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Summary: Indoor localization, especially in wireless netwogk8N) has become an important re-
search focus in computer science during the pastytmars. Several approaches exist to estimate a
node’s position relative to other devices. Mostrapghes are based on distance measurements and
localization algorithms. In this paper we provide averview of common and new localization algo-
rithms. A detailed investigation on the error distition and the real world behaviour of these algo-
rithms is presented. We also provide a discussfathe evaluation results that leads to open ques-
tions and future research approaches.

1. Introduction

With the broad success of location based servioesiemand for indoor localization func-
tionality has become bigger and bigger. In theopsitechniques to satisfy this demand
are well known. There are several ways to estindigtances in wireless networks and
several algorithms to calculate positions withraatied distances and the position of the
corresponding anchor devices in the network. Theeg# usability of a digital positioning
system has been proved since 1994 with the gepeldic availability of the Global Posi-
tioning System (GPS).

A positioning system for real world indoor use mhate several differences to GPS. The
main difference is the size of the ranging errait ik part of every range estimation. While
the GPS satellites use very precise and synchrbriigcks, due to cost reasons, only
common quartz clocks are used in WNs. Quartz cldekge higher jitter and drift, and
consequently are not synchronized. Although theist eseveral high accuracy time syn-
chronization protocols for use in WN, the achieeahtcuracy is far too low for precise
range estimation. Another big issue for indoor liaedion is that generally there is no di-
rect line of sight to the node whose distance ibg@stimated; thus, multipath effects and
signal reflection have a much bigger influence timtihe GPS system.

Concerning these issues, several approaches far emoor tolerant and more robust algo-
rithms have been published. Because there areamuatdized test cases and many re-
searches obviously do not have access to radian@griwrdware, many authors rely on
simulations to prove their functionality (see SestR for examples) and only a small mi-
nority uses real world deployments for their eviira Moreover, each simulation works
with its own settings of the simulation parametéhgy all differ in the choice of playing
field, placement of anchors, radio range, and rangirror model. With respect to simula-
tion results: we will show that the performancdamfation estimation methods depends on
the experimental setting. Thus, choosing a suitalderithm for a given scenario or de-
ployment is not possible based on these publiskedits. It may even be impossible to
conclude whether a method is consistently moreiggdban another one.

We provide an overview and present a structuredysisaof common localization algo-
rithms. The first two steps of our analysis areelasn simulations and the third step is
based on a real world deployment in an office hngd All simulations and all test runs
were conducted with the same parameter settingallfaigorithms, so the results are com-
parable and strengths and weaknesses of the déstakprithms can be seen easily.

In Section 2, we review related work and motivate approach. In Section 3, we introduce
the algorithms that we consider and explain thesi®d properties. In Section 4, we present
our evaluation by simulation. The first part isuagtitative simulation of these algorithms.
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This simulation is similar to the simulations penfeed in the publications that introduce

each algorithm to show their benefits. Insteadust reproducing the results of those pa-
pers, we simulate all algorithms using the samarpater settings to ensure that our com-
parisons are valid.

In the second part of Section 4, we discuss théadgmoperties of the selected algorithms.
The quantitative evaluation in the first part measuhe average performance of each algo-
rithm. Some algorithms show a harmonic performamnee, the position estimation error
does not correlate well with the position and ttecement of anchor nodes. Other algo-
rithms are less harmonic; they perform badly in s@reas of the playing field and excep-
tionally well in other areas. Thus, analysing thigribution of the position error for each
algorithm gives a refined view on the results afedi by our quantitative evaluation. We
show that the error distribution doesn't only degp@m the error distribution of the meas-
ured distances, but also on the geometrical cdastal between node and anchors and the
characteristics of the algorithm. We present a approach that shows that the algorithm
itself has a much bigger influence on the resuléngr than only viewing the geometrical
constellation.

In Section 5, we validate the simulation resulisgis large indoor deployment by execut-
ing every algorithm with real world data gatheredoiur office building. The combined
analysis makes the algorithms much more compamaidedelivers a much better under-
standing of the strength and weaknesses of theithigs than the original papers where
they have been published. In Section 6 we presantanclusion.

