relation (2.4) is not
preserved under linear operations. Intuitively, knowing

R
s

t
Xr
dXr and

R
s

t
X~r
dX~r

does not mean that we know
R
s

t
(Xr+X~r)
d(Xr+X~r), and even if we did, it would

not equal to
R
s

t
Xr
dXr+

R
s

t
X~r
 dX~r.

iv. Also, 9X9� is of course not a norm. The reason for considering kXk2�
p

rather
than kXk2� is that the natural dilation on rough path space is (X;X) 7! (�X;�2X).
Indeed, Z

s

t

(�X)r1
 d(�X)r1¡ (�X)s
 (�X)s;t=�2Xs;t:

So by taking kXk2�
p

, we make 9�9� homogeneous under dilations.

Lemma 2.6. Let �2 (1
3
;
1

2
] and d2N. An alternative definition of a d-dimensional �-rough

path is as follows: It is a pair (X;I) with X 2C�([0;T ];Rd), I 2C�([0;T ];Rd
d), such that

sup
(s;t)2�T

jIs;t¡Xs
Xs;tj
jt¡ sj2� <1: (2.5)

The link with Definition 2.4 is

Is;t=Xs;t+Xs
Xs;t:

Proof. If (X; I) are as claimed, then the function Xs;t := Is;t¡Xs
Xs;t satisfies Chen's
relation:

�Xs;u;t=�Is;u;t¡Xs
Xs;t+Xs
Xs;u+Xu
Xu;t

=0+Xs;u
Xu;t;

since I is an additive function. By assumption (2.5), X2C22�.
Conversely, if (X;X) is an �-rough path, then we define

It :=X0;t+X0
X0;t:
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Then

Is;t=X0;t+X0
X0;t¡ (X0;s+X0
X0;s)

=
Chen

Xs;t+X0;s
Xs;t+X0
X0;t¡X0
X0;s

=Xs;t+Xs
Xs;t;

and therefore jIs;t¡Xs
Xs;tj. jt¡ sj2�. �

Exercise 2.2. Show that if B is a d-dimensional Brownian motion, then Bs;t :=
R
s

t
Bs;r


dBr (Itô integral) and B~ s;t :=
R
s

t
Bs;r 
 �dBr (Stratonovich integral) both satisfy Chen's

relation.

Example 2.7. Let �2 (1
3
;
1

2
).

i. Let � > 1

2
and X 2C�([0; T ];Rd). Then we could define

It :=

Z
0

t

Xs
 dXs;

and by the estimate (1.5) for the Young integral we have

jIs;t¡Xs
Xs;tj. kXk�2 jt¡ sj2�6T 2(�¡�)kXk�2 jt¡ sj2�:

Therefore, (X; I) is an �-rough path in the sense of Lemma 2.6. However, while
I =

R
0

�
Xs
 dXs is a canonical choice, it is by far not the only option: Indeed, for

any Z 2C2�([0; T ];Rd
d) we could also define

It :=

Z
0

t

Xs
 dXs+Zt:

Indeed, since Z 2C2� this I obviously still satisfies the estimate (2.5).

ii. In fact, this example shows that whenever (X;X) is an �-rough path and a path
(additive function) Z 2 C2�([0; T ];Rd
d), then (X;X~ ) also is an �-rough path,
where

X~ s;t=Xs;t+Zs;t:

Conversely, if (X;X) and (X;X~ ) are two �-rough paths with the same �first level�,
then

�(X¡X~ )s;u;t=Xs;u
Xu;t¡Xs;u
Xu;t=0;

and therefore there exists some path (additive function) Z such that

Xs;t¡X~ s;t=Zs;t

iii. More concretely, let us take d=2 and X� 0. Then a possible choice for I would be
It� 0, but we could also take

It=

0@ 0
t

2

¡ t

2
0

1A:
If we consider

Xt
m=

0@ 1

m
cos(m2t)

1

m
sin(m2t)

1A; It
m=

Z
0

t

Xs
m
 dXs

m;

A crash course in rough path theory 23



then Xm!X in C� and by Example 2.1 Itm! It for all t 2 [0; T ]. In fact one
can strengthen this result and show that (Y m) converges to Y in �-rough path
topology. So by keeping track of It, we remember that we approximated X� 0 by
the oscillatory paths (Xm). This is reminiscent of Example 2.2, where by enhancing
the state 0 to (0;¡) and (0;+) we could keep track whether we had approached 0
from the left or from the right, respectively.

Lemma 2.8. Let f 2Cb2(Rd; L(Rd;R)) and let X = (X;X) be a d-dimensional �-rough
path for �2 (1

3
;
1

2
]. Then for all t2 [0; T ] the integralZ

0

t

f(Xs)dXs := I�t; for �s;t := f(Xs)Xs;t+Df(Xs)Xs;t;

is well defined, and it is the unique function such that��������Z
s

t

f(Xr)dXr¡ f(Xs)Xs;t¡Df(Xs)Xs;t

��������. kf kCb2(kXk�3 + kXk�kXk2�)jt¡ sj3�
for all (s; t)2�T. If (Xm)m2N is a sequence of �-rough paths converging to Y in rough
path topology, then Z

0

t

f(Xs
m)dXs

m¡!
Z
0

t

f(Xs)dXs:

Proof. For the first part of the statement it suffices to combine the sewing lemma, The-
orem 1.2, with the estimate (2.3). To obtain (2.3) we did not use that X was a smooth
path, but only that its iterated integrals satisfy Chen's relation.

For the continuity statement we note that
R
0

t
f(Xs

m)dXs
m¡

R
0

t
f(Xs)dXs=I�tm, where

�s;t
m =(f(Xs

m)Xs;t
m +Df(Xs

m)Xs;t
m ¡ f(Xs)Xs;t¡Df(Xs)Xs;t);

and therefore as in (2.3)

j��s;u;tm j6j¡f(Xm)s;uXu;t
m + f(X)s;uXu;t+Df(Xs

m)Xs;u
m 
Xu;t

m ¡Df(Xs)Xs;u
Xu;tj
+ j¡Df(Xm)s;uXu;t

m +Df(X)s;uXu;tj:

By using a Taylor expansion and rebracketing like ab¡ cd= a(b¡ d)+ (a¡ c)d we obtain
that

j��s;u;tm j.kf kCb2(kXk�
2 + kXmk�2)kX ¡Xmk�jt¡ sj3�

+(kXmk2�+ kXk2�)kf kCb1kX ¡X
mk2�jt¡ sj3�

+ kf kCb1(kXk�+ kX
mk�)kX¡Xmk2�jt¡ sj3�;

and the right hand side converges to 0 as m!1. �

Example 2.9. As an application, we obtain that in the setting of Example 2.7

lim
m!1

Z
0

t

f

�
1
m
cos(m2s)

�
m cos(m2s)ds= lim

m!1

Z
0

t

f(Xs
m;1)dXs

m;2= lim
m!1

Z
0

t

F (Xs
m)dXs

m;

where F (x)= ¡
0 f(x1)

�, i.e. F (x)x= f(x1)x2. Now observe thatZ
0

t

F (Xs
m)dXs

m=

Z
0

t

F (Xs
m)dXs

m
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because the difference in the Riemann sum approximations is F 0(Xs
m)Xs;t

m which, as m is
fixed and Xm is smooth, is of order O(jt¡sj2) and (not uniformly in m) and therefore this
contribution disappears for vanishing mesh size. Since Xm!X in rough path topology,

where X =(0; I) with It=

0@ 0
t

2

¡ t

2
0

1A, we get

lim
m!1

Z
0

t

f

�
1
m
cos(m2s)

�
m cos(m2s)ds=

Z
0

t

F (Xs)dXs;

with
R
0

t
F (Xs)dXs=I�t for

�s;t= f(Xs
1)Xs;t

2 + f 0(Xs
1)Xs;t

1;2=0=0+ f 0(0)
t¡ s
2

:

Therefore, Z
0

t

F (Xs)dXs= I�t= f 0(0)
t
2
:

Of course, it would also not be difficult to compute this directly. But for differential
equations driven by Xm it is more difficult to derive the limit.

Exercise 2.3. Consider some smooth paths (Zm) with Zm!Z in C
1

2
+", where Z 2C

1

2
+"

is an arbitrary path. Show that
R
0

t
f(Zs

m)m cos(m2s)ds! 0.

2.2 Controlled paths
Throughout this section we fix � 2 (1

3
;
1

2
] and T > 0. In the previous section we defined

rough paths and we showed that for any �-rough path Y we can construct the integralR
0

�
f(Xs)dXs as a continuous map in �-rough path topology. But ultimately our goal is to

solve integral equations

dYt= b(Yt)dt+�(Yt)dXt;

and the integral
R
0

�
�(Ys)dXs is of a different form than

R
0

�
f(Xs)dXs, because the integrand

is not just a function of Xs.
A potential solution would be to enhance our rough path Y so that it also �contains

Y �. This strategy works and Terry Lyons originally used it in [Lyo98], when he devel-
oped the general theory of rough paths. Here we follow instead the later approach of
Gubinelli [Gub04], who extends the integral

R
0

�
YsdXs to more general integrands Y , while

still keeping its continuity properties. The space of integrands should include functions
Ys= f(Xs) for f 2Cb2, and it should include �(Ys), where Y solves our integral equation.
So in particular it has to contain functions of regularity C�. But as Example 2.1 shows,
we cannot hope to have a continuous integral

R
0

t
YsdXs for generic Y 2C�.

So we need to impose some structure on Y , and this structure should be richer than
just requiring sufficient regularity. To understand what we need, let us recall what we used
to derive the estimate (2.3) which allowed us to construct

R
0

�
f(Xs)dYs as a continuous map:

� f(X);Df(X)2C�;

� jf(X)s;u¡Df(Xs)Xs;uj. ju¡sj2�;
� (X;X) is an �-rough path (in particular Chen's relation holds).

So whenever similar conditions hold, we could hope to apply the sewing lemma. Note that
the second condition simply says that the increments of f(X) are well approximated by
the increments of X, times a �derivative� Df(Xs). This motivates the following definition:
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Definition 2.10. Let X 2C�([0; T ];Rd). A path Y 2C�([0; T ];Rm) is controlled by X if
there exists Y 02C�([0; T ]; L(Rd;Rm)), such that RY 2C22�([0; T ];Rm), where

Rs;t
Y :=Ys;t¡Ys0Xs;t:

In that case we write

(Y ; Y 0)2DX
2�([0; T ];Rm)

or simply (Y ; Y 0)2DX
2�, and we define

kY ; Y 0kX;2� := kY 0k�+ kRY k2�:

DX
2� is a Banach space with respect to the norm jY0j+ jY00j+ kY ; Y 0kY ;2�.

Exercise 2.4. Find an example where Y is controlled by X but Y 0 is not unique, i.e. there
exist Y 0=/ Y~ 0 such that that (Y ; Y 0); (Y ; Y~ 0)2DX

2�. (Hint: what if X is actually C2� and
not just C�)?

Notation. In the following we will often have estimates up to T-dependent constants. To
simplify the presentation we do not keep track of them explicitly and write .T instead.
But later it will be important to have a locally uniform control of the T-dependence, so by
convention a.T b means a6C(T )b for an increasing function C:R+!R+. For example,
jt¡ sj3�.T jt¡ sj2� for s; t2 [0; T ]

Theorem 2.11. Let X be a d-dimensional �-rough path and let (Y ; Y 0) 2DX
2�([0; T ];

L(Rd;Rm)). Then for all t2 [0; T ] the sewing integralZ
0

t

YsdXs := I�t; �s;t :=YsXs;t+Ys
0Xs;t

is well defined and satisfies��������Z
s

t

YrdXr¡YsXs;t¡Ys0Xs;t

��������. (kRY k2�kXk�+ kY 0k�kXk2�)jt¡ sj3� (2.6)

for all (s; t)2�T. Consequently, the map

DX
2�([0; T ]; L(Rd;Rm))3 (Y ; Y 0) 7!

�Z
0

�
YsdXs; Y

�
2DX

2�([0; T ];Rm)

is a continuous linear operator and satisfies







Z
0

�
YsdXs; Y










Y ;2�

.T (kRY k2�kXk�+ kY 0k�kXk2�)+ kY 0k1kXk2�+ kY k�: (2.7)

Proof. Estimate (2.6) follows easily from the sewing lemma and we leave its proof as an
exercise (see also the derivation of (2.3)). Given (2.6), we get��������Z

s

t

YsdXs¡YsXs;t

��������. (kRY k2�kXk�+ kY 0k�kXk2�)jt¡ sj3�+ kY 0k1kXk2�jt¡ sj2�;
and now we simply estimate jt¡sj3�.T jt¡sj2�. The estimate for the derivative is trivial:
kY k�6 kY k�. �
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Exercise 2.5. Let X = (X;X) be an �-rough path and let Z 2C2�([0; T ];Rd
d) and
X~ = (X;X~ ) with X~ s;t=Xs;t+Zs;t. Let (Y ; Y 0)2DX

2� and computeZ
0

t

YsdX~s¡
Z
0

t

YsdXs:

Remark 2.12. In the setting of Theorem 2.11 let X~ = (X~ ;X~ ) be another d-dimensional
�-rough path, and let (Y~ ; Y~ 0)2D

X~
2�([0; T ]; L(Rd;Rm)). Define

��(X ;X~ )= kX ¡X~ k�+ kX¡X~ k2�;
dX;X~ ;2�(Y ; Y

0; Y~ ; Y~ 0)= kY 0¡Y~ 0k�+ kRY ¡RY
~k2�;

and M =max fkXk�; kXk2�; jY00j; kY ; Y 0kX;2�; kX~ k�; kX~ k2�; jY~00j; kY~ ; Y~ 0kX;2�g. Set

(Z;Z 0)=

�Z
0

�
YsdXs; Y

�
; (Z~ ; Z~ 0)=

�Z
0

�
Y~sdX~s; Y~

�
:

You show as an exercise that

dX;X~ ;2�(Z;Z
0; Z~ ; Z~ 0).TM(��(X ;X~ )+ jY00¡Y~00j+ dX;X~ ;2�(Y ; Y

0; Y~ ; Y~ 0)):

Exercise 2.6. Let (Y ; Y 0) 2 DX
2�([0; T ];Rm) and let A 2Rk�m. Show that AY is a

controlled path. What is its derivative?

We have shown that controlled paths are stable under integration against X. When
solving an equation of the type

dYt= b(Yt)dt+�(Yt)dXt;

we not only need to integrate against X, but we also need to apply a nonlinear map �
to a controlled path. The next theorem shows that controlled paths are stable under the
application of nonlinear maps.

Theorem 2.13. Let X 2C�([0; T ];Rd) and let (Y ;Y 0)2DX
2�([0; T ];Rm). Let f 2Cb2(Rm;

Rn). Then

(f(Y );Df(Y )Y 0)2DX
2�([0; T ];Rn);

and

kf(Y );Df(Y )Y 0kX;2�.T (1+M)kf kCb2(1+ kXk�)
2(jY00j+ kY ; Y 0kX;2�); (2.8)

with M = jY00j+ kY ; Y 0kX;2�. If (Y~ ; Y~ 0)2DX
2�([0; T ];Rm) is another controlled path with

jY~00j+ kY~ ; Y~ 0kY ;2�6M and if f 2Cb3, then

k(f(Y );Df(Y )Y 0)¡ (f(Y~);Df(Y~)Y~ 0)kX;2�

.T ;M kf kCb3(1+ kXk�)
2(jY0¡Y~0j+ jY00¡Y~00j+ k(Y ; Y 0)¡ (Y~ ; Y~ 0)kX;2�):

(2.9)

Proof. We show (2.8). First, we control the derivative f(Y )0=Df(Y )Y 0:

j(Df(Y )Y 0)s;tj6jDf(Y )s;tYt0j+ jDf(Ys)Ys;t0 j
6kf kCb2kY k�jt¡ sj

�kY 0k1+ kf kCb1kY
0k�jt¡ sj�

6kf kCb2kY k�jt¡ sj
�(jY00j+T�kY 0k�)+ kf kCb1kY

0k�jt¡ sj�

.T kf kCb2(1+ kY k�)(jY0
0j+ kY 0k�)jt¡ sj�:
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To bound kY k� note that

jYs;tj6jYs;t¡Ys;t0 Xs;tj+ jYs0Xs;tj
.T kRY k2�jt¡ sj�+ kY 0k1kXk�jt¡ sj�

.T(jY00j+ kY ; Y 0kX;2�)(1+ kXk�)jt¡ sj�

.TM(1+ kXk�)jt¡ sj�:

Next, we show that f(Y ) is controlled with derivative Df(Ys)Ys0:

jf(Y )s;t¡Df(Ys)Ys0Xs;tj6jf(Y )s;t¡Df(Ys)Ys;tj+ jDf(Ys)Ys;t¡Df(Ys)Ys0Xs;tj
6(kf kCb2kY k�

2 jt¡ sj2�+ kf kCb1kR
Y k2�)jt¡ sj2�

.kf kCb2(1+M)(1+ kXk�)2(jY00j+ kY ; Y 0kX;2�)jt¡ sj2�:

The derivation of (2.9) is more involved. Conceptually it is similar to the proof of the
second estimate in Lemma 1.8, but technically it is more complex. See Lemma 7.3 in Friz-
Hairer [FH14]. �

Remark 2.14. In the setting of Theorem 2.13 let X~ = (X~ ;X~ ) be another d-dimensional
�-rough path, and let (Y~ ; Y~ 0)2DX~

2�([0; T ]; L(Rm)). Let ��(X ;X~ ), dX;X~ ;2�(Y ;Y
0; Y~ ; Y~ 0),

and M be as in Remark 2.12. Set

(Z;Z 0)= (f(Y );Df(Y )Y 0); (Z~ ; Z~ 0)= (f(Y~);DF (Y~)Y~ 0):

Then Theorem 7.5 of Friz-Hairer [FH14] shows that

dX;X~ ;2�(Z;Z
0; Z~ ; Z~ 0)6T ;M (��(X ;X~ )+ jY0¡Y~0j+ jY00¡Y~00j+ dX;X~ ;2�(Y ; Y

0; Y~ ; Y~ 0)):

We now have all the ingredients that we need in order to solve rough differential
equations of the type dYt=b(Yt)dt+�(Yt)dXt, Y0=x, whereX=(X;X) is an �-rough path
and we look for solutions (Y ; Y 0)2DX

2�. For simplicity of notation we will take b=0 from
now on, but it is not difficult to adapt the arguments to include a drift b. By definition,
(Y ; Y 0) solves the equation if

Y 0=�(Y ); Yt=x+

Z
0

t

�(Ys)dXs; t2 [0; T ]:

From Theorem 2.11 we know that
R
0

�
�(Ys)dXs is the unique function which satisfies��������Z

s

t

�(Ys)dXs¡�(Ys)Xs;t¡D�(Ys)�(Ys)Xs;t

��������. jt¡ sj3�
for all (s; t)2�T , where we used that (�(Y ))0=D�(Y )Y 0=D�(Y )�(Y ). In other words,
we have the following simple observation, which often is useful:

Lemma 2.15. (Davie's formulation of rough differential equations [Dav07]) Let
Y =(X;X) be a d-dimensional �-rough path, let � 2Cb2(Rm; L(Rd;Rm)), and let x2Rm.
Let Y : [0; T ]!Rm. Then (Y ; �(Y ))2DX

2� and

Yt=x+

Z
0

t

�(Ys)dXs; t2 [0; T ];
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if and only if Y0=x and for all (s; t)2�T

jYs;t¡�(Ys)Xs;t¡D�(Ys)�(Ys)Xs;tj. jt¡ sj3�:

Exercise 2.7. How does this lemma look like in the Young case? Can you find a formu-
lation for classical ODEs which is equivalent to the formulation as a differential equation?

Theorem 2.16. Let X =(X;X) be a d-dimensional �-rough path, let � 2Cb3(Rm; L(Rd;

Rm)), and let x2Rm. Then there exists a unique solution (Y ;Y 0)2DX
2�([0; T ];Rm) to the

equation

Yt=x+

Z
0

t

�(Ys)dXs; Yt
0=�(Yt); t2 [0; T ]:

Proof. Now that we know that the maps (Y ; Y 0) 7! (�(Y ); D�(Y )Y 0) and (�(Y );
D�(Y )Y 0) 7! (

R
0

�
�(Ys)dXs; �(Y )) are bounded and continuous, the proof is conceptually

very similar to the one in the Young case (Theorem 1.9), although of course more tech-
nical. See Theorem 8.4 of Friz-Hairer [FH14]. �

Remark 2.17. One of the key results of rough path theory is the continuity of the Itô-
Lyons map: In the setting of Theorem 2.16, write

Y =�(x;X):

It follows from Remarks 2.12 and 2.14 that if X~ is another �-rough path and if x~2Rm, then

k�(x;X)¡�(x~;X~ )k�0.T ;M (jx¡x~j+ ��(X ;X~ ));

where M =max fjxj; jx~j;9X9�;9X~9�g. See Theorem 8.5 of Friz-Hairer [FH14].

Exercise 2.8. Let as in Example 2.7

Xt
m=

0@ 1

m
cos(m2t)

1

m
sin(m2t)

1A; It
m=

Z
0

t

Xs
m
dXs

m:

Let � 2Cb3(Rd; L(R2;Rd)). Let

Yt
m=x+

Z
0

t

�(Ys
m)@sXs

mds; t2 [0; T ]:

Which equation does Y = limm!1Y
m solve?

2.3 Less regular rough paths and their controlled paths

Given the definition of an �-rough path for �2 (1
3
;
1

2
], there is a natural extension to less

regular paths: For �> 0 we should postulate the iterated integralsZ
s

tZ
s

rn

���
Z
s

r2

dXr1
 dXr2
 ���
 dXrn2 (Rd)
n;

for n6
j
1

�

k
and 06 s< t6T . Next to the canonical analytic bound��������Z

s

tZ
s

rn

���
Z
s

r2

dXr1
 dXr2
 ���
 dXrn

��������. jt¡ sjn�
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there are also algebraic considerations to take into account (for example Chen's identity).
For that purpose, we first introduce the (truncated) tensor algebra. To shorten the notation
we consider paths taking values in a finite-dimensional normed real vector space V from
now on (because V 
n is more convenient to write than (Rd)
n), and, up to choosing
suitable tensor norms, all of the following can be extended2.1 to infinite-dimensional Banach
spaces V .

Definition 2.18. ((Truncated) tensor algebra)

i. The tensor algebra over V is the direct sum

T (V ) :=
M
n=0

1
V 
n;

with the convention V 
0 :=R. Recall that by definition of the direct sum, every
a2 T (V ) only has finitely many non-zero entries, i.e. there exists n2N with a=
(a0; a1; :::; an; 0; 0; :::). The tensor algebra comes with two operations addition and
product,

a+ b = (a0+ b0; a1+ b1; :::);

a
 b =

 
a0
 b0; a0
 b1+ a1
 b0; :::;

X
k=0

n

ak
 bn¡k; :::

!
;

and also with scalar multiplication

�a=(�a0; �a1; :::);

so that it is indeed a (non-commutative) algebra over R.

ii. For N 2N0, the truncated tensor algebra over V is

T (N)(V ) :=
M
n=0

N

V 
n'fa2T (V ): ak=0 for all k >N g:

It also comes with an addition and a product, which are defined in the same way as
on T (V ), in the sense that ak
 b`=0 if k+ `>N.

iii. Sometimes it is also useful to consider the space of formal tensor series

T ((V )) := fx=(x0; x1; :::)2�n=0
1 V 
ng;

which again is equipped with the same operations.

Lemma 2.19.

i. 1=(1; 0; 0; ���)2T (V ) is a unit for multiplication.

ii. The set

fa2T (V ): a0=1g

is a group with respect to multiplication, with inverse

a¡1=
X
n=0

1

(1¡a)
n=(1;¡a1;¡a2; :::):

But T (V ) is not a field, because for v2V nf0g the element (0; v;0; :::)=/ 0 does not
have an inverse with respect to multiplication.

2.1. The definition of geometric rough paths has to be done differently in that case, see Section 2.2 in [LCL07].
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iii. i. and ii. also hold on T (N)(V ).

Proof.

i.

a
1=(a0
 1; a1
 1+0; a2
 1+0; :::)=a

and

1
a=(1
 a0; 0+1
 a1; 0+1
 a2; :::)=a:

ii.

a
a¡1 = (1
 1; a1
 1+1
 (¡a1); a2
 1+1
 (¡a2); :::)
= (1; 0; 0; :::)=1:

Moreover,

a
 (0; v; 0; :::)= (a0
 0; a1
 0+ a0
 v; :::)= (0; a0
 v; :::)=/ 1;

and therefore T (V ) is not a field.

iii. The proofs are exactly the same. �

We could equivalently2.2 define an �-rough path as a suitable two-parameter function
with values in T ((V )) or in T (N)(V ) with N = b�¡1c. Here we will use T (N)(V ) for sim-
plicity, but in certain applications the perspective based on T ((V )) is more useful.

Definition 2.20. (Homogeneous Hölder norm) For

X =(1;X(1); :::;X(N)):�T!T (N)(V )

and �2 (0; 1] we define

9X9� :=
X
n=1

N

kX(n)kn�
1/n

=
X
n=1

N

sup
06s<t6T

����Xs;t
(n)����1/n

jt¡ sj� 2 [0;1]:

We say that X is �-Hölder continuous if 9X9�<1.

Definition 2.21. (�-rough path) Let � 2 (0; 1] and N = b�¡1c. A V-valued �-rough
path is a map

X =(1;X(1);X(2); ���;X(N)):�T!T (N)(V )

satisfying

i. Chen's relation:

Xs;t=Xs;u
Xu;t; 06 s6u6 t6T ;

ii. �-Hölder continuity:

9X9�<1:

We say that a sequence of �-rough paths (Xm) converges to X in �-rough path topology if

lim
m!1

9Xm¡X9�=0:

2.2. This equivalence is far from obvious and it is related to the fact that given the first N iterated integrals,
we can uniquely find all the higher order iterated integrals, a result which is known as Lyons universal extension
theorem [LCL07].
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Exercise 2.9. Show that if �2 (1
3
;
1

2
] and X =(X;X), then setting

Xs;t
(1)
:=Xs;t; Xs;t

(2)
:=Xs;t

defines an �-rough path in the sense of our new definition if and only if X is an �-rough
path in the sense of our old definition.

Exercise 2.10. Let X 2C1([0; T ]; V ) and define Xs;t
(1)
=Xs;t and

Xs;t
(n)
=

Z
s

tZ
s

rn

:::

Z
s

r2

dXr1
 :::
dXrn:

Show that X = (1;X(1); :::;X(N)) satisfies Chen's relation. (See the next section for the
solution).

To solve differential equations driven by X, we also need to extend the notion of
controlled paths to our new setting. For simplicity, we focus on real-valued paths. But this
extends immediately to paths taking values in finite-dimensional vector spaces by arguing
componentwise. Intuitively, we might expect that we need a higher order description of
controlled paths in terms of the controlling rough paths, which may also involve higher
order levels of the rough path. Also, we need to assume that the derivative paths are
themselves controlled, to a lesser degree.

To simplify the bookkeeping, it now becomes useful to identify a basis of T (N)(V �) with
words: The set of all words (over the alphabet f1; :::; dg) is the set of ordered tuples

W = f(i1; :::; ik): k> 1; i1; :::; ik2f1; :::; dgg[ f;g;

and we say that a word w=(i1; :::; ik) has length k and we write jw j= k, with j;j=0. For
example, (1; 2; 3), (1; 1) and (2; 1; 1; 3; 1) are words over the alphabet f1; 2; 3g, of length 3,
2 and 5, respectively.

Let now e1; :::; ed be a basis of V . Given a word w=(i1; :::; ik)2W we write

ew := ei1
 ���
 eik2V 
k; e;=12V 
0:

We can then identify w with an element of T (N)(V �) by setting

hw; ew 0i= �w;w 0

for all words w 0 of length 6N . Given two words w=(i1; :::; ik) and w 0=(j1; :::; j`) we define
the concatenation

ww 0 := (i1; :::; ik; j1; :::; j`):

With this notation we have for example

hw;a
 bi=
X

v;v 02W:
vv 0=w

hv;aihv 0; bi: (2.10)

We also write

Xw := hw;Xi:

This notation allows for the the following short and elegant definition:

Definition 2.22. (Controlled path) Let X =(1;X(1);X(2); ���;X(N)):�T!T (N)(V ) be
a V-valued �-rough path. A function Y : [0; T ]! T (N¡1)(V �) is called controlled by X if
there exists C>0 such that for all words w of length jw j6N ¡1 well as for all (s; t)2�T:

jhYt; ewi¡ hYs;Xs;t
 ewij6C jt¡ sj(N¡jw j)�;
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where by truncation we interpret Xs;t
 ew as an element of (T (N¡1)(V ))�'T (N¡1)(V �).
In that case we write

kY kDX
N�

for the smallest possible C that works for all jw j6N ¡1 and (s; t)2�T, and we also write

Y 2DX
N� :=DX

N�([0; T ];R):

Exercise 2.11. Show that for �2 (1
3
;
1

2
] and N =2 this definition is consistent with our

first definition, if given (Y ; Y 0) and (X;X) we set Yt= (Yt; Yt
0) 2 (V �)
0� (V �)
1 and

Xs;t=(1;Xs;t;Xs;t).

It is obvious from the linearity of the definition that DX
N� is a vector space. Moreover, for

all Y 2DX
N� we can define the controlled rough path integral as another element of DX

N�.

Proposition 2.23. (Controlled rough path integral) Let �2 (0;1], let N = b�¡1c and
let X be an �-rough path and let Y 2DX

N�. Define for (s; t)2�T and i2f1; :::; dg

�s;t
i := hYsi;Xs;ti :=

X
w2W:

jw j6N¡1

hYs; ewihwi;Xs;ti:

Then � satisfies the assumptions of the sewing lemma and we callZ
0

t

YsdXs
i :=I�ti2R; t2 [0; T ]

the controlled rough path integral of Y against X i. Setting

hIti; ewi :=

8>><>>:
R
0

t
YsdXs

i; w= ;;
hYs; ew 0i; w=w 0i;
0; w=w 0j with j=/ i;

we obtain a new element of DX
N� and

kI ikDX
N�.T (kY k1+ kY kDX

N�)9X9�:

Proof. Clearly �i is continuous and �t;ti =0 becauseXt;t=(1;0; :::;0) (which follows from
the Hölder assumption on X). Moreover,

��s;u;t
i =

X
w2W:

jw j6N¡1

(hYs; ewihwi;Xs;ti¡ hYs; ewihwi;Xs;ui¡ hYu; ewihwi;Xu;ti)

and using the controlled structure of Y

j(hYu; ewi¡ hYs;Xs;u
 ewi)hwi;Xu;tij 6 kY kDX
N�ju¡ sj(N¡jw j)�jhwi;Xu;tij

6 kY kDX
N�ju¡ sj(N¡jw j)�9X9�jt¡ujjw j+1

6 kY kDX
N�9X9�jt¡ sj(N+1)�

with (N +1)�> 1. Next, we will show thatX
w2W:

jw j6N¡1

(hYs; ewihwi;Xs;ti¡ hYs; ewihwi;Xs;ui¡ hYs;Xs;u
 ewihwi;Xu;ti)=0;
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from where the existence of the controlled rough path integral follows with the sewing
lemma. Indeed, observe thatX

w2W:
jwj6N¡1

hYs;Xs;u
 ewihwi;Xu;ti

=
X
w2W:

jw j6N¡1

X
w 02W:

jw 0j6N¡1¡jw j

hYs; ew 0
 ewihw 0;Xs;uihwi;Xu;ti

=
X
w2W:

jw j6N¡1

hYs; ewi
X

v;v 02W:
vv 0=w

hv;Xs;uihv 0i;Xu;ti

=
X
w2W:

jw j6N¡1

hYs; ewi
0@0@ X

v;v 02W:
vv 0=wi

hv;Xs;uihv 0i;Xu;ti
1A¡hwi;Xs;ui

1A
=

X
w2W:

jw j6N¡1

hYs; ewi(hwi;Xs;u
Xu;ti¡ hwi;Xs;ui)

by (2.10), which yields with Chen's relation Xs;u
Xu;t=Xs;t:

��s;u;t
i =

X
w2W:

jwj6N¡1

hYs; ewi(hwi;Xs;ti¡ hwi;Xs;ui¡ (hwi;Xs;u
Xu;ti¡ hwi;Xs;ui))

= 0:

The sewing lemma now yields the bound

jI�ti¡I�si¡�s;ti j . sup
06u1<u2<u36T

j��u1;u2;u3
i j

ju3¡u1j(N+1)�
jt¡ sj(N+1)�

. kY kDX
N�9X9�jt¡ sj(N+1)�;

and plugging in our definitions, this means

jhIti; e;i¡ hIsi;Xs;t
 e;ij = jhIti; e;i¡ hIsi;Xs;tij

=

������������I�t
i¡I�si¡

X
w 02W:

16jw 0j6N¡2

hYs; ew 0ihw 0i;Xs;ti
������������

6 jI�ti¡I�si¡�s;ti j+
������������
X

w 02W:
jw 0j=N¡1

hYs; ew 0ihw 0i;Xs;ti
������������

. kY kDX
N�9X9�jt¡ sj(N+1)�+ kY k19X9�jt¡ sjN�:

This is the claimed bound for w= ;. For w=w 0j with j=/ i it suffices to note that

jhIti; ewji¡ hIsi;Xs;t
 ewjij=0;

while for w=w 0i

jhIti; ew 0ii¡ hIsi;Xs;t
 ew 0iij = jhYs; ew 0i¡ hYs;Xs;t
 ew 0ij
6 kY kDX

N�jt¡ sj(N¡jw 0j)�

6 T�kY kDX
N�jt¡ sj(N¡jwj)�:

�
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With these definitions and results we can solve linear rough differential equations driven
by low regularity rough paths: For another finite-dimensional (say m-dimensional) normed
vector space W let A2L(V ;L(W ;W )). Then we can solve the rough differential equation

dYt=AYtdXt; Y0=x2W ;

which we interpret as A(dXt)Yt or, coordinatewise, as A2Rm�m�d with

dYt
i=
X
j=1

m X
k=1

d

Ai;j ;kYt
jdXt

k:

Similarly as before, we can set up a Picard iteration and solve this equation globally in
time because the length of the time interval for the contraction does not depend on the
initial condition.

But what if we want to solve nonlinear rough differential equations? The problem
already arises in one dimension, so say we are given � 2CbN+1(R;R) and x2R. Can we
solve the equation

Yt=x+

Z
0

t

�(Ys)dXs; t2 [0; T ];

with an appropriate interpretation? Maybe surprisingly, the answer to this question is in
general no. The problem is that if Y 2DX

N�, then we do not know if �(Y )2DX
N�. Indeed,

writing Y =(Y ;Y(1); :::;Y(N¡1)) andX=(1;X ;X(2); :::;X(N)), we would for example like
to set

h�(Y ); e;i=�(Y );

which satisfies by a Taylor expansion

�(Yt) =
X

k6N¡1

1
k!
�(k)(Ys)(Ys;t)k+ O(jYs;tjN)||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=O(jt¡sjN�)

:

But even if N =3 and k=2 we usually cannot express (Ys;t)2 as a linear function of Xs;t

plus a remainder which vanishes at the right order. Indeed,

Ys;t=Ys
(1)
Xs;t+O(jt¡ sj2�);

so that

(Ys;t)2=
¡
Ys
(1)�2(Xs;t)2+O(jt¡ sj3�);

and there is no reason why this should be expressible as a linear function of X, which we
would need to make �(Y ) a controlled path.

Of course, since X =(1; X ;X(2); :::;X(N)) corresponds to a one-dimensional path and
morally Xs;t

(2)
=
R
s

t
Xs;rdXr, we might suspect an integration by parts rule,

1
2
(Xs;t)

2=

Z
s

t

Xs;rdXr=Xs;t
(2)
:

While this is true if X is built from a smooth pathX, we did not make such an assumption
in our definition of a rough path. And indeed we discussed Brownian motion with its Itô
iterated integrals as an example of a rough path, for which the integration by parts rule
fails due to the Itô corrector,

1
2
(Bs;t)

2=

Z
s

t

Bs;rdBr+
1
2
(t¡ s):
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To proceed, we need to either enhance the rough path with more data, postulating for
example also Z

s

t

(Xs;r)2dXr:

This leads to branched rough paths which are no longer indexed by words but by decorated
rooted trees [Gub10] and which have a more complicated (Hopf) algebraic structure. Or
we give up the example of Itô Brownian motion and we postulate an integration by parts
rule. This is the approach chosen in the original work by Lyons [Lyo98] and it leads to
geometric rough paths.

2.4 Geometric rough paths
To understand how to formulate the integration by parts rule for the iterated integrals, we
introduce the shuffle product on words2.3: The shuffle product

wtw 0

consists of the sum over all possible ways of interweaving w and w 0 in such a way that the
order of letters in each word remains unchanged. For example, (writing ab := (a; b))

atx= ax+xa; abtx= abx+ axb+xab;
abtxy= abxy+ axby+ axyb+xaby+xayb+xyab:

The first realization of the integration by parts rule would be

Xs;t
i Xs;t

j =Xs;t
ij +Xs;t

ji ;

which can be expressed with the shuffle product as

hXs;t; iihXs;t; j i= hXs;t; it j i:

Thus, we have for all words w;w 0 of length jw j; jw 0j6 1 (the case jw j=0 or jw 0j=0 is easy
as hXs;t; ;i=1):

hXs;t; wihXs;t; w
0i= hXs;t; wtw 0i:

Exercise 2.12. Let X 2C1([0; T ];Rd) and let X =(1;X(1); :::;X(N)) with

Xs;t
i1:::ik :=

Z
0<r1<:::<rk<t

dXr1
i1���dXrk

ik:

Show that X satisfies for all words w;w 0 with jw j+ jw 0j6N :

hXs;t; wihXs;t; w
0i= hXs;t; wtw 0i:

Hint: Use induction over jw j+ jw 0j.

Definition 2.24. (Geometric rough path) Let � 2 (0; 1] and N = b�¡1c. A V-valued
�-rough path X = (1;X(1);X(2); ���;X(N)): �T! T (N)(V ) is called geometric if for all w;
w 02W with jw j+ jw 0j6N:

hXs;t; wihXs;t; w
0i= hXs;t; wtw 0i:

2.3. The symbol should be different: t should have a third upward line in the middle. I do not know at the
moment how to produce such a symbol in Texmacs.
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Remark.

i. One can show that geometric rough paths take their values in a Lie groupG(N)(V )�
T (N)(V ). The monograph [FV10] emphasizes this perspective.

ii. In the literature, our geometric rough paths are usually called weakly geometric.
Strongly geometric paths are those which can be approximated by smooth paths.
One can show that if �0 < � is such that b(�0)¡1c = b�¡1c, then every weakly
geometric �-rough path is a strongly geometric �0-rough path. Therefore, we do not
distinguish the two notions here.

Using Taylor expansions, we could now show that if X is a geometric �-rough path,
if Y 2DX

N�([0; T ];Rm), and if � 2CbN¡1(Rm;Rn), then f(Y (0)) can be naturally lifted to
an element of DX

N�([0; T ];Rn). If even � 2CbN(Rm;Rn), then we have similar continuity
estimates as in Theorem 2.13. The key point in the proof is that due to the shuffle product
rule, every polynomial function of Xs;t (such as the ones appearing in the Taylor expansion
of f(Yt

(0)
)) can be expressed as a linear function of Xs;t. Then the solution theory for

nonlinear rough differential equations is very similar to the case �2 (1
3
;
1

2
]

3 First applications of rough paths

3.1 Stochastic processes as rough paths
We have seen that if X 2C�([0; T ];Rd), then there is no unique choice of a second order
process X which turns (X;X) into an �-rough path. Indeed it is not even obvious whether
such aX exists at all (by the Lyons-Victoir extension theorem it does, but we will not prove
this). However, if X is a stochastic process, then there often is a canonical choice for X.

3.1.1 Brownian motion

Let us start with the easiest example, where B is a d-dimensional standard Brownian
motion on [0; T ]. In that case we have almost surely B 2C�([0; T ];Rd) whenever �< 1/2,
and we define

Bs;t
Ito=

Z
s

t

Br
 dBr¡Bs
Bs;t;

where the stochastic integral dBr is understood in the Itô sense; in particular, B is con-
tinuous. By construction we also have Chen's relation. It thus only remains to show that
almost surely jBs;t

Itoj. jt¡ sj2�. This is a consequence of the following result.

Theorem 3.1. (Kolmogorov's continuity criterion for rough paths) Let (X;X) be
a stochastic process which almost surely satisfies Chen's relation. Assume that there exist
p> 2, � > 1

p
, C > 0, such that for all (s; t)2�T

E[jXs;tjp]1/p6C jt¡ sj� ; E[jXs;tjp/2]2/p6C jt¡ sj2�:

Then there exists a modification X = (X~ ;X~ ) of (X;X) satisfying Chen's relation, and
such that

E[9X~9�p]1/p.C
for all �2 (0; � ¡ 1

p
).

Proof. See Friz-Hairer [FH14], Theorem 3.1. �
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To apply this to (B;BIto) we only need to bound E[jBs;t
Itojp/2] for sufficiently large p.

We apply the Burkholder-Davis-Gundy inequality twice to obtain

E[jBs;t
Itojp/2]'E

��Z
s

t

jBr¡Bsj2ds
�
p/4
�
6E
�

sup
r2[s;t]

jBr¡Bsjp/2
�
jt¡ sjp/4

'jt¡ sjp/4� jt¡ sjp/4= jt¡ sjp/2:

Moreover, E[jBs;tjp]' jt¡ sjp/2, by another application of the Burkholder-Davis-Gundy
inequality or alternatively because B is Gaussian. Taking p> 6 we obtain that BIto=(B;

BIto) is almost surely an �-rough path for any �2 (1
3
;
1

2
¡ 1

p
), which is a non-empty interval

because p> 6. Note that we do not have to take a modification of (B;BIto), because the
pair is already continuous.

We also define the Stratonovich iterated integrals of B by

Bs;t
Strat :=

Z
s

t

(Br¡Bs)
�dBr=Bs;t
Ito+

1
2
Id(t¡ s);

where Id is the identity matrix on Rd and �dBr denotes the Stratonovich integral. We set
BStrat=(B;BStrat).

Theorem 3.2. If (Y ; Y 0) is an adapted process such that almost surely (Y ; Y 0) 2DB
2�,

then almost surelyZ
0

�
YsdBs

Ito=

Z
0

�
YsdBs;

Z
0

�
YsdBs

Strat=

Z
0

�
Ys �dBs;

where the left hand sides denote the rough path integrals of Y with respect to BIto and BStrat

respectively, and the right hand sides denote the Itô and the Stratonovich integral (for the
Stratonovich integral we should also assume that Y is a semimartingale).

Proof. By stopping in

�n= inf ft> 0: kY ; Y 0kDB
2�([0;t])>ng;

we may assume that E[kY ; Y 0kB;2�2 ]<1. For the Itô integral, we estimate

E

���������Z
s

t

YrdBr¡YsBs;t¡Ys0Bs;t

��������2�1/2=E���������Z
s

t

(Yr¡Ys¡Ys0Bs;r)dBr

��������2�1/2
=E

�Z
s

t

jYr¡Ys¡Ys0Bs;rj2dr
�
1/2

6E[kY ; Y 0kB;2�2 ]1/2
�Z

s

t

jr¡ sj4�dr
�
1/2

'E[kY ; Y 0kB;2�2 ]1/2jt¡ sj
1

2
+2�

:

Since 1

2
+2�> 1, this gives for fixed t2 [0; T ] and with tk

n= kt/n:

E

"����������
Z
0

t

YsdBs¡
X
k=0

n¡1

(YtknBtk
n;tk+1

n +Ytkn
0Btk

n;tk+1
n )

����������
2
#
1/2

.E[kY ; Y 0kB;2�2 ]1/2n
������ t
n

������12+2�! 0:

Therefore, In=
P

k=0
n¡1 (YtknBtk

n;tk+1
n + Ytkn

0Btk
n;tk+1

n ) converges in L2 to
R
0

t
YsdBs. But it also

converges almost surely to
R
0

t
YsdBs

Ito, and therefore almost surely
R
0

t
YsdBs=

R
0

t
YsdBs

Ito.
A priori the null set depends on t, but both processes are continuous, and therefore they
are indistinguishable.
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The Stratonovich integral can be rewritten in terms of the Itô integral, and this can be
used to establish the claim also follows in that case. See Section 5 of Friz-Hairer [FH14]
for details. �

Exercise 3.1. Let Yt=x+
R
0

t
�(Ys)dBs

Ito and determine which �Stratonovich equation� Y
solves (i.e. derive an equation for Y which involves only an integral against BStrat)

3.1.2 Fractional Brownian motion

What follows is not part of the videos and not relevant for the exam.
Recall that B is a d-dimensional fractional Brownian motion with Hurst parameter

H 2 (0; 1) if B0= 0 and if the components of (B1; :::; Bd) are independent continuous
centered Gaussian processes with covariance

E[Bs
iBt

i] =
1
2
(t2H+ s2H ¡ jt¡ sj2H); i2f1; :::; dg; s; t2 [0; T ]:

Our aim is to construct the interated integrals Bs;t= (
R
s

t
Bs;r
i dBr

j)i;j. First observe that
for i= j we could simply set Z

s

t

Bs;r
i dBr

i :=
1
2
(Bs;t

i )2:

This is the only possible choice under which we have the integration by parts rule from
classical calculus, and it satisfies Chen's relation on the diagonal::

1
2
(Bs;t

i )2¡ 1
2
(Bs;u

i )2¡ 1
2
(Bu;t

i )2=
1
2
(Bu;t

i Bs;u
i +Bs;u

i Bu;t
i )= (Bs;u
Bu;t)i;i:

Moreover, ��������12(Bs;ti )2
��������6 jt¡ sj2�2

kBk�2 ;
so we get the right regularity.

Remark 3.3. For any sequence of partitions (tk) of [0; t] we have

1
2
(Bt

i)2=
1
2

X
k

[(Btk+1
i )2¡ (Btk

i )2] =
X
k

Btk
i +Btk+1

i

2
Btk;tk+1
i ;

so our definition of
R
s

t
Bs;r
i dBr

i corresponds to Riemann sums taking the average of the
left point and the right point of the integrand. In the Itô case we can also take left-point

Riemann sums (replacing
Btk
i +Btk+1

i

2
by Btk

i ). We could try to do the same for H <
1

2
. The

difference between the two Riemann sums is 1

2

P
k (Btk;tk+1

i )2, which should converge to the
quadratic variation. But for H <

1

2
the quadratic variation does not exist, because

E
�X

k

(Btk;tk+1
i )2

�
=
X
k

jtk+1¡ tk j2H!1

if H <
1

2
.

The off-diagonal terms are more complicated.

Lemma 3.4. Let (Bt)t2[0;1] and (Wt)t2[0;1] be indepdendent one-dimensional fractional
Brownian motions with Hurst parameter H 2 (0; 1

2
). Define for n2N

In(B;dW )(t) :=
X
k=0

kt
n¡1

B�k
nW�k

n;�k+1
n ; t2 [0; 1]
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where �k
n := k2¡n and kt

n=max fk: �kn6 tg. Then for all t2 [0; 1] and p2 (1;1) we have

E[jIn+1(B;dW )(t)¡ In(B;dW )(t)j2]1/2. 2¡n(2H¡1/2) t
p
:

So for H >
1

4
the sequence (In(B;dW )(t))n converges in L2(
) to a limit I(B;dW )t.

Proof. Let us write In(t)= In(B;dW )(t). Then

In+1(t)¡ In(t)=¡
X
k=0

kt
n¡1

B�2k
n+1;�2k+1

n+1W�2k+1
n+1 ;�2k+2

n+1 ;

and therefore by independence of B and W

E[jIn+1(t)¡ In(t)j2]

=
X
k;`=0

kt
n¡1

E[B�2k
n+1;�2k+1

n+1B�2`
n+1;�2`+1

n+1 ]E[W�2k+1
n+1 ;�2k+2

n+1W�2`+1
n+1 ;�2`+2

n+1 ]

6
X
k=0

kt
n¡1

(2¡n)2H(2¡n)2H

+2
X
k=0

kt
n¡1 X

`=0

k¡1 �
E[jB�2k

n+1;�2k+1
n+1 j2]E[jB�2`

n+1;�2`+1
n+1 j2]

�
1/2
jE[W�2k+1

n+1 ;�2k+2
n+1W�2`+1

n+1 ;�2`+2
n+1 ]j:

The first term on the right hand side is clearly bounded by .2nt2¡n4H=(2¡n(2H¡1/2) t
p
)2.

To bound the second term we need the following estimate, which we leave as an exercise:

jE[Ws;s+hWt;t+h]j. (t¡ s)2H¡2h2; 06 s< t; 0<h6 t¡ s:

This leads toX
k=0

kt
n¡1 X

`=0

k¡1 �
E[jB�2k

n+1;�2k+1
n+1 j2]E[jB�2`

n+1;�2`+1
n+1 j2]

�
1/2
jE[W�2k+1

n+1 ;�2k+2
n+1W�2`+1

n+1 ;�2`+2
n+1 ]j

.2¡n2H
X
k=0

kt
n¡1 X

`=0

k¡1

j�2k+1n+1 ¡ �2`+1n+1 j2H¡2j2¡nj2. 2¡n2H
X
k=1

kt
n¡1 X

`=0

k¡1

j(k¡ `)2¡nj2H¡2j2¡nj2

=2¡n4H
X
k=1

kt
n¡1 X

`=0

k¡1

jk¡ `j2H¡2. 2¡n4H
Z
1

kt
n¡1Z

0

x¡1
jx¡ y j2H¡2dydx:

The integral on the right hand side is bounded byZ
1

kt
n¡1Z

0

x¡1
jx¡ y j2H¡2dydx=

Z
1

kt
n¡11¡ jxj2H¡1

1¡ 2H dx. jktnj6 2nt;

and this completes the proof. �

Remark 3.5. The threshold H >
1

4
does not appear because our estimates are inade-

quate. For H 6 1

4
the sequence (In(B; dW )) does not converge (see [CQ02]) and there

is no known canonical definition of
R
0

�
BsdWs. See [Unt10, NT11] for two non-canonical

constructions based on renormalization arguments (roughly speaking based on subtracting
random diverging counterterms from the diverging sequence In(B;dW )).

In fact, considering say a mollification �n(t)=n�(nt) for �2Cc1(R;R) and Bn= �n�B,
the solution Y n to

@tYt
n=n

1

4
¡H
�(Yt

n)@tBt
n; Y0

n=x;
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converges for H <
1

4
weakly to

dYt=
�
2

X
i;j=1

d

[�i�; �j�]dW ij ;

where � > 0 is a constant, [f ; g] = f �rg¡ g�rf is the Lie bracket, and (W ij)i;j=1;:::;d are
independent Brownian motions; see [Hai24].

So far we only control I(B;dW ) in L2(
). To show that it has sufficient regularity we
need the following deep result on moments of polynomials of Gaussian random variables.

Theorem 3.6. (Gaussian hypercontractivity) Let I be an index set and let (Yi)i2I
be a centered Gaussian process. Let P :Rm!R be a polynomial of degree n. Then for all
0< p<1 there exists a constant Cn;p> 0 (which is independent of m) such that

Cn;p
¡1E[jP (Yi1; :::; Yim)jp]1/p6E[jP (Yi1; :::; Yim)j2]1/26Cn;pE[jP (Yi1; :::; Yim)jp]1/p:

Proof. See Janson [Jan97], Theorem 3.50. �

Theorem 3.7. Let (Bt)t2[0;1] be a d-dimensional fractional Brownian motion with Hurst
index H 2 (1

3
;
1

2
). For i2f1; :::; dg we set Bs;t

ii :=
1

2
(Bs;t

i )2 and for i=/ j let

Bs;t
ij := I(Bi;dBj)s;t¡BsiBs;t

j :

Then

E[jBs;tjp]1/p. jt¡ sj2H

for all p2 (0;1), and in particular we can apply Theorem 3.1 to obtain a modification B~

of B such that (B;B~ ) is an �-rough path for all �2 (1/3;H).

Proof. Let i=/ j and 06 s< t6 1. Define

Jn(t) := In(Bi;dBj)(t)+B�kt
n
n
i B�kt

n
n ;�kt

n
n +t

j ;

where In is as in Lemma 3.4. Using similar arguments as in the proof of Lemma 3.4, one
can show that

E[j(Jn)s;t¡ I(Bi; dBj)s;tj2]1/2. 2¡n(2H¡1/2) t¡ s
p

:

The extra term makes the calculation longer but not more difficult; similarly estimating the
difference of the time increments is more technical but not more difficult than estimating
the difference at a fixed time.

Pick now n0 with 2¡n0¡16 jt¡sj<2¡n0. Using the same decomposition that appeared
in the proof of the sewing lemma, Theorem 1.2, we get

E[jI(Bi;dBj)s;t¡BsiBs;t
j jp]1/p6E[jI(Bi;dBj)s;t¡ (Jn0)s;tjp]1/p+E[j(Jn0)s;t¡BsiBs;t

j jp]1/p

.jt¡ sj2H ;

where the last step used Gaussian hypercontractivity. Now the claim follows from Kol-
mogorov's continuity criterion for rough paths. �

3.2 A glimpse into rough path homogenization
Recall the example from the introduction: X is given by a sufficiently chaotic dynamical
system

X_ = f(X); X(0)� �;
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where � is an invariant measure (i.e. X(t)� � for all t> 0), and

Y_ "(t)=
1

"
p �(Y "(t))X(t/"); Y "(0)=x0;

where � 2Cb3(Rm; L(Rd;Rm)) and we assume thatZ
y�(dy)= 0:

Based on what we understand now, we know that if

Xs;t
" =

1

"
p
Z
s

t

X(r/")dr; Xs;t
" =

1
"

Z
s

tZ
s

r1

X(r2/")dr2
X(r1/")dr1

converges weakly in �-rough path topology for �2 (1
3
;
1

2
) to�

Bs;t;

Z
s

t

Bs;r1
�dBr1+A(t¡ s)
�
;

where A2Rd
d takes values in the antisymmetric matrices (which has to be true because
(X";X") is a geometric rough path and therefore the limit is, too), then Y " converges
weakly to Y 0 solving �(Y )2Rm

dYt
0=�(Yt

0) �dBt+D�(Yt
0)�(Yt

0)Adt�

And indeed, the rough path convergence can be shown under suitable assumptions on X,
see for example the foundational work [KM17], where also � that are nonlinear in X are
studied.

4 Signatures and applications in machine learning
The discussion of low regularity rough paths showed the importance of higher iterated
integrals. The signature of a path consists of all of its iterated integrals, seen not as
functions but evaluated at the terminal time. This can be interpreted as a nonlinear type
of �Fourier transform�, which encodes important information about a path and its nonlinear
effects. Therefore, the signature is a powerful tool in machine learning applications.

4.1 The signature of a smooth path
We start by introducing the signature of a differentiable path X 2C1([0; T ]; V ), where as
before V is a d-dimensional normed vector space with basis (e1; :::; ed).

Definition 4.1. (Signature of non-rough paths) Let X 2C1([s; t]; V ). The signature
of X is defined as

S(X) :=
¡
1;Xs;t

(1)
;Xs;t

(2)
; :::
�
2T ((V ));

where

Xs;t
(n)
:=

Z
s<r1<���<rn<t

dXr1
 ���
 dXrn2V 
n;
or, equivalently,

Xs;t
i1���in :=

Z
s<r1<���<rn<t

dXr1
i1���dXrn

in:

Sometimes we also write S(X)s;t to emphasize the time interval under consideration, so
that r 7!S(X)s;r is a T ((V ))-valued path.
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The signature is just the collection of all iterated integrals of a path, evaluated at a
fixed time. It has several useful properties, and to formulate one of those we need the
concatenation of paths:

Definition 4.2. (Concatenation of paths) Let 06 s6 u6 t and let X: [s; u]! V and
Y : [u; t]!V. The concatenation of X and Y is

X?Y : [s; t]!V ; (X?Y )r :=

�
Xr; r2 [s; u];
Yr¡Yu+Xu; r2 (u; t]:

Note that X?Y is not necessarily C1, but it is always continuous and of bounded vari-
ation (actually piecewise C1 and Lipschitz continuous). All of the discussion in this section
extends to continuous paths of bounded variation, and therefore this loss of continuous
differentiability does not pose a problem.

Lemma 4.3. (Properties of the signature) Let X 2C1([s; u]; V ) and Y 2C1([u; t]; V ).

i. Invariance under time reparametrization: For � 2C1([a; b]; [s; u]) strictly increasing
and surjective (a �time change�) consider X � � 2C1([a; b]; V ). Then

S(X � �)a;b=S(X)s;u:

ii. Homomorphism property / Chen's relation:

S(X?Y )=S(X)
S(Y ):

iii. Time reversal: X
��
: [s; u]!V with X

��
r :=Xs+u¡r satisfies

S
¡
X
���

s;u=S(X)s;u
¡1;

i.e.
S(X)s;u
S

¡
X
���

s;u=S
¡
X
���

s;u
S(X)s;u=1=(1; 0; 0; :::):

iv. Shuffle product: For all words w;w 02W we have

hS(X); wihS(X); w 0i= hS(X); wtw 0i:

Proof.

i. Note that (X � �)0= (X 0 � �)� 0 by the chain rule, and thus a change of variables
yields for any continuous function f : [a; b]!RZ

a

c

f(r)d(X � �)ri =
Z
s

�(c)

(f � �¡1)(r)dXr
i: (4.1)

With f = 1 we obtain S(X � �)a;ci = S(X)s;�(c)
i . Now assume by induction that

S(X � �)a;c
i1:::in¡1=S(X)s;�(c)

i1:::in¡1. Then

S(X � �)a;c
i1:::in =

Z
a

c

S(X � �)a;r
i1:::in¡1d(X � �)r

in

=
induct.

Z
a

c

S(X)s;�(r)
i1:::in¡1d(X � �)r

in

=
(4:1)

Z
s

�(c)

S(X)s;r
i1:::in¡1dXr

i

= S(X)s;�(c)
i1:::in:

Taking c= b with �(c)=u by surjectivity, the claim follows.
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ii. Let Z :=X?Y . We have with r0 := 0 and rn+1 := t

Zs;t
i1���in =

Z
s<r1<���<rn<t

dZr1
i1���dZrn

in

=
X
k=0

n Z
s<r1<���<rk<u<rk+1<���<rn<t

dZr1
i1���dZrn

in

=
Fubini X

k=0

n Z
s<r1<���<rk<u

dZr1
i1���dZrk

ik

Z
u<rk+1<���<rn<t

dZrk+1
ik+1���dZrn

in

=
Z=Y ?X X

k=0

n Z
s<r1<���<rk<u

dXr1
i1���dXrk

ik

Z
u<rk+1<���<rn<t

dYrk+1
ik+1���dYrn

in

=
X
k=0

n

Xs;u
i1:::ikYu;t

ik+1:::in

= (S(X)
S(Y ))s;t
i1:::in:

iii. This follows by observing that the signature solves the differential equation
dS(X)s;r=S(X)s;r
 dXr. See Proposition 2.14 in [LCL07] for details.

iv. The claim clearly holds for jw j; jw 0j6 1 by the integration by parts rule. Assume
it holds for jw j+ jw 0j6n and consider wi and w 0j with jwij+ jw 0j j6n+1. Then
jwij+ jw 0j6n and jw j+ jw 0j j6n and therefore

hS(X); wiihS(X); w 0j i =

Z
s<r1<t

S(X)s;r1
w dXr1

i

Z
s<r2<t

S(X)s;r2
w 0 dXr2

j

=

Z
s<r1<rr<t

S(X)s;r1
w S(X)s;r2

w 0 dXr1
i dXr2

j

+

Z
s<r2<r1<t

S(X)s;r1
w S(X)s;r2

w 0 dXr1
i dXr2

j

=

Z
s<r2<t

S(X)s;r2
wi S(X)s;r2

w 0 dXr2
j

+

Z
s<r1<t

S(X)s;r1
w S(X)s;r1

w 0jdXr1
i

=
induction

Z
s<r2<t

S(X)s;r2
witw 0dXr2

j +

Z
s<r1<t

S(X)s;r1
wtw 0jdXr1

i

= S(X)s;t
(witw 0)j

+S(X)s;t
(wtw 0j)i

= S(X)s;t
witw 0j:

�

From the signature of a C1 (or bounded variation) path X, we can read off any solution
to a linear equation driven by X: Let A2L(V ; L(W ;W )) for an m-dimensional normed
vector space W and consider the linear differential equation

dYt=AYtdXt; Y0=x2W ;

which we interpret as A(dXt)Yt or, coordinatewise, as A2Rm�m�d with

dYt
i=
X
j=1

m X
`=1

d

Ai;j ;kYt
jdXt

k:
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Let us set up a Picard iteration with

�(Y )t
i=xi+

Z
0

tX
j=1

m X
k=1

d

Ai;k;`Ys
jdXs

k;

which we start in the zero path. Then

�(0)t
i = xi;

� ��(0)ti = xi+

Z
0

tX
j=1

m X
k=1

d

Ai;j ;kx
jdXs

k

= xi+
X
j=1

m X
k=1

d

Ai;j ;kx
jX0;t

k ;

��n+1(0)t
i = xi+

X
j=1

m X
k=1

d

Ai;j ;k

Z
0

t

��n(0)s
jdXs

k:

This suggests defining A
0:W!W

A
0(x)i :=xi;

and then inductively A
n:W 
V 
n!W ,

A
n+1(x
 y)i=
X

jn+1=1

m X
kn+1=1

d

Ai;jn+1;kn+1A

n(x; y�kn+1)jn+1;

so that
�(0)t=A


0(x); ��2(0)t=A

0(x)+A
1(x
X0;t);

and then with the induction assumption ��n(0)t=
P

r=0
n¡1A
r

¡
x
X0;t

(r)�:
��n+1(0)t

i = xi+

Z
0

t X
jn+1=1

m X
kn+1=1

d

Ai;jn+1;kn+1

X
r=0

n¡1

A
r
¡
x
X0;s

(r)�jn+1dXs
jn+1

= xi+
X
r=1

n

A
r
¡
x
X0;t

(r)�i:
Corollary 4.4. Let X 2C1([0; T ]; V ) and let A2L(V ;L(W ;W )) and x2W. The solution
to the differential equation

dYt=AYtdXt; Y0=x2W ;

is given by

Yt=
X
r=0

1

A
r
¡
x
X0;t

(r)�
:

Proof. The only thing left to prove is the convergence of the series for all times (for small
times it follows from the contraction property of the Picard iteration). But����A
r¡x
X0;t

(r)�����. jAjrjxj����X0;t
(r)����

and ����X0;t
(r)���� =

��������Z
0<s1<���<sr<t

dXs1
 ���
 dXsr

��������
6 kX 0k1C(d)r

��������Z
0<s1<���<sr<t

ds1:::dsr

��������
= kX 0k1C(d)r

tr

r!
;
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which proves the summability of the series. �

Thus, if X and X~ are two continuously differentiable or bounded variation paths with
S(X)0;T =S(X~)0;T , then the solutions Y and Y~ to the linear equations

dYt=AYtdXt; Y0=x2W ;

respectively

dY~t=AY~tdX~t; Y0=x2W ;

agree at the end time: YT =Y~T .
What about nonlinear equations? Can we determine terminal value of the solution

to a nonlinear ODE driven by X from the signature S(X)0;T? Or, more ambitiously, is
it maybe possible to recover the entire path (Xt)t2[0;T ] from knowing S(X)0;T? Due to
invariance under time reparametrization and Chen's rule together with the time reversal
property, the answer is clearly no: We can only hope to obtain X up to an unknown time
parametrization, and we cannot tell apart the signature of X?X

��
and of the zero path 0t=0:

S
¡
X?X
���

0;T =S(X)0;T 
S
¡
X
���

0;T =1=S(0)0;T :

But remarkably this is the only loss of information when passing from a path to its signa-
ture: As shown by Hambly and Lyons [HL10] (with previous work by Chen on piecewise
smooth paths and later work by Beodihardjo-Geng-Lyons-Yang on rough paths), the sig-
nature of a bounded variation path determines up to time parametrization a unique path
that never goes directly back on itself, in the sense that does not have any tree-like parts,
where tree-like path is a notion introduced in [HL10].

Since the time-parametrization and the insertion of tree-like paths do not affect solu-
tions to differential equations driven by a given path, we obtain as a corollary that if
S(X)0;T = S(X~)0;T , then the solutions to any (linear or nonlinear) differential equation
driven by X respectively X~ agree at the terminal time.

Maybe discuss log signature.

4.2 The signature of a rough path
It is natural to also consider the signature of a rough path. Its existence is less obvious than
in the smooth case, but it follows from the existence of the controlled rough path integral.

Definition 4.5. (Signature of non-rough paths) Let X be an �-rough path and let
N = b�¡1c. The signature of X is defined as

S(X)s;t :=
¡
1;Xs;t

(1)
; :::;Xs;t

(N)
;Xs;t

(N+1)
; :::
�
2T ((V ));

where for n>N we define inductively as controlled rough path integral

Xs;t
(n)
:=

Z
s<r<t

Xs;r
(n¡1)
dXr2V 
n;

or, equivalently,

Xs;t
i1���in :=

Z
s<r<t

Xs;r
i1:::in¡1dXr

in:

Since we saw that the rough path integral maps controlled paths to controlled paths,
the existence of all higher order integrals follows from that of

Xs;t
i1:::iN+1=

Z
s<r<t

Xs;r
i1:::iNdXr

iN+1;
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for which we have to show that [s; T ]3 r 7!Xs;r
i1:::iN 2R is in DX

N�([s; T ];R). We leave this
as an exercise.

Then, one can derive decay properties of the iterated integrals which allow to conclude
the same expansion formula for solutions to linear rough differential equations as in the
smooth case: The solution Y to

dYt=AYtdXt; Y0=x2W ;

is given by

Yt=
X
r=0

1
A
r

¡
x
X0;t

(r)�
:

Also, S(X)0;T determines the terminal value of any nonlinear rough differential equation
driven by X.

4.3 Applications of signatures in machine learning
In recent years, the signature transform has emerged as a powerful tool in machine learning,
particularly for analyzing sequential and time-series data. The essence of rough path theory
lies in its ability to provide a robust mathematical framework for handling paths that
exhibit irregular and oscillatory behavior, which are commonly encountered in real-world
data streams. The signature of a path captures the essential features of the path through
its iterated integrals, enabling a compact and efficient representation of complex data. An
important aspect of the signature is that it captures the order of events, which distinguishes
it from linear signal processing transforms such as wavelets and Fourier transforms.

Signature-based methods have shown impressive performance in tasks such as sequence
classification, prediction, and anomaly detection. But I am not an expert and am only able
to give a quite superficial glimpse into these applications. See [Lyo14, CK16, FLMS23,
LM22, CS24] for more extensive introductions.

Broadly seen, the effectiveness of signature methods can be explained by the following
meta result, where we write

S(N)(X) :=
¡
1;X0;T

(1)
; :::;X0;T

(N)�
for the truncated signature of X.

Theorem 4.6. Let BV([0; T ]; V ) be the space of continuous bounded variation functions
with norm kXk := kXk1+ kXkTV, where

kXkTV := sup
n2N

sup
0=t0<���<tn=T

X
k=0

n¡1
jXtk;tk+1j:

Let F :BV([0;T ];V )!W be a function which does not depend on the time reparametrization
of X and which assigns the same value to all paths that are �equivalent up to tree-like paths�.
Then for every compact set K �BV([0; T ]; V ) and every "> 0 there exist N 2N0 and an
affine linear function L:T (N)(V )!W such that

sup
X2K

jF (X)¡LS(N)(X)j6 ":

Proof. By arguing componentwise, we may assume that W =R.
We consider an equivalence relation on BV([0; T ]; V ) where two paths are equivalent

if they differ by time-parametrization and the insertion of tree-like paths. Write BV for
the equivalence classes. By assumption we can interpret F as a map from BV to W , and
the equivalence classes corresponding to elements of K is a compact subset K�BV in the
quotient space topology.
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Consider the following space of functions on BV:

S = fX 7!LS(N)(X):N 2N0; L:T
(N)(V )!W affine linearg:

By the Hambly-Lyons result, S separates points. Moreover, S is an algebra: For linear ';
 2S we have

'(X) (X) =

0@X
k=0

N X
i1:::ik=1

d

'i1���ikX0;T
i1:::ik

1A0@X
`=0

M X
j1:::j`=1

d

 j1���j`X0;T
j1:::j`

1A
=
X
k=0

N X
`=0

M X
i1:::ik;j1:::j`=1

d

'i1���ik j1���j`X0;T
i1:::ikX0;T

j1:::j`

=
X
k=0

N X
`=0

M X
i1:::ik;j1:::j`=1

d

'i1���ik j1���j`X0;T
i1:::iktj1:::j`;

which is again an element of S. Making ' and/or  affine linear by adding a constant
does not change anything.

Now the claim follows by the Stone-Weierstraÿ theorem. �

Exercise 4.1. Formulate a similar result for functions of rough paths.

The goal in machine learning is to learn a function F from given data points

(Xi; F (Xi))i=1;:::;n:

If F has the invariance in the previous theorem, we can achieve this by learning an affine
linear function on signatures. For example, we could use linear regression methods on
signature features.

In recent years, this approach has been implemented by imposing more structure on
the function F : The neural controlled differential equation (neural CDE) approach assumes
that the data points are given by

(Xi; Yi)i=1;:::;n;

where each Xi is a time series, which we enhance to a continuous path of bounded variation
and from now on identify with this function. Then we make the ansatz

Yi=��(y; S(Xi));

where y is a fixed4.1 initial value and ��(y; S(X)) is the solution Y at time 1 of the
controlled differential equation

Yt= y+

Z
0

t

f�(Ys)dXs;

where f� is a nonlinear function that is parametrized by a neural network. Numerically,
we can approximate the solution by a function of the truncated signature S(N)(X).

Then we learn f� by tuning the weights in the neural network via usual (stochastic)
gradient descent methods, with the goal of minimizing some loss function `,

X
i=1

n

`(��(y; S(Xi)); Yi):

4.1. Or maybe also learnable? This is unclear to me.
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This method has been implemented and tested on many concrete data sets, with strong
performance on complex problems. Another successful installation of the signature method
in learning are signature kernels, which integrate signatures with kernel methods to facil-
itate computations. See the references listed above for further details.

5 Applications to SPDEs

5.1 Solving the KPZ equation with rough paths
To be done, I will not manage to write anything but we can discuss this during the lecture.

5.2 Regularity structures and the parabolic Anderson model
To be done. I will not manage to prepare a �light� version of regularity structures as
originally planned. But we can discuss the general theory of regularity structures and
specifically the example of the 2d parabolic Anderson model.

6 Stochastic sewing and regularization by noise

The rough path approach bypasses most of stochastic analysis and allows handling sto-
chastic processes with tools from deterministic, pathwise analysis. But in recent years
there is a strong trend rough analysis to combine rough path ideas with probabilistic
methods. This for example underlies the probabilistic theory of energy solutions to singular
SPDEs such as the KPZ equation [GJ14, GP18, GP20]. A particularly elegant combination
of rough path and probabilistic ideas is Khoa Lê's stochastic sewing lemma, which has
proven to be a powerful tool in stochastic analysis, with applications in6.1 regularization
by noise [Lê20, HP21] (and many more), numerics [LL21] (and many more), homoge-
nization [HL20], hybrid rough-stochastic dynamics [FHL21] and stochastic calculus for
fractional Brownian motion [MP24, D�MP23].

The main idea of the stochastic sewing lemma is to combine the argument of the
sewing lemma with the Burkholder-Davis Gundy inequality to make use of stochastic
cancellations.

Theorem 6.1. (Lê, [Lê20]) Let p> 2 and let �:�T!Lp :=Lp(
;P) be adapted (i.e.
�s;t is Ft-measurable for all (s; t)2�T) and continuous as an Lp-valued map, with �t;t=0
for all t2 [0; T ]. Assume that there exist C >0 and ">0 such that for all 06 s6u6 t6T:

k��s;u;tkLp 6 C jt¡ sj
1

2
+"
;

kE[��s;u;tjFs]kLp 6 C jt¡ sj1+":

Then there exists a unique stochastic process I�: [0; T ]!Lp such that I� is continuous as
an Lp-valued map, I�0=0, and such that for all 06 s6 t6T

kI�s;t¡�s;tkLp .T C jt¡ sj
1

2
+"
;

kE[I�s;t¡�s;tjFs]kLp . C jt¡ sj1+":

6.1. This list is skewed towards my own work, and misses important references by Butkovsky and Gerencser,
among others.
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Proof.

� Existence: We only construct I� and show the estimate for s=0. The estimate for
s>0 needs some additional work, as in the case of the deterministic sewing lemma.

Let tk
n := k2¡nt for n2N0 and k 2f0; :::; 2ng. Then define

In�t :=
X
k=0

2n¡1

�tkn;tk+1n :

The first step is now as in the deterministic case, but then we use a Doob-Meyer
type decomposition to facilitate the further analysis:

In+1�t¡In�t =
X
k=0

2n¡1

��t2k
n+1;t2k+1

n+1 ;t2k+2
n+1

=
X
k=0

2n¡1 �
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 ¡E
h
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 jFt2kn+1
i�

+
X
k=0

2n¡1

E
h
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 jFt2kn+1
i
:

The first term on the right hand side consists of martingale increments. Therefore,
we apply the Burkholder-Davis Gundy inequality and Minkowski's inequality to
obtain 









X

k=0

2n¡1 �
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 ¡E
h
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 jFt2kn+1
i�











Lp

.
BDG











X
k=0

2n¡1 �
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 ¡E
h
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 jFt2kn+1
i�

2












Lp/2

1/2

6
Minkowski

 
2
X
k=0

2n¡1 





��t2kn+1;t2k+1n+1 ;t2k+2
n+1 ¡E

h
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 jFt2kn+1
i







Lp

2

!
1/2

.
 X

k=0

2n¡1 



��t2kn+1;t2k+1n+1 ;t2k+2
n+1






Lp
2

!
1/2

6
�
2nC22

¡n
�
1

2
+"

�
2
t

�
1

2
+"

�
2
�
1/2

=C2¡n"t
1

2
+"
;

which is summable in n. The remaining term is simply bounded by the triangle
inequality:









X

k=0

2n¡1

E
h
��t2k

n+1;t2k+1
n+1 ;t2k+2

n+1 jFt2kn+1
i











Lp

6
X
k=0

2n¡1 





Eh��t2kn+1;t2k+1n+1 ;t2k+2
n+1 jFt2kn+1

i






Lp

6 2nC2¡n(1+")t1+"=C2¡n"t1+";

which is also summable in n. From here we get the existence of I�t and the bound
for s=0.

� Uniqueness: If I~� is another such process, let us write �t= I�t¡I~�t. Then � is
a stochastic process satisfying

k�s;tkLp. jt¡ sj
1

2
+"
; kE[�s;tjFs]kLp. jt¡ sj1+":
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With the same dyadic times tk
n as in the existence proof we obtain again with

Burkholder-Davis-Gundy and triangle inequality

k�tkLp =











X
k=0

2n¡1
�tk

n;tk+1
n












Lp

6










X
k=0

2n¡1

�tk
n;tk+1

n ¡E[�tk
n;tk+1

n jFtkn]












Lp

+











X
k=0

2n¡1

E[�tk
n;tk+1

n jFtkn]












Lp

.
 X

k=0

2n¡1

k(�tk
n;tk+1

n ¡E[�tk
n;tk+1

n jFtkn])kLp
2

!
1/2

+
X
k=0

2n¡1

kE[�tk
n;tk+1

n jFtkn]kLp

.
�
2n2

¡n
�
1

2
+"

�
2
�
1/2

+2n2¡n(1+"). 2¡n":

Since n is arbitrary, we must have �t=0. �

As an application of the stochastic sewing lemma, let us discuss a regularization by noise
result which in this formulation is inspired by Lê [Lê20], but see also [CG16] and others.
To simplify the presentation we restrict to one-dimensional paths, but everything works in
exactly the same way in higher dimensions. We start with a lemma, in which B1;1

¡� is a
Besov space, see [BCD11] or simply imagine a space consisting of distributional derivatives
of Hölder continuous functions.

Lemma 6.2. Let B be a one-dimensional fractional Brownian motion with Hurst index
H 2 (0; 1) and let f 2Cb1(R;R) and �<

1

2H
and p> 2. Then







Z

s

t

f(Br)dr










Lp
. kf kB1;1

¡� jt¡ sj1¡�H:

Proof. Define

�s;t :=E

�Z
s

t

f(Br)dr

��������Fs�:
Since f is smooth we have

k�s;t¡ f(Bs)(t¡ s)kLp. jt¡ sj1+H

and therefore the Riemann sums converge to the same limit and

I�t=
Z
0

t

f(Br)dr:

But working with � will give us better estimates. Indeed, observe that by the tower
property of conditional expectation

E[��s;u;tjFs] =E

�Z
s

t

f(Br)dr¡
Z
s

u

f(Br)dr¡
Z
u

t

f(Br)dr

��������Fs�=0:

Since ��s;u;t=�s;t¡ �s;u¡ �u;t, it now suffices to bound k�s;tkLp. jt ¡ sj
1

2
+" to apply

stochastic sewing. We can write the fractional Brownian motion as

Br=

Z
¡1

s

K(r; u)dWu+

Z
s

u

K(r; u)dWu;
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where W is a Brownian motion and the kernel K satisfies

jK(r; u)j.

8>><>>: (r¡u)H¡
1

2; jr¡uj� 1;

(r¡u)H¡
3

2; jr¡uj� 1:

Then6.2
R
¡1
s

K(r; u)dWu is Fs-measurable and
R
s

u
K(r; u)dWu is independent of Fs and

therefore

E

�Z
s

t

f(Br)dr

��������Fs�= Z
s

t

E

�
f

�
x+

Z
s

r

K(r; u)dWu

����������
x=

R
¡1
s K(r;u)dWu

dr;

where Z
s

r

K(r; u)dWu � N
�
0;

Z
s

r

K(r; u)2du

�
= N

�
0;

Z
s

r

(r¡u)2H¡1dr
�

= N
�
0;

1
2H

(r¡ s)2H
�
:

Therefore,

E

�
f

�
x+

Z
s

r

K(r; u)dWu

��
=

Z
f(x+ y)P 1

2H
(r¡s)2H(y)dy= f �P 1

2H
(r¡s)2H ;

where P�2 is the heat kernel with variance �2. It is one of the standard results in Besov
spaces and PDEs (see e.g. [GIP15] for a presentation that fits here) that

kg �Ptk1. t¡
�

2kgkB1;1
¡� ;

so we obtain ��������E�f�x+ Z
s

r

K(r; u)dWu

����������. kf kB1;1
¡� (r¡ s)¡�H

and then, using that �< 1

2H
so that �H <

1

2
< 1,







E�Z

s

t

f(Br)dr

��������Fs�








Lp
. kf kB1;1

¡�

Z
s

t

(r¡ s)¡�Hdr. kf kB1;1
¡� (t¡ s)1¡�H:

Since �H<
1

2
, the right hand side is of the form jt¡sj

1

2
+", and the stochastic sewing lemma

applies and shows that







Z
s

t

f(Br)dr










Lp

6








Z

s

t

f(Br)dr¡�s;t









Lp
+ k�s;tkLp

. kf kB1;1
¡� (t¡ s)1¡�H:

�

Together with an approximation argument, this lemma allows us to make sense ofZ
0

t

f(Br)dr

6.2. One can show that FtB=FtW .
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whenever f 2B1;1
¡� for �< 1

2H
, and in that case the integral is almost surely 1¡�H ¡ �

Hölder continuous for any � > 0, so in particular 1

2
+ " Hölder continuous for some "> 0.

With (a lot) more work we can show that if Y is a stochastic process satisfying

Yt=x+ lim
n!1

Z
0

t

bn(Ys)ds+Bt;

where bn=b� �n with a mollifier sequence (�n) and with b2B1;1
1¡� (plus additional technical

conditions), then we have the same estimate forZ
0

t

f(Yr)dr

as for
R
0

t
f(Br)dr. In particular, Yt=x+  t+Bt, where

 t=

Z
0

t

b(Ys)ds := lim
n!1

Z
0

t

bn(Ys)ds

is 1

2
+ " Hölder continuous.

Theorem 6.3. Let H <
1

2
and6.3 �< 1

2H
¡ 1. Let Y and Y~ be adapted solutions to

Yt=x+  t+Bt; Y~t=x+  ~t+Bt;

where

 t=

Z
0

t

b(Ys)ds := lim
n!1

Z
0

t

bn(Ys)ds;  ~t=

Z
0

t

b(Y~s)ds := lim
n!1

Z
0

t

bn(Y~s)ds

are such that E[k k1/2+"
p ] +E[k ~k1/2+"

p ]<1 for all p> 2. Assume that b2B1;1
1¡� . Then

Y and Y~ are indistinguishable.

Proof. Lê's idea is to write with a Taylor expansion

Yt¡Y~t =  t¡  ~t

= lim
n!1

Z
0

t

(bn(x+  s+Bs)¡ bn(x+  ~s+Bs))ds

= lim
n!1

Z
0

t

( s¡  ~s)
Z
0

1

bn
0 (x+  s+�( ~s¡  s)+Bs)d�ds|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

:=dXs
n;

where

Xt
n=

Z
0

tZ
0

1

bn
0 (x+  s+�( ~s¡  s)+Bs)d�ds=

Z
0

1Z
0

t

bn
0 (�s

�+Bs)dsd�;

where �� is an adapted stochastic process with kk��k1/2+"kLp. 1, uniformly in �.
Once we show that Xn converges in probability to a process that is almost surely 1

2
+ "

Hölder continuous, we are done: Then  t¡  ~t solves a linear Young differential equation
with zero initial data, and thus is �0 by uniqueness. As b2B1;1

1¡� we get b 02B1;1
¡� and

thus the integral
R
0

t
bn
0 (�s

�+Bs)ds is of a similar type as in the previous lemma, except for
the Hölder continuous perturbation ��.

We define similarly to the previous proof

�s;t :=�s;t
n;� :=E

�Z
s

t

bn
0 (�s

�+Br)dr

��������Fs�;
6.3. �< 1

2H
should be sufficient, I may have made a mistake somewhere in the computations.
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which satisfies

k�s;t¡ bn0 (�s�+Bs)(t¡ s)kLp. kbn00k1jt¡ sj1+H

and thus I�t=
R
0

t
bn
0 (�s

�+Bs)ds (here n is fixed). However, now we unfortunately no longer
have E[��s;u;tjFs] = 0 and instead

��s;u;t = E

�Z
s

t

bn
0 (�s

�+Br)dr

��������Fs�¡E

�Z
s

u

bn
0 (�s

�+Br)dr

��������Fs�¡E

�Z
u

t

bn
0 (�u

�+Br)dr

��������Fu�
= E

�Z
u

t

bn
0 (�s

�+Br)dr

��������Fs�¡E

�Z
u

t

bn
0 (�u

�+Br)dr

��������Fu�
and thus

E[��s;u;tjFs] = E

�Z
u

t

(bn
0 (�s

�+Br)¡ bn0 (�u�+Br))dr

��������Fs�
= E

�
E

�Z
u

t

(bn
0 (�s

�+Br)¡ bn0 (�u�+Br))dr

��������Fu���������Fs�
by the tower property. The inner conditional expectation is with B~u;r :=

R
¡1
u
K(r; s)dWs��������E�Z

u

t

(bn
0 (�s

�+Br)¡ bn0 (�u�+Br))dr

��������Fu���������
=

��������Z
u

t�
P 1

2H
(r¡s)2H � bn

0
�
(�s

�+B~u;r)¡
�
P 1

2H
(r¡s)2H � bn

0
�
(�u

�+B~u;r)dr

��������
.
Z
u

t





P 1

2H
(r¡s)2H � bn

00







1
j�s�¡ �u�jdr

.
Z
u

t

(r¡ s)¡(�+1)Hkb 00kB1;1
¡�¡1(s¡u)

1

2
+"k��k1/2+"dr

.(t¡ s)1¡(�+1)H+
1

2
+"kb 00kB1;1

¡�¡1k��k1/2+";

where we used that �< 1

2H
and thus (�+ 1)H <

1

2
+H < 1. Since even �<

1

2H
¡ 1, the

exponent on (t¡ s) is greater than 1 and together with the bound

k��s;u;tkLp. kb 0kB1;1
¡� (t¡ s)1¡�H

we obtain that � can be sewed and then that the claimed uniqueness holds. �
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