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Abstract—We introduce the Membership Degree Min-Max
(MD-Min-Max) localization algorithm as a precise and simple
lateration algorithm for indoor localization. MD-Min-Max is
based on the well known Min-Max algorithm that uses a
bounding box to compute the position. We present an analysis
of the Min-Max algorithm and show strengths and weaknesses
in the spatial distribution of the position error. MD-Min-Max
uses a Membership Function (MF) based on an estimated error
distribution of the distance measurements to gain a higher
precision than Min-Max. The algorithm has the same complexity
as Min-Max and can be used for indoor localization even on small
devices, e.g. in Wireless Sensor Networks (WSNs).

To evaluate the performance of the algorithm we compare it
with other Min-Max algorithms in simulations and in a large
real world deployment of a WSN.

I. INTRODUCTION

The precise spatial localization of signal source is not only
limited to computer science. A broad variety of other sciences
rely on localization algorithms. Psychologists want to detect
the precise spatial source of a electric impulse in the human
brain, biologists want to track the position of birds equipped
with small sensor nodes and geologists have to detect the
source of an earthquake using seismic waves. Most of those
applications use the same principles: based on the measure-
ment of a physical value the distance between the target and
some fixed points (anchors) is estimated and then the position
of the target is calculated with a localization algorithm. The
main difference between the variety of existing localization
algorithms is the handling of distance measurement errors and
their robustness to the geometrical constellation of target and
anchors.

In this paper we present Membership Degree Min-Max
(MD-Min-Max), a localization algorithm which is based on
the well known Min-Max [1], [2] algorithm. MD-Min-Max can
easily be adapted to the distance error distribution of a fixed
anchor deployment to minimize the position error. To make use
of this algorithm the error distribution must be known which
should be easy to achieve for static deployments. Especially
for indoor localization of nodes our algorithm shows a big
improvement on the position error because it weakens the
effect of multi-path propagation and signal reflection. Even
for unknown error distributions in dynamic environments our
algorithm performs quite well with a general distribution
function. We show in several simulations and a real world

deployment that the position error is minimal compared to
other Min-Max solutions and even more complex algorithms
while keeping the computation and memory complexity very
low.

The main difference to other approaches is, that we not
simply take the centroid of the bounding box, but weight
the vertices of the bounding box with a membership function
based on the distance error distribution of the deployment.
With this weighting metric we achieve a high precision even
in the areas where other Min-Max approaches rapidly decrease
in precision which is especially outside the convex hull of the
anchors. We present a deep discussion about the spatial error
distribution of our algorithm and compare the results to other
algorithms.

The rest of the paper is structured as follows. In Sec-
tion II we present related work and the original Min-Max
algorithm. Furthermore, we introduce the Extended Min-Max
(E-Min-Max) [3] algorithm that also uses a weighting function
to improve the precision of Min-Max. In Section III we de-
scribe our algorithm in detail and discuss how to calculate the
membership function. In Section IV we present an evaluation
of the spatial error distribution of Min-Max algorithms. After
that we discuss the results of our real world deployment in
Section V. Finally our conclusion and future work is presented
in Section VI.

II. RELATED WORK

Several measurement techniques are used to track the
positions for indoor systems [4]–[7]. Range based methods
which measure the distance or range value between the target
and anchor sensors are common and efficient tools, for in-
stance, received signal strength (RSS) in RADAR system [5],
[6], time-of-arrival (TOA) and its improved metrics: time-
difference-of-arrival (TDOA) [4] and time-of-flight (TOF) [8].
TOF measures the round-trip time of packet and averages the
result together to reduce the impact of time-varying errors. It
is a promising solution for its low cost and feasible for the
capacity of real-time application.

Range based location algorithms are designed to reduce
range errors such as the complicated indoor multi-path prop-
agations, low signal-to-noise ratio (SNR), severe multi-path
effects, reflection and link failures and improve the estimation
accuracy [9]–[13]. These algorithms include iterative methods,



which use gradient descent or Newton method to calculate an
estimated position. Grid-scan methods [2], [14] divide the tar-
get field into several cells and are using voting based methods
to select a cell as an estimated position. Refined geometry
relationship [12], [15] obtains the target relative position rather
than actual position, and the method is still based on the range
based measurements, in which the measurement noise still
causes estimation errors. Least squares (LS) method [11], [13]
can be classified into linear least squares (LLS) algorithm and
nonlinear least squares (NLLS) algorithms. LS is a common
and accurate way for localization, however, the achieved
solution is suboptimal in case the estimated distances contain
outlier errors [16]. Optimal range selection [17], [18] directly
reduces the range error by adapting the range measurement
and choosing effective anchors.

Most of the common algorithms do not perform very well in
indoor scenarios. Indoor scenarios are commonly classified by
a large number of anchors with a short inter-anchor distance.
The error on the distance measurements is often biased for
a subset of the overall anchor configuration due to multi-
path effects and reflections of the received signals. The Min-
Max [19] algorithm is an effective and simple method for
localization. Experiments show, that the Min-Max method
performs very well in short-range scenarios [20].

A. Min-Max

The Min-Max algorithm, also known as Bounding Box
algorithm, is a simple and straightforward method. It contains
only very few arithmetic operations, the run-time complexity
is in Θ(Nanc). Min-Max builds a square (bounding box) given
by [axi− ri, ayi− ri]× [axi+ ri, ayi+ ri] around each anchor
node i using its location ai = (axi, ayi) and distance estimate
ri, instead of using circles with radius ri. The position of
target satisfies every box, thus the position is in the intersection
region (IR) with vertices V = {(l, b), (r, b), (l, t), (r, t)},
as Equation 1 and Figure 1. Then, estimation of position
(x̂, ŷ) = ( l+r2 , t+b2 ) is the center of IR.

Fig. 1. The geometrical representation of the intersection by range circles
or boxes.

IR =

Nanc⋂
i=1

{axi − ri, axi + ri, ayi − ri, ayi + ri} , (1)

where Nanc denotes the number of anchors and with

l = maxNanc
i=1 {axi − ri}

r = minNanc
i=1 {axi + ri}

t = minNanc
i=1 {ayi + ri}

b = maxNanc
i=1 {ayi − ri}.

(2)

However, Min-Max can produce high position error even
when having small distance measurement error, particularly
when the target is located outside the perimeter of the anchor
nodes. Due to the multi-path effect, most of the measured
distances are larger than the actual distance, which is espe-
cially common in indoor scenarios. Furthermore, the box has
larger area than the corresponding range circle. Even though
the range is imprecise, the target is more likely to resist in
IR or be close to IR. Therefore, to find a more reasonable
estimation in IR can be a potential method to increase the
location accuracy.

B. Extended Min-Max

E-Min-Max determines the IR the same way Min-Max does
but the position of the unlocalized node can be located at any
point inside the IR and not only at the center of it. Therefore,
E-Min-Max assigns a weight Wa to each vertex of the IR. In
the original paper E-Min-Max is evaluated with four different
weights (W1,W2,W3,W4) [3]. We limit our evaluation to the
two weights which showed the best performance, W2 and W4:

W2(j) =
1∑n

i=1(Di,j − ri)2
(3)

W4(j) =
1∑n

i=1 |D2
i,j − r2

i |
(4)

where Di,j is the Euclidean distance between anchor i and
vertex j of the IR. In general, W4 gives better results inside
the perimeter of the anchors and W2 shows the best overall
performance, even outside the perimeter of the anchors. The
final position is estimated by calculating the weighted centroid
with the weights and the coordinates of the vertices as in
Equation (5).

(x̂, ŷ) =

(∑4
j=1Wa(j) · xj∑4
j=1Wa(j)

,

∑4
j=1Wa(j) · yj∑4
j=1Wa(j)

)
(5)

Compared to the original Min-Max, E-Min-Max requires
extra operations to estimate the weights for the vertices.
Especially, E-Min-Max (W2) includes square roots which is
more expensive in terms of computation but the run-time
complexity of E-Min-Max is also in Θ(Nanc).

Weighting with the absolute residues is based on the as-
sumption that |Di,j−ri| can approximate |Di,j− r̄i|, where r̄i
is the ith actual distance. However, some distance estimation
errors are extremely large due to non-line-of-sight (NLOS)
propagation, which results in large residues even if close to



the actual target position. Thus, E-Min-Max cannot improve
the accuracy in some cases and still the error distribution for
real environment is not considered.

III. THE MEMBERSHIP DEGREE MIN-MAX ALGORITHM

Based on the previous work and our experiment results,
Min-Max is a potential method for position estimation with
the inexact range measurements. Different from most algo-
rithms estimating the position based on an exact mathematical
derivation or probability, we propose MD-Min-Max algorithm.
MD-Min-Max employs an empirical Membership Function
(MF) to convert range measurements into degrees of support
on the four vertices (V = {vj | j ∈ ↓ 4}) obtained by Min-
Max.

For any partially ordered set (P,≤) and any p ∈ P we
define the downset ↓ p = {q ∈ P | q ≤ p}. From now on, we
use the partially ordered set (N+,≤) of positive integers. For
example, ↓ 4 = {1, 2, 3, 4}.

A. Concepts of Fuzzy Set

Since range measurements r of indoor scenarios are un-
certain and imprecise, r cannot estimate the target position
determinately. Probability theory is the most common way
to deal with uncertainty, however, it requires the probability
density function (PDF) of measurements and incurs high com-
putation. More important, it cannot present the relationship
between the estimated position (x̂, ŷ) and the defined set
V of Min-Max. For example, if given an exact range r̄ as
Figure 2, the weighting function Wa(j) of E-Min-Max is able
to present the difference between (x̂, ŷ) and V in ideal case,
however, it treats all residues equally under uncertain range
errors. Probability method fails in ideal case, because r̄ is a
determinate event rather than a random variable. Fuzzy set
[21] (like ’nearby’ or ’distant’ of positioning) and evidences
(like all range measurements) are able to describe the nearness
between (x̂, ŷ) and V. In Figure 2, the result of using fuzzy
set is that (x̂, ŷ) is nearby v1 and v4 but far from v2 and
v3. Overall, fuzzy concept is more suitable to describe the
relationship of (x̂, ŷ) to V obtained by Min-Max.

v1 v2

v3 v4

Exact range

Fig. 2. The relationship between range and vertex.

B. Membership degree

Of fuzzy set, we use the concept of membership degree [21]
(µ(d̄)) only. Here, membership degree means that one fuzzy
variable partially belongs to a fuzzy set, then the estimated
position is close to the V. In MD-Min-Max algorithm, the
normal localization formulas are replaced by rules. To make

Rule Degree weight 

Input [ri , (axi,ayi),V]

Empirical
value MF Membership degree

jdw

( )d

Fig. 3. The framework of membership degree in MD-Min-Max, with i ∈
↓ Nanc and j ∈ ↓ 4.

the algorithm simple and fast, we only employ one rule in the
convert step in Algorithm 1, which presents the agreement of
(x̂, ŷ) belonging to V:

If ‖vj − a‖ approximates r,
then (x̂, ŷ) is nearby vj , (6)

A numerical value in the interval [0, 1] stands for the degree
of agreement in Eq. (6), and is calculated by MF. The higher
the degree is, the higher is the agreement in Eq. (6). To show
the intuition, consider Fig. 2. Equation (6) should result in a
higher membership degree of v1 and v4 than for v2 and v3.

Example 1:

If r − ‖v − a‖ is 1.0 then r supports v by a degree of 0.6

If r − ‖v − a‖ is 0.0 then r supports v by a degree of 1.0

If r − ‖v − a‖ is − 0.3 then r supports v by a degree of 0.9

The framework to involve the membership degree on Min-
Max is shown in Figure 3, and the procedure of MD-Min-Max
is in Algorithm 1.

Algorithm 1 MD-Min-Max
Require: ranges ri and anchor positions ai, i ∈ ↓ Nanc, and

vertices {vj | j ∈ ↓ 4} computed by Min-Max;
Ensure: the estimated position (x̂, ŷ)

1: for i ∈ ↓ Nanc do . Compute membership degrees
2: for j ∈ ↓ 4 do
3: Compute dij = ||vj − ai||
4: Compute d̄ij by Eq. (7);
5: Calculate membership degree µ(d̄ij) by Eq. (8);
6: end for
7: end for
8: for j ∈ ↓ 4 do
9: Calculate degree weight dw j by Eq. (10);

10: end for
11: Estimate position (x̂, ŷ) as weighted average by Eq. (11);

C. Membership function

Typically, membership functions are defined by experts or
generated from statistics. We suppose that the error distri-
bution of distance measurements in the same scenario are
similar, thus the MF can be configured by empirical values
obtained from previous experiments in the same scenario.



The empirical knowledge involved in MF helps in making
the algorithm adaptive to conditions of imprecise distance
measurements. The triangular MF is determined by three
parameters (MF low,MFmedian,MF up), where ((MF low, 0),
(MFmedian, 1), (MF up, 0)) are the three vertices of the trian-
gular MF. We calculate the three parameters of MF as follows:

1) Obtain a large number of samples of range measure-
ments r and the corresponding reference ranges r;

2) Compute the median value of all r − r̄, named as
MFmedian;

3) Compute MF up as the 0.995 quantile and MF low as the
0.005 quantile;

4) Configure the triangular MF with three parameters
((MF low, 0), (MFmedian, 1), (MF up, 0)).

1) Analyzing range measurements: The first step of com-
puting a MF is to obtain a large number of range measurements
using a reference system. For this example, we conducted an
experiment where we used a robot to provide us with reference
locations and collected range measurements. The experiment
involved 17 anchors placed into an office building. Each
anchor was ranged 3043 times. Since some measurements
failed, we collected 22901 distance measurements at varying
distances from the anchor nodes. Figure 4a displays the
relative number of successful measurements at those distances.
Figure 4b displays the distribution of absolute measurement
errors. As one can see, the distance error is independent of
the distance we measured. At short distances, measurements
occur to be more noisy, with outliers at medium distances.
Outlier values have been measured at a distance of about
27 meters and 37 meters. The lack of many large range
errors at more than about 37 meters is explained by the high
probability of a failed measurement. Distance measurements
of 30 meters and longer succeeded in only 20% to 30% of
the attempts. Figure 4b shows the distribution of the absolute
errors for the measured distances. As we see, the absolute error
is uncorrelated to the actual distance. Indeed, the correlation
is 0.1373. This is a strong evidence that both quantities are
independent and our MF can be formulated independent of the
range, i.e. in terms of absolute errors.

2) Configure MF: We performed two experiments, named
as Mobile 1 and Mobile 2, with a mobile node moving along
two different routes in the same office building. Then, a
absolute range error histogram of the measurements is used to
configure the MF. The histogram presents range measurements
in absolute form (r − r̄), where r̄ is the distance obtained by
our reference system and r is the measured distance. Figure 5
(a-b) shows the histograms for our experiments. Here, we use a
triangular MF. Its empirical parameters are shown in Figure 5
(c-d).

The MF parameters of Mobile 1 and Mobile 2 are
[−1.7, 2.38, 13.31] and [−2.161, 1, 636, 16.043] separately,
which also indicates that distance in the same scenario main-
tains familiar behavior. Thus, configuring the MF based on
empirical values is reasonable, making this algorithm easy to
implement in other indoor scenarios.

The triangular MF is not the only type of MF fitting our
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Fig. 5. Frequency histogram of absolute range (Fr(r− r)) is collected from
two experiments (Mobile 1 and Mobile 2), where r is the set of value of
reference range and r is the measured range. Figure 5 (a-b) illustrate the
histogram of Fr(r − r), and Figure 5 (c-d) is the histogram after discarding
the outliers. The triangle profiles in Figure 5 (c-d) are the MF determined by
three parameters (MF low,MFmedian,MFup).



MD-Min-Max algorithm. Also other MF, such as trapezoidal
MF, quadratic function MF, rectangular MF, or any other
theoretical distribution of the statistical result can be used.
MD-Min-Max employs triangular MF because of its con-
ceptual simplicity and computational efficiency. For different
scenarios, the MF should be chosen according to its range con-
dition, as approximate to the frequency histogram as possible.

D. Convert Range into Membership Degree by MF

MD-Min-Max first computes the four vertex coordinates V
of IR by Min-Max. Given the coordinates of the anchors, it is
simple to compute the distance between the ith anchor and jth
vertex: dij = ‖vj − ai‖. Since the MF is expressed in absolute
measurement errors, the distance between a vertex and an
anchor is also described as an absolute difference between
measurement ri and dij , as shown in Eq. (7).

d̄ij = ri−dij = ri−||vj − ai|| for i ∈ ↓ Nanc, j ∈ ↓ 4. (7)

Then, the MF µ(d̄) can be used to calculate an agreement
degree µ(d̄ij), as shown in Eq. 8. The range of membership
degree is a real number between zero and one. It is charac-
terized by three parameters [MF low,MFmedian,MF up] which
are obtained from the previous empirical data. For example,
for positioning in Mobile 1 case, we should use the parameters
obtained by the samples of Mobile 2.

µ(d̄) =


d̄−MFup

MFmedian−MFup
if MFmedian ≤ d̄ < MF up

d̄−MF low

MFmedian−MF low
if MF low < d̄ < MFmedian

0 otherwise
(8)

Equation (8) describes that the membership degree µij =
µ(d̄ij) decreases from 1 to 0 as d̄ij moves away from
MFmedian; to be more specific, if d̄ij is outside of the interval
[MF low,MF up], then µij is 0. If a range measurement ri is
severely corrupted, then d̄ij is very far from MFmedian and
µ(d̄ij) is 0. This is the case when the range measurement is
considered to be an outlier.

A huge error between multiple ranges is uncommon as
illustrated by the statistics in Figure 5 (a-b) and shown in
several publications [11]–[13]. Overall, the greater the devia-
tion from MFmedian, the higher the possibility that the range
measurement has a large error. Therefore, the membership
degree can averagely weaken these ranges as the long tail
component in Figure 5 (a-b).

E. Combine membership degree

Since multiple ranges determine one estimation jointly, a
conjunctive rule is made to combine multiple membership
degrees into the weight on each vertex: dw j , j ∈ ↓ 4. The
linguistic rule for the jth consequent is expressed as:

If µ(d̄ij) fully agree to vj , i ∈ ↓ Nanc

then dw j totally supports vj = (x̂, ŷ).
(9)

The signal-to-noise ratio in Equation (10), defined as the
reciprocal of the coefficient of variation of multiple degrees,

is used as the weight of each vertex. The signal-to-noise ratio
can be interpreted as a measure of the homogeneity of the
range measurements and as the degree of agreement.

dw j =


mean(

⋃Nanc
i=1 µij)√

var(
⋃Nanc

i=1 µij)
if var(

⋃Nanc

i=1 µij) > 0

∞ if var(
⋃Nanc

i=1 µij) = 0
(10)

Thus, the larger dw j is (the higher the mean agreement and
the smaller the agreement variance are), the more likely of
target should be the vertex vj . Combining multiple degrees in
this way is not only simple, but also associates the conjunctive
opinion of all ranges.

F. Weighted average of V

The final estimated position is the average of the four vertex
coordinates weighted by their associated degree, as expressed
in Eq. (11).

(x̂, ŷ) =

4∑
i=1

dw i∑4
j=1 dw j

· (vxi, vyi) (11)

Vertices with higher accumulated degree and smaller degree
variance are weighted higher. Therefore, the final estimation
is considered to be a likely position within the four vertices of
Min-Max, because of the good understanding of range errors
derived from empirical knowledge.

G. Complexity

The run-time and memory requirements of the
MD-Min-Max algorithm are modest.

Proposition 1: The run-time complexity of MD-Min-Max
is in Θ(Nanc).

Proof: The run-time of MD-Min-Max is clearly domi-
nated by the loop in Step 1. Calculating the distance and
the membership degree can be performed in constant time.
Weighting the degrees by the mean and the standard devi-
ation can be performed in constant time, if a method like
Welford’s [22] is used during step 1. The loop body is executed
four times for each anchor. Step 4 and 5 are again constant
time.

Proposition 2: The space complexity of MD-Min-Max is
in Θ(Nanc).

Proof: Most memory is required to store the two coordi-
nates of the anchor nodes and range measurements, namely
3Nanc registers. Additional space is needed to store the
indexing variables. The three parameters of the membership
degree function, the corners of the Min-Max calculation and
the weights of the four corners.

The asymptotic time and space complexity of MD-Min-Max
is equal to the one of the traditional Min-Max. Our bench-
marks show that the MD-Min-Max algorithm is about 50%
slower than the E-Min-Max algorithms and about 9 times
slower than the original Min-Max algorithm. As Min-Max is
such an inexpensive algorithm, and the number of anchors
Nanc is low for most scenarios, limited by technical lim-
itations of radio communication and the distance intervals,
MD-Min-Max is a viable algorithm for sensor networks,



especially if we compare it to more complex algorithms like
the NLLS method.

IV. DISTRIBUTION OF THE SPATIAL POSITION ERROR

To evaluate the spatial distribution of the position error we
executed every algorithm 1000 times in the LS2 [23], [24]
simulation engine. LS2 calculates the position error for every
discrete point in the simulated area using an error model and an
algorithm selectable by the user. In the first scenario we chose
a very basic anchor setup with four anchors placed in the four
corners of the playing field. The inter anchor distance is much
higher than in most real world scenarios and shows the per-
formance of the evaluated algorithms in borderline situations.
The resulting image consists of up to three differently colored
areas. The grey area indicates a position error between 100%
and 500% of the expected distance measurement error value;
the darker the area, the higher is the error. The green area
(if present) indicates a position error lower than the expected
distance measurement error; the darker the area, the lower is
the error. In the blue area the error is higher than 500% of
the distance error and is cropped to achieve a better image
contrast. The anchors are represented by the small red squares.

The green area is very important for cooperative localization
strategies in WSNs, because the position error stays in a
reasonable range as long as the node remains in the green area.
Otherwise the position error tends to grow much faster than
expected because for each step of the recursive cooperation
strategy the resulting position error is added to the average
distance error. If the resulting position error is larger than the
average ranging error this error function grows very fast.

For this simulation we chose a Gaussian distributed error
for the general noise simulation and an exponential distributed
error to simulate NLOS situations. The expected value of the
distance measurement error is 5% of the playing field width,
the standard deviation is 1.5%. A NLOS error occurs with a
probability of 10% and adds an exponential error with rate
2. The membership function of the MD-Min-Max was set up
like described in III-C. The inter-anchor distance is 15 times
higher than the expected distance error.

In Fig. 6 we present the results of the first simulation run.
The weaknesses of Min-Max are clearly visible. Min-Max
performs very well only on the diagonal lines between the
anchors and in the center of the playing field. For similar
setups in real world deployments Min-Max’s performance is
not really predictable because a mobile node will cross all
areas. The E-Min-Max (W2) algorithm performs slightly better
in this setup but shows the same strengths and weaknesses.
E-Min-Max (W4) performs completely different in this sce-
nario and shows a very homogeneous picture. It shows a slight
performance drop close around the anchors but provides very
good results for the rest of the area. MD-Min-Max’s results
are comparable to Min-Max but with a slightly bigger area of
high accuracy. Even if MD-Min-Max has the highest accuracy
inside the green area of all four algorithms one should choose
E-Min-Max (W4) for a random walk in such scenarios.

(a) Min-Max (b) E-Min-Max (W4)

(c) E-Min-Max (W2) (d) MD-Min-Max

Fig. 6. Spatial distribution of the average position error with a
basic anchor setup with one anchor in each of the four corners
and a high inter-anchor distance.

(a) Min-Max (b) E-Min-Max (W4)

(c) E-Min-Max (W2) (d) MD-Min-Max

Fig. 7. Spatial distribution of the average position error with
nine anchors concentrated in the middle of the simulation area
and a very low inter-anchor distance.



(a) Min-Max (b) E-Min-Max (W4)

(c) E-Min-Max (W2) (d) MD-Min-Max

Fig. 8. Spatial distribution of the average position error with
five anchor nodes in a more challenging setup with a medium
inter-anchor distance.

The second simulation is shown in Fig. 7. In this scenario
we simulated every algorithm with a uniform grid layout
for the anchors. We chose nine anchors which convex hull
covers 4% of the simulation area. The inter-anchor distance is
comparable to common indoor deployments. The focus in this
scenario is to evaluate how the algorithms will perform outside
the convex hull of the anchors. The main strengths and the
main weaknesses of Min-Max are clearly visible in this image.
Min-Max performs very good inside the convex hull of a
dense anchor setup and fast lowers its performance outside the
convex hull down to unusable values. The main design goal of
E-Min-Max was to dilute this behavior of Min-Max. As shown
in Fig. 7b E-Min-Max (W4) greatly improves the performance
of Min-Max outside the convex hull without lowering the
performance inside very much. E-Min-Max (W2) stretches the
usable area even a bit more but has some disadvantages in
areas where Min-Max performed well. Even if the average
error over the whole playing field is nearly the same for both
E-Min-Max algorithms one could gain a noticeable advantage
over the other if closer limitations to the area can be made
in real world deployments. MD-Min-Max clearly shows its
advantages and disadvantages in this scenario. The area of
high accuracy is only slightly increased and it also shows
a fast performance drop outside the diagonals of the anchor
hull, but the results inside this area are much more accurate
than those of the Min-Max algorithm. For real world indoor
deployments this observation can be important because the
anchors are usually wall mounted and because of this, a mobile
node rarely leaves the anchor hull.

In Fig. 8 the results of a more challenging scenario are
shown. We placed four anchors nearly on a line and a fifth
anchor to form a flat triangle with the rest. For most lateration

(a) E-Min-Max (W2) vs. Min-Max (b) E-Min-Max (W4) vs. Min-Max

(c) MD-Min-Max vs. Min-Max (d) E-Min-Max (W2) vs. E-Min-Max
(W4)

(e) MD-Min-Max vs. E-Min-Max
(W2)

(f) MD-Min-Max vs. E-Min-Max
(W4)

Fig. 9. Comparing position errors of pairs of algorithms. Red areas indicate
that the first algorithm outperforms the second, blue and white areas indicate
that the second algorithm outperforms the first. Green areas indicate similar
performance.

algorithms this scenario is a kind of worst case scenario and
the performance is weaker than the average performance of
real world experiments because the overall number of anchors
is low and the average inter-anchor distance is on a medium
level. Min-Max has strong performance drops even inside
the convex hull and then drops very fast to unusable values.
E-Min-Max (W4) noticeably increases the performance and
provides very good results for a center area that covers 30%
of the whole simulation area. E-Min-Max (W2) increases
the average performance again but the results are very het-
erogeneous, so it could be challenging to make use of this
performance gain in real world usage. MD-Min-Max shows
a comparable but much smaller shape than E-Min-Max (W4)
but the accuracy inside this shape is much higher.

To highlight the difference of the average performance



shown in Fig. 8 between those algorithms, we visualize the
difference of average errors between two algorithms in Fig. 9.
Areas colored in shades of red are areas in which the first
mentioned algorithm achieves a lower average position error
than the second algorithm. Areas colored in shades of blue to
white indicate areas in which the second algorithm achieves
a lower position error. Areas colored in green mark the
areas in which both algorithms perform within 1.6% of the
playing field, i.e. their position error can be considered to be
equivalent.

Subfigures 9a, 9b and 9c show that the E-Min-Max al-
gorithms and our MD-Min-Max algorithm all improve on
Min-Max, especially outside of the area in which Min-
Max performs best. The MD-Min-Max algorithm is able
to maintain the good performance of Min-Max in its
strongest area and shows its weaknesses in areas outside
of the convex hull of the anchors. Subfigure 9d compares
E-Min-Max (W2) to E-Min-Max (W4) and shows that both
can complement each other well. In the inner, blue tinted
area, E-Min-Max (W4) compares much better while outside
of that area, E-Min-Max (W2) performs better. Interestingly,
their performance is comparable in the convex hull of the
anchors, and thus worse than the original Min-Max algorithm.
Subfigures 9e and 9f compare our MD-Min-Max algorithm to
E-Min-Max (W2) and (W4). Outside of the convex hull of
the anchors, the E-Min-Max algorithms perform much better
than MD-Min-Max however, in the center area, performance
is comparable or MD-Min-Max is able to reduce the position
error significantly. These areas, however, are of interest in
many indoor deployments, where the mobile node is usually
inside of the hull of anchors.

The analysis of the spatial error distribution shows, that
E-Min-Max (W2) has the lowest average error in the sim-
ulation but does not reach lower errors in many real world
experiments because often the high accuracy is achieved by
a very good performance outside of the anchor hull which is
often not of interest for indoor deployments. The basic Min-
Max algorithm has the highest average error but shows good
results in practical experiments because the areas with low
errors are located as a continuous shape inside the convex
hull of the anchors. Most real world anchor setups have a
similar scenario because commonly anchors are placed near
walls and not in the middle of rooms. Due to this observations
E-Min-Max (W4) and MD-Min-Max perform very good in
most real world deployments because they have a lower
worst case error and their low error regions are also very
large and continuous. The visualization of the spatial error
distribution also shows that a combination of E-Min-Max (W2)
and E-Min-Max (W4) would be a good approach to get more
precision without any assumptions about the distance error
distribution on which MD-Min-Max relies.

V. REAL WORLD EVALUATION

In order to measure the effectiveness of the four algorithms
with real sensor network data and to be able to compare the
results with the executed simulations, we recorded the data of

a series of different test runs. The experiments were carried
out using a modified version of the Modular Sensor Board
(MSB) A2 [25] node which is equipped with a Nanotron
nanoPAN 5375 [26] transceiver. This hardware enables the
sensor nodes to measure inter-node ranges using TOF in the
2.4 GHz frequency band. The experiments took place on the
second floor of our Computer Science Department during
daytime.

Fig. 10 shows one exemplary campaign of measurements
following a route among offices, laboratories and with a
few people walking around. For the reason of clarity, we
plotted only the results of Min-Max and MD-Min-Max using
a Kalman filter. The starting point is denoted by “S”, the
endpoint is denoted by “E” and the total length of the path
was about 100 meters. In each run, we used 17 anchors which
were deployed throughout the building. Most of the anchors
were placed in office rooms with doors closed. Only a small
fraction of nodes was placed on the hallway, in case of Fig.
10, there were four nodes. Ground truth was measured with
the aid of a robot system developed at our Department using
a Microsoft Kinect. This reference system provides about 10
cm positioning accuracy. The robot also carried the unlocalized
node and followed a predefined path with a predefined speed.
We used the maximum movement speed of the robot, which
is 0.5 m/s. In total, we performed over 5300 localizations
when adding up all test runs. The nanoPAN achieves ranging
precision of around 2.85 m in average and the RMSE is
4.32 m. However, the ranging error can be as large as 20 m.
We even encountered measurement errors up to 75 m in rare
cases.

The quantitative results of the four localization algorithms
are shown in Table I. The average anchor degree throughout
all experiments was 7.48. Additionally, Table I contains the
results of multilateration using NLLS to give a comparison to
a well known general purpose algorithm. As it can be seen,
MD-Min-Max outperforms the other algorithms in terms of lo-
calization accuracy with achieving an average error of 1.63 m.
The basic Min-Max algorithm (2.05 m) is still more than
twice as good as NLLS (4.49 m) which serves as a reference
algorithm. The good performance of Min-Max (and therefore
also the other Min-Max algorithms) is not surprising because
the inter-anchor distances were relative short (between 5 and
10 meters) and the mobile node took mainly positions within
the bounds of the network. As we know from section IV this is
the optimal situation for Min-Max algorithm. This fact is also
stated by Savvides et al. [27] and proved by Langendoen et
al. [28]. All three enhanced Min-Max algorithms outperform
the original one: E-Min-Max (W2) (1.46%), E-Min-Max (W4)
(4.39%) and MD-Min-Max (20.48%).

The fact that the RMSE of Min-Max, E-Min-Max (W2),
E-Min-Max (W4), and MD-Min-Max is much smaller than
the RMSE of the distance measurements tells us that these
algorithms performed very well relative to the quality of
the distance measurements available. NLLS with having a
RMSE only slightly larger than the RMSE of the distance
measurements showed also acceptable performance. The his-



Fig. 10. Position estimates on the second floor of our Computer Science Department.

TABLE I
QUANTITATIVE RESULTS FOR THE LOCALIZATION TASK

Algorithm MAE [m] RMSE [m] MAX [m]
NLLS 4.49 5.35 30.39
Min-Max 2.05 2.42 15.39
E-Min-Max (W2) 2.02 2.49 17.91
E-Min-Max (W4) 1.96 2.34 16.48
MD-Min-Max 1.63 1.89 18.04

tograms of localization errors of all algorithms can be seen
in Fig. 11 where the vertical axis is the absolute frequency
and the horizontal axis is the localization error. NLLS shows
poor performance compared to the other algorithms. Also the
RMSE is much larger than that of the other algorithms. In our
experiments E-Min-Max (W2) and E-Min-Max (W4) show
nearly the same performance. E-Min-Max (W4) is slightly
better because its weighting function is optimized for locations
inside the perimeter of the anchors as was mostly the case.
The higher localization accuracy of MD-Min-Max can also
clearly be seen in Fig. 11. This algorithm outperforms even
E-Min-Max (W4) by more than 16%. This performance gain is
mainly achieved by adjusting the parameters of the algorithm
to the error distribution (see Fig. 5) of the used distance
measurement hardware as described in section III.

Note, that MD-Min-Max is quite sensitive to the param-
eters of the membership function. When assuming a Gaus-
sian error distribution on our statistical data and using the
three-sigma rule, the membership function is characterized
by [−8.3; 2.4; 13.1]. With this function, the average error
regresses to 1, 89 meters. MD-Min-Max can even become
the worst algorithm, when the membership function does
not fit the data. For example, chosing [6; 12; 18] for the
membership function will result in an average error of 2.19

Fig. 11. Histograms of localization errors in a real environment, the second
floor of our Computer Science Department.

meters. A careful analysis of the statistical data is necessary
for good results. The membership function is characteristic
to a deployment, e.g. a building or a floor of that building,
and results are of similar quality for multiple runs in such a
deployment.

Obviously, the position accuracy could be improved using
some filtering techniques, such as Kalman or particle filters,
but the aim of this paper is to show and compare the perfor-
mance of the used localization algorithms without using any
of those filtering techniques.

VI. CONCLUSION

We have presented the MD-Min-Max algorithm as an opti-
mization of the Min-Max and E-Min-Max algorithm. We have



shown that a noticeable performance gain can be achieved in
most scenarios if a simple assumption about the error distribu-
tion is regarded by the algorithm. This behavior was indicated
by the simulations of the spatial position error and validated by
the experiments conducted where the accuracy improvement
ranged from 16% to 20%. MD-Min-Max is lightweight and
can be computed on the same hardware as the E-Min-Max
algorithm. Thus, it is a good choice for the localization in
WSNs and for cooperative localization scenarios, where every
node has to compute its own position often and fast.

Future work should address more optimization regarding
the spatial error distribution. We have shown that the optimal
choice of an algorithm at each point in time would provide
even better localization results. It should also be possible
to integrate a weighting component based on the distance
error distribution into other more complex algorithms to gain
performance improvements.
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