2. Related Work

Work on evaluating and comparing localization aifpons turns out to be heterogeneous.
We are aware of surveys that explain different liaaion methods, e.g., (Mao, Fidan &

Anderson 2007), and qualitative surveys, e.g., l@®6olis, Falk & Chau 2010), that re-

view existing algorithms and try to convey the exttin which they are best applied.

Those surveys are meta-studies and provide littsntitative evaluation.

Surveys that focus on a quantitative comparisoratteenpted by Biaz & Ji (2005) and by
Langendoen & Reijers (2003). Both survey multi-mogthods. Their results are not direct-
ly comparable to ours, since we do not limit thdisarange. Biaz and Ji are vague on the
ranging errors of their simulation, only statingh& actual range error is determined dy-
namically during the experiment by the productiohtile maximum variance and a
rand[om] number between -1 and 1” but they do tatesthe used probability distribution.
Indeed, Biaz and Ji compare algorithms based on $kasitivity to ranging errors using
varying settings. We share some experimental setithsLangendoen and Reijers (a cen-
tred 3x3 grid) but work with different error models

Comparing published performance evaluations idadiff at best. Table 1 lists the evalua-
tion methods used by the sources to our algoritftash publication uses a different setup
of the playing field and a different error modelséthe choice of algorithms they compare
to varies. Linear Least Squares (LLS) and Bounddmy/Min-Max, (Savvides, Park &
Srivastava 2002) (Langendoen & Reijers 2003), appede the most common choices.
Thus, transferring results about, say, Adapted Mualteration (AML) (Kuruoglu, Erol &
Oktug 2009) to Least Median of Squares (LMS) (Liakt2005) actually requires a new
simulation run, as the results were obtained incamparable settings.

Surveys like the ones above usually compare algnstbased on statistical evaluations of
simulations. Comparing such results is difficugchuse they differ in error model, geomet-
ric placement of anchors and density of anchores&hvary, sometimes leading to contra-
dictory conclusions. Thus, we compare all algorghunder the same conditions. We high-
light that results can be manipulated by the chgiedfectively favouring one algorithm
over the other.

Navidi, Murphy, Hereman (1998) make a very profowtdervation about two lateration

approaches: trilateration and multilateration. Tlégerve that anchor position influences
the position estimation error and call for moresggsh in the domain of anchor placement.
This comment also inspired the work on a spatiaugtion that we present in part two of

Section 4.
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Yang and Liu (2010) present a slightly similar aygarh to research the spatial error distri-
bution. Instead of calculating all possible posif@mn the playing field and visualizing the
position error distribution, they calculate oneifios and visualize the probability for this
node to be located on all other positions of ttagiplg field.

Some researchers use the Cramér-Rao Bound (CRB3sfonating the error distribution
instead of using simulations. The CRB computesvaefobound on the covariance of the
error, usually from the position of the anchors #mel statistical error model. For example,
an analysis of the CRB has been given by Yang &e8icly (2005), where they apply it to
compute optimal anchor positions. The CRB givesveel bound on the covariance matrix
of an idealised, unbiased position estimator, basedgeometric properties of anchor nodes
and statistical properties of the range measurements. It does not reference the algo-
rithm under consideration. Thus, the CRB only aliotw state whether an algorithm is
already optimal, provided that the algorithm is lgs@d analytically or statistically by a
simulation similar to ours. This was both obserdDulman et al. (2008) and Vaghefi
and Buehrer (2012), which all observe that the GRBn inadequate tool for localization.
In addition, Yang and Scheuing observe in Propmsif, that the CRB is a strict lower
bound under any Gaussian error model, as no urtbestanator will attain this bound.

