
CHAPTER 9

Topological dynamics: basic notions and examples

We introduce the notion of a dynamical system, over a given semigroup S. This
is a (compact Hausdorff) topological space on which the semigroup S operates in
the sense defined in 9.3. Dynamical systems over S are closely connected to the
compact right topological semigroup βS for several reasons.
First, βS turns out be helpful in explaining some notions for dynamical system
over S. Using the theory of βS developed so far, we are able to prove theorems on
dynamical systems.
Moreover, βS can be viewed as a dynamical system over S with a particular uni-
versal role in the study of S-systems. And conversely, quite often it is possible to
prove theorems on βS or on the combinatorics on S, using results on dynamical
systems over S.

In this chapter, we will only define basic notions on dynamical systems, note
some simple facts, and give examples, some of which are really simple and intuitive,
some of a quite abstract character, to be used in the next chapters.

Many notions and results on dynamical systems work more naturally if S is
assumed to be a monoid, not just a semigroup.

9.1. Definition A monoid is a triple (S, ·, 1S) in which (S, ·) is a semigroup and
1S is an identity of S, i.e. 1Sx = x1S holds for all x ∈ S.
An identity of a semigroup S, if it exists, is uniquely detemined. We will therefore
notationally abbreviate a monoid (S, ·, 1S) as (S, ·) or even as S; instead of 1S , we
also write 1.

Thus, (ω,+) is a monoid with identity 0; (N,+) is not a monoid. Every semi-
group (S, ·) can be extended to a monoid (S+, ·, i) where i is an element not in S
and we define ix = xi = x for all x ∈ S+.

1. Basic notions

We split the definition of a dynamical system into two parts: a purely set resp.
monoid theoretic one and a topological one.

9.2. Definition Assume that X is an arbitrary set and S is a monoid. An action
of S on X is a function µ such that

• µ maps S ×X to X; we use the multiplicative notation sx or s · x for µ(s, x)

• 1S · x = x holds for every x ∈ X
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60 9. TOPOLOGICAL DYNAMICS: BASIC NOTIONS AND EXAMPLES

• s(tx) = (st)x holds for all x ∈ X and s, t ∈ S.

We say that S acts on X, via µ.

As a simple but somewhat abstract example of an S-action, assume that (T, ·, 1T )
is a monoid and that S is a submonoid of T , in particular that 1T = 1S ∈ S. Then
S acts on T by left multiplication: we simply put µ(s, x) = s · x for s ∈ S and
x ∈ T . Similarly, for V a vector space over a field K, the multiplicative semigroup
(K, ·) acts on V by µ(k, v) = kv , for k ∈ K and v ∈ V .

9.3. Definition Assume that S is a monoid. A dynamical system over S or an
S-system is a pair (X,µ) where

• X is a non-empty compact Hausdorff space

• µ is an action of S on X

• for every s ∈ S, the function ms : X → X given by ms(x) = sx is continuous.

I.e. S acts on X in a continuous fashion. The space X is called the phase space of
the system.

9.4. Remark Every function µ : S × X → X induces a map m : S → XX by
putting m(s) = ms for s ∈ S; conversely, given any function m : S → XX, we
obtain µ : S ×X → X by putting µ(s, x) = ms(x).
Let us recall from 1.6 the semigroup (XX, ◦) of all functions from X to itself, with
idX as its identity. Clearly, µ is an operation of S on X iff the induced map
m : S → XX is a monoid homomorphism, i.e. m(1S) = idX and mst = ms ◦mt

holds for s, t in S.
For a topological space X, write C(X) for the subsemigroup of (XX, ◦) consisting
of all continuous functions from X to itself. Then (X,µ) is a dynamical system over
S iff X is compact Hausdorff and the monoid homomorphism m : S → XX maps
S into C(X).

9.5. Remark In additive notation for S, the property mst = ms ◦mt of 9.4 turns
to ms+t = ms ◦mt.
Intuitively, we consider the elements of S as time intervals; given a point x ∈ X,
sx = ms(x) is the point to which x is moved after time s. The equalitymst = ms◦mt

says that the point mt(x) is moved, after time s, to the same point to which x is
moved after time s+ t.

Dynamical systems over the monoid (ω,+) can be described in a less abstract
way.

9.6. Remark (a) Dynamical systems over the monoid (ω,+) are called discrete.
(b) Let X be a compact Hausdorff space and t : X → X a continuous function. For
n ∈ ω, denote by tn the n’th iteration of t, i.e. tn = t ◦ · · · ◦ t︸ ︷︷ ︸

n times

; in particular, we set

t0 = idX . Putting n · x = tn(x) gives a discrete dynamical system with phase space
X, because tn+m = tn ◦ tm.
(c) Conversely, every discrete dynamical system (X,µ) with phase space X arises
in this way. To see this, we define a continuous function t : X → X by t(x) = 1 · x.
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(To avoid confusions, note that the identity of (ω,+) is the natural number 0, not
1!) Then for every n ∈ ω and x ∈ X, we have

n · x = (1 + · · ·+ 1) · x = (t ◦ · · · ◦ t)(x) = tn(x),

i.e. the multiplication with n is the n’th iteration of t.
(d) Thus discrete dynamical systems with phase space X are usually identified with
pairs (X, t), where t : X → X is continuous.

A fairly general way of producing dynamical systems is as follows.

9.7. Remark Assume that X is a compact Hausdorff space and S is a submonoid
of C(X). Then X becomes a dynamic system over S by putting s · x = s(x), for
s ∈ S and x ∈ X. I.e. the action of S on X is the application of functions in S to
points in X.
For example, let T be an arbitrary set of continuous functions from X into itself,
i.e. T ⊆ C(X). Let S = 〈C(X)〉 be the submonoid of (C(X), ◦) generated by T
(cf. ??), i.e. the elements of S are the finite products t1 ◦ · · · ◦ tn where n ∈ ω and
ti ∈ T . In particular for n = 0, the empty product s = idX is the identity of S.
Thus every T ⊆ C(X) gives rise to a dynamical system on S = 〈C(X)〉, with phase
space X.

2. Subsystems

We begin to study a natural notion in dynamical systems.

9.8. Definition Let X be a dynamical system over S.
(a) A subset of Y of X is said to be invariant if sy ∈ Y holds for all y ∈ Y and
s ∈ S, i.e. if

⋃
s∈Sms[Y ] ⊆ Y . Note that if Y is invariant, then so is clX(Y ), the

topological closure of Y in X, because the maps ms are continuous.
(b) Y ⊆ X is a subsystem of X (with respect to S) or an S-subsystem if it is
non-empty, topologically closed, and invariant. We then consider Y as a dynamical
system over S, with the continuous functions ms � Y , for s ∈ S.

As an easy example, consider the discrete dynamical system (X, t) where X is
the compact subinterval [0, 1] of the reals and t is the function mapping x ∈ X to
x/2. Clearly, every open subinterval [0, a), where 0 ≤ a ≤ 1, is invariant and every
closed subinterval [0, a] is a subsystem.

9.9. Definition Assume that X is a dynamical system over S and x is a point in
X.
(a) The (S-)orbit of x in X is the set

orb (x) = {sx : s ∈ S};

it is clearly the least invariant subset ofX containing x; note that x = 1Sx ∈ orb (x).
(b) Consequently, the set

x̄ = clXorb (x)

is the least subsystem of X containing x, the orbit closure of x in X.
(c) We call a subsystem Y of X simply generated if Y = x̄ for some x ∈ X.

E.g. in the example mentioned after 9.8, the orbit of x ∈ X is {tn(x) : n ∈ ω} =
{x/2n : n ∈ ω}, and the orbit closure is {x/2n : n ∈ ω} ∪ {0}.
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Minimal subsystems of a dynamical system X will be studied quite intensively.

9.10. Definition Assume that X is a dynamical system over S. A subsystem M
of X is minimal if every subsystem of M coincides with M . i.e. if M has no proper
subsystem.

For example, in a discrete dynamical system (X, t), every fixed point x of t
(i.e. t(x) = x) gives the minimal subsystem {x}. Slightly more generally, if x is a
periodic point with respect to t, i.e. tn(x) = x, n ≥ 1 and n is minimal with this
property, then {x, t(x), t2(x), . . . , tn−1(x)} is a minimal subsystem.

We state two central facts on minimal subsystems.

9.11. Theorem Every dynamical system X over S has a minimal subsystem.
More generally, for every subsystem Y of X, there is a minimal subsystem of Y .

Proof. As in 1.21, this is a routine application of Zorn’s lemma. We consider
the set (P,⊇) of all S-subsystems of Y , a nonempty partial ordering under reverse
inclusion. Every chain C in P has Z =

⋂
C∈C C as an upper bound – note that Z

is non-empty, C being a family of closed subsets of X with the finite intersection
property. So P has a maximal element, i.e. a minimal subsystem of Y . �

9.12. Definition For U ⊆ X and s ∈ S, we write s−1U for the set {x ∈ X : sx ∈
U}.

9.13. Proposition For every dynamical system X over S, the following are
equivalent.
(a) X is a minimal S-system
(b) for every x ∈ X, the orbit closure x̄ of x is X
(c) for every x ∈ X, the orbit of x is a dense subset of X
(d) for every non-empty open subset U of X, there is a finite subset e of S such
that X =

⋃
s∈e s

−1U .

Proof. (a) and (b) are equivalent because the orbit closure of any point x is
a subsystem of X and conversely, every subsystem of X includes an orbit closure.
Equivalence of (b) and (c) is trivial. For the equivalence of (c) and (d), we note
that (c) says that for every x ∈ X and every non-empty open U ⊆ X there is
some s ∈ S satisfying sx ∈ U . This means that X =

⋃
s∈S s

−1U holds for every

non-empty open U . Since X is compact and the sets s−1U are open (by continuity
of left multiplication with s), even X =

⋃
s∈e s

−1U holds for some finite e ⊆ S. �

It is clear from the remarks in 9.9 and also stated in 9.13 that minimal dynamical
systems are simply generated. In many situations, we are mainly interested in
minimal systems and therefore often study simply generated systems. These will
be described in an abstract but quite elegant way in Section 5.
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3. Mathematical examples

We give examples of dynamical systems with an intuitive mathematical content,
starting with simple ones and ending with a less trivial one. In particular, we will
describe their minimal subsystems. These examples will not be used in the rest of
the text; we present them here just because of their fascinating character.

9.14. Example Consider the discrete dynamical system (X, t) from Section 2,
where X = [0, 1] and t(x) = x/2. Here t has 0 as its unique fixed point, so {0} is a
minimal subsystem. For every x ∈ X, the orbit closure of x contains the point 0.
Thus, {0} is the least subsystem and hence the only minimal subsystem of (X, t).

9.15. Example Now consider X, t) where X = [0, 1] and t maps x ∈ X to x2.
Here t has 0 and 1 as its only fixed points. As in 9.14, {0} and {1} are the only
minimal subsystems of X, because for every x 6= 1, the orbit closure of x contains
0.

9.16. Example We consider the unit disk

K = {(x, y) ∈ R2 : x2 + y2 ≤ 1}
of the real plane. The points of K can be written in polar coordinates

x = xrφ = (r cosφ, r sinφ)

where φ, r are real numbers, and 0 ≤ r ≤ 1. The set R+ of non-negative real
numbers is a monoid under addition.
We claim that K becomes a dynamical system over R+ by putting

t · xrφ = xr′φ′

, with φ′ = φ+ t and t′ = re−t. (So after time t, the distance of x from the origin is
reduced by the factor e−t, and its argument is increased by t.) This holds because
the identity of (R+,+) is the number 0, clearly 0 · x = x, and for s, t ∈ R+, note
that (re−t)e−s = re−(s+t).
For a point x of K, the orbit of x is a spiral line L(x) starting at x and contracting
to 0; the orbit closure of x is L(x) ∪ {0}. Therefore, as in 9.14, {0} is the unique
minimal subsystem.

9.17. Example Here we work in the complex plane and consider the boundary

X = {x ∈ C :| x |= 1}
of the unit disk, where | x | is the absolute value of a complex number x. The points
of X are written in polar coordinates as

xφ = cosφ+ i sinφ,

for 0 ≤ φ < 2π. We fix an arbitrary angle α ∈ [0, 2π) and obtain a discrete
dynamical system by putting

t(x) = x · xα
(complex multiplication). So t(xφ) = xφ+α; the map t is the rotation of X by the
angle α. For simplicity, let us assume that α is positive. The behaviour of the
system (X, t) strictly depends on the angle α.
Case 1. α = q · 2π where q is a rational number, say q = m/n; without loss
of generalization, m ≤ n and m,n are relatively prime. In this case, xnα = 1 and
xkα 6= 1 for k < n; so tn is the identity on X. Every x ∈ X is periodic; its orbit
orb(x) = {x, x ·xα, x ·x2

α, . . . , x ·xn−1
α } has size n, and X is the union of its minimal

subsystems orb(x), x ∈ X.
Case 2. α = q · 2π where q is irrational. Then the set {xnα : n ∈ ω} of powers of
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xα is a dense subset of X; see the proof below. It follows that for every x ∈ X, the
orbit orb(x) = {x · xnα : n ∈ ω} is dense in X. Hence in this case, X is a minimal
system.

Proof. The topology of X is induced by the metric δ where δ(x, y) denotes
the length of the (shorter) arc from x to y, in X. Moreover, X is a group, under
complex multiplication. And the metric δ is invariant under multiplication, i.e. for
x, y, z ∈ X, we have δ(zx, zy) = δ(x, y), because multiplication with z is a rotation
on X.
For k ∈ Z, we write pk for xkα; the set G = {pk : k ∈ Z} is the subgroup of X
generated by xα. We also define G+ = {pk : k ≥ 1}.
Step 1. We first note that G is infinite, because m 6= n and pm = pn would
contradict the irrationality of α/2π.
Step 2. We show that for every ε > 0, there is some g ∈ G+ such that δ(g, 1) ≤ ε.
For this, consider for x ∈ X the open arc U(x) with center x and length ε. The
arcs U(x) cover X; by compactness, there is a finite subset e of X such that X =⋃
x∈e U(x). By Step 1, there is an x ∈ e and two distinct elements of G, say g and

h, lying in the same arc U(x). Then δ(g, h) < ε, f = g−1h is an element of G \ {1},
and δ(1, f) = δ(g, gf) = δ(g, h) < ε. Now f = pk for some k 6= 0; if k ≥ 1, then f
works for the claim. Otherwise, f−1 = p−k ∈ G+ and δ(f−1, 1) = δ(1, f) < ε, so
f−1 works.
Step 3. We now show that G+ is dense in X: let x ∈ X and ε > 0; we find some
g ∈ G+ such that δ(x, g) < ε. For the sake of intuitiveness, let us assume that
ε ≤ π/2. Let φ be the real satisfying 0 ≤ φ < 2π and x = xφ.
By Step 2, pick g ∈ G+ such that a = δ(g, 1) < ε. Let k ∈ ω be the natural number
with

ka < 2π < (k + 1)a.

In the real line, the interval [0, 2π) is covered by the intervals [0, a], [a, 2a], ...,
[ka, (k + 1)a], so there is some i ∈ {0, . . . , k} such that ia ≤ φ ≤ (i + 1)a. This
means that, in the unit circle X, the point x = xφ belongs in the closed arc from
gi to gi+1, which has length δ(g, 1) = a. It follows that δ(x, gi) ≤ a < ε.
Step 4. It follows that for arbitrary x ∈ X, the orbit {x · xnα : n ∈ ω} is dense in X,
being the image of G+ under right mutiplication with x. �

4. An abstract example

We present here an abstract example of a dynamical system which plays a promi-
nent role in subsequent results.

9.18. Example (a) We start with a finite set c of colours, say c = {1, . . . , r}, for
r = 2, we will also use c = {0, 1} instead of c = {1, 2}. Let X = ωc be the product
space of ω copies of the discrete finite space c, a compact Hausdorff (even Boolean)
space. A function x ∈ X may then be considered as the colouring of ω assigning
colour x(i) ∈ c to i ∈ ω. We define the shift map t : X → X by

t(x)(i) = x(i+ 1),

for x ∈ X and i ∈ ω. Writing xi for x(i), t maps x = (x0, x1, x2, . . . ) to t(x) =
(x1, x2, x3, . . . ). It is continuous since every finite initial segment of t(x) is deter-
mined by a finite initial segment of x. This makes (X, t) into a discrete dynamical
system, the shift system.
(b) The above construction generalizes to arbitrary monoids (S, 1S), letting X be
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the product space Sc, i.e. X is the space of all colourings of S with colours in c.
For x ∈ X and s ∈ S, we define sx ∈ X by

(sx)(i) = x(is)

for i ∈ S. Resp. if we write x as the sequence (xi)i∈S where xi = x(i), then
(sx)i = xis. Again left multiplication with a fixed s ∈ S is a continuous map from
X into itself and this makes X into a dynamical system over S: we still have to
check that (st)x = s(tx) holds for x ∈ X and s, t ∈ S. In fact, for every i ∈ S, we
see that (st)x maps i to x(ist) and s(tx) maps i to (tx)(is) = x(ist).

5. βS as a dynamic system

In this section, we consider an arbitrary monoid S = (S, ·, 1S) and its Stone-Čech
compactification βS. Note that βS is a monoid with identity 1S , too, by continuity
of left multiplication with 1S .

9.19. Definition We make βS into a dynamical system over S in the following
way.
We know that βS is a (compact right topological) monoid with S as a submonoid;
so S operates on βS by left multiplication, as explained after 9.2. More explicitly,
the product sp ∈ βS is defined for every s ∈ S and every p ∈ βS, and we define
µ : S × βS → βS by µ(s, p) = sp. We will henceforth write, as usual, sp for µ(s, p).
In fact, all requirements for a dynamical system over S are satisfied: left multipli-
cation with a fixed s ∈ S is continuous on βS as mentioned in Chapter 4; 1Sp = p
holds for all p ∈ βS as noted above, and s(tp) = (st)p is simply a special case of
the associativity of the multiplication on βS.

The dynamical properties of the S-system βS can be described, in a straight-
forward manner, by the algebraic ones of the semigroup (βS, ·).

9.20. Remark (a) For p ∈ βS, the orbit of p is orb(p) = {sp : s ∈ S} = S · p; it
follows, by continuity of right multiplication with p in βS, that the orbit closure of p
is p̄ = βS ·p. Thus the simply generated subsystems of βS are the simply generated
(closed) left ideals βS · p of the semigroup βS, where p ∈ βS. More generally, the
S- subsystems of βS are exactly the topologically closed left ideals of βS.
(b) Hence the minimal subsystems of βS are exactly the minimal left ideals of the
semigroup βS, i.e. the ideals βS · p where p ∈ K(βS).
(c) The orbit closure of 1s ∈ S ⊆ βS is βS · 1S = βS; so the dynamical system βS
is simply generated.

The next notion and theorem show that βS is, in a sense made precise below, a
universal dynamical system over S.

9.21. Definition Assume that X and Y are dynamical systems over the monoid
S. A function f : X → Y is said to be an S-homomorphism, or simply a homomor-
phism, from X to Y if it is continuous and the equality

f(sx) = sf(x)

holds for all x ∈ X and s ∈ S; here sx is, of course, computed in X and sf(x) in
Y . I.e. f commutes with the multiplication by s on X resp. Y , for every s ∈ S.

9.22. Theorem For every dynamical system X over S and every point x of X,
there is a unique S-homomorphism f = fx : βS → X mapping 1S to x. The range
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of f is the orbit closure x̄ of x.
In particular, every simply generated S-system is a homomorphic image of βS.

Proof. For the uniqueness statement, assume that f and g are S-homomorphisms
from βS into X mapping 1S to x. Then the set M = {p ∈ βS : f(p) = g(p)} con-
tains 1S . Next, every s ∈ S is in M , because f(s) = f(s1S) = sf(1S) = sx and
similarly g(s) = sx. Finally M is closed, by continuity of f and g. Thus M is the
closure of S in βS, i.e. M = βS and f = g.
For existence of f , we use the universal property of the compactification βS of S:
we consider the function h : S → X given by h(s) = sx and show that its Stone-
Čech extension f : βS → X, a continuous function, works for the theorem. Now
f(1S) = h(1S) = 1Sx = x; we still have to show that f(sp) = sf(p) holds for all
p ∈ βS and s ∈ S.
But this is true if p = t ∈ S, since f(st) = h(st) = (st)x and sf(t) = sh(t) = s(tx),
and it carries over to arbitrary p ∈ βS by continuity.
Concerning the range of f , note that the image of S under h is S · x, the orbit of x
in the S-system X; hence the image of βS under f is the orbit closure of x. �

By its very definition as the Stone-Čech extension h̃ of h, the S-homomorphism
fx : βS → X in 9.22 can be written as

fx(p) = h̃(p) = p− lim
s∈S

h(s) = p− lim
s∈S

(sx).

We introduce a very convenient notation connected to this fact.

9.23. Definition and Remark Let X be a dynamical system over a monoid S.
(a) For every p ∈ βS and x ∈ X, we define

p · x = px = p− lim
s∈S

(sx).

I.e. px = fx(p), where fx is the S-homomorphism from βS to X mapping 1S to x.
(b) Assigning px ∈ X to every p ∈ βS (for fixed x ∈ X) is a continuous map, being
the S-homomorphism fx. But the map assigning px ∈ X to every x ∈ X (for fixed
p ∈ βS) is, in general, not continuous; see part (d) of this remark.
(c) The function µ : βS × X → X such that µ(p, x) = px extends the action of
S on X. It is, in fact, an action of the semigroup βS on the space X. To verify
that (pq)x = p(qx) holds for all x ∈ X and p, q ∈ βS, we note that this holds if
p = s and q = t are elements of S. It carries over by continuity to the situation
where q ∈ βS and p = s ∈ S, and then to the general situation where p, q are both
arbitrary elements of βS.
But this action does not make X a dynamical system over βS, because for p ∈ βS,
the function x 7→ px is generally not continuous.
(d) In the special case where X is the space βS, we realize that the multiplication
µ : βS × X → X just defined coincides with the semigroup multiplication on βS
introduced in Chapter 4, because for p, q ∈ βS, µ(p, q) = p − lims∈S(sq) (cf. part
(a)), coinciding with the definition of pq in Chapter 4.
(e) The remark in 9.22 that the range of fx is the orbit closure x̄ of x can now be
written in a very suggestive way: x̄ = fx[βS] and fx(p) = p · x for p ∈ βS, so

x̄ = {p · x : p ∈ βS} = βS · x.
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Exercises

(1) Let (X, t) be the discrete dynamical system in which X is the unit cir-
cle in the complex plain, and t(x) = x2. Try to determine the minimal
subsystems. (This is less trivial than it may occur.)

(2) On the compact unit interval X = [0, 1], we define t0, t1 : X → X by
t0(x) = x/2 and t1(x) = (x + 1)/2. We let S be the submonoid of C(X)
generated by t0 and t1 and view X as a dynamical system over S. Prove
that X is minimal, as an S-system.

(3) In the shift system (X =ω c, t) (cf. 9.18), show that there are points x ∈ X
having orbit closure X – i.e. X is simply generated.