Table 1. Evaluation settings of common algorithms

Algorithm Compared to Setup Error Modd
AML LLS, MIN-MAX 200m*200m, 40 an- zero mean Gaussian,
chors uniformly dis- variance = realDist * 10%
tributed
LMS LLS 500m*500m, 30 an- zero mean Gaussian,
chors randomly dis- variance = 152, 202
tributed
ICLA Centroid, MIN-MAX 50m*50m, 10 anchors log GauasiRSSI model;
error from 10% to 60%
MIN-MAX, LLS 6 beacons, 10 to 100| zero mean Gaussian; stand-
ranging nodes, 15 m ard deviation 20mm
maximum range

3. Localization Algorithms

For reasons of clarity and comprehensibility weubour evaluation on six localization
algorithms. Three of them are well known algorithemnsl often used for performance com-
parison when proposing a new localization algorithvtultilateration using Nonlinear
Least Squares (NLLS) or LLS and Min-Max algorithithe other three algorithms are
more recent and have never been benchmarked uadsistent conditions till now: LMS,
AML and lterative Clustering-based Localization 8ighm (ICLA) (Haiyong et al. 2011).

1) NLLS: Givenm anchor nodes with fixed positions at= (x;,y;) fori =12,..,m
and possibly noisy range measuremehtfrom these nodes to a non-anchor node located
atu = (x,y), multilateration finds the most likely position tife unknown node, denoted
by @i. From this information we write a system of eqoiasi:

(x —x)?+ (v — y1)? = dy?
(x —x)% + (y -¥)? =d;? Q)

(X - xm)z + (y - ym)z = dmz
This problem is usually solved by usindeast square§LS) method, that is, minimizing

the sum of the squared residuals between the alabeangesl; and the estimated distanc-
es|lu — byl:

m
2= argmin ) (lu = bll - d)? 2)
u
i=1
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The minimization problem can be solved by using ahyhe Newton type optimization
algorithms (Dennis & Schnabel 1996). These starhfan initial guess at the solution and
then iterate to gradually improve the estimatedtosuntil a local minimum of the objec-
tive function in Eq. (2) is found. However, thesza non-negligible probability of falling
into a local minimum of the error surface when sw@vEq. (2). Therefore, to find an esti-
mate close to the global minimum, LS must run saviémes with different initial starting
points, which is expensive in terms of computingrinead.

2) LLS: Thenonlinear least squaregroblem can be linearized by subtracting one ef th
equations given in Eqg. (1) from the remainimg— 1 equations. In matrix notation, the
linear system can be expresseddas= b and can be solved by the LS method to provide
an estimated location, as given by the closed feotation shown in Eq. (3) (i.e., normal
equations).

= (ATA)—lATb (3)
with:
_ _ 2 2 2
X1 —Xm Vi~ Vm dy, —di + |lby —ul|
A xz_sxm yz_SYm 'b=% i — d3 +:”b2—u||2 (4)
Xm-1~"%m Ym-1—Ym d-,zn - dfn_l + ”bm—l - u”2

3) AML: Similar to multilateration, Adapted Multi-Laterati tries to estimate the posi-
tion of an unlocalized node using circle intersatsi AML consists of three steps: intersec-
tion and elimination, first estimation and refinarheAt the first step two intersecting cir-
cles are arbitrarily chosen. These circles may$ete at one or two points. If there is more
than one point, the point with the larger distat@ehe third anchor is eliminated. At the
first estimation step the previously computed isgetion point is moved to the middle of
the line connecting it with the closest point oé tthird anchor’s circle. This is done to
compensate the errors introduced by range measuotenide calculation is done using the
resemblance of triangles. At the last step thetiposcan be further refined. Therefore, the
anchors that were not used in the previous stepsidded to the position estimation pro-
cess with the same principle utilized in the secsteg.

4) Min-Max: The Min-Max algorithm, also known as Bounding Bagorithm, is a sim-
ple and straightforward method in contrast to thagegexpensive number of floating point
operations of LLS or NLLS that is required. The malea is to build a square (bounding
box) given by[x; — d;,y; — d;] X [x; + d;, y; + d;] around each anchor nodeusing its
location (x;, v;) and distance estimatg, and then to calculate the intersection of these
squares. The final position of the unlocalized na@pproximated by the center of the
intersection box which is computed by taking thexmmaim of all coordinate minimums
and the minimum of all maximums:

[max(x; — d;), max(y; — d;)] X [min(x; + d;), min(y; + d;)] (%)

5) ICLA: The ICLA algorithm transforms node localizationaio issue of clustering inter-
section points, which is claimed to be resistanR8SI errors. The algorithm consists of
three main steps. In the first step all intersecpoints between every two circles centered
at the anchors coordinates and with radii equah&estimated distances are generated.
These intersection points cluster around the ufilemanode. In the second step the itera-
tive clustering model (ICM) is applied to get theshrepresentative intersection points for
localization. The final step of the algorithm cditas the position of the unlocalized node
by taking the centroid of all intersection poinfdfte biggest group that ICM has produced.
ICM is the central part of the algorithm. Here, iatiersection points are iteratively moved
towards their moving direction and merged if a is@h occurs. The collision area is a
circular area with the radius equal to the sizéhefmoving step. Points with bigger weight
exert a larger attracting force to other points efildience their moving direction. Initially,
all points have the same weight. At the end ofghecedure, all points are classified into
several different clusters according to the lefhfm
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6) LMS: Multilateration using LLS or NLLS is vulnerable &itacks because of its non-
robustness to “outliers”. Due to the summationhia tost function shown in Eq. (2), a
single outlier may ruin the estimation. Therefdreet al. (2005) propose to minimize the
median of residue squares instead, based on thbochehtroduced by Rousseeuw
(Rousseeuw & Leroy 1987). In this way a single ieuthas little influence on the cost
function, and won't bias the estimate considerablpding the exact solution of this non-
linear optimization problem is computationally erpwe. Thus, the authors suggest the
following procedure for implementing an approxinth&olution as the robust LMS algo-
rithm:

1) Setn = 4 as the appropriate subset size.
20, if N > 6

(Z) otherwise &5 the appropriate total number of subsets.

2) SetM = {

3) Randomly draw M subsets of sizen from the set of available anchors
{(x1,y1), ..., (xn, yn)}. Estimate a positio@,, 9,); for each subsgt= 1,2, .., M
using LLS and calculate the median of the estimat@siduals; to each anchor
i=12,..,N.

4) Definem = arg min; med;{r?}, then(2y, o)y, is the position estimate with the
least median of all medians among all subsets.

5) Calculate the scale estimatg= 1.4826 (1 + %) Jmedrs,.

6) Assign a weighty; to each anchor according to the formula

Ll<2s5

w; = {1’ S0 , whereas; = /(x; — %)? + (y; — $,) — d; is the residue
0, otherwise
of the i-th anchor for the location estim&®, ).
7) Do LLS with weights{w;} and all anchors to compute the final positionneate
(%0, ¥0)- This corresponds to executing LLS with only timeleors with a weight

OfWi =1.

The main idea of LMS is that at least one subsetranall subsets contains only small or
no measurement errors. Although smaller subsetsase the probability to have at least
one good subsety = 4 is chosen to reduce the chance that the sampdetarclose to
each other to produce a numerically stable poségiimate (Li et al. 2005).

4. Simulation

In this section we give a detailed analysis of shelocalization algorithms introduced in
section 3. First, we give a quantitative analydighe algorithms using a common error
model for the distance measurement procedure. Ways we are able to compare our re-
sults with the results of other research papersoi®g we give an insight in the spatial error
distribution by analyzing all algorithms with theSt (Will, Hillebrandt & Kyas 2012)
simulation engine. This simulator produces imagethe error distribution by calculating
the position error for every discrete point on Hwulated area which easily shows the
strengths and weaknesses of a given algorithm.ubimaut the simulations we stick mostly
to a grid layout of nine anchor nodes to be ableotmpare the results of the two approach-
es.

4.1. Quantitative Evaluation

We present simulation results that demonstrat@énfmrmance of the selected localization
algorithms in different scenarios. We model eaclasneed distancd; between the unlo-
calized node and the anchor nadss,

d; = d; + €05 + Envos (6)

whered; is the real distance, which is contaminated bysueag errors and non-line of
sight (NLOS) errors. The measuring eregp results from the measuring processes in a
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noisy channel and the NLOS ermqy, s derives from the blocking of the direct paths. For
the sake of comparison, we modgls by a zero mean Gaussian distribut®(0, o) be-
cause this is done by the majority of the relatsbarch papers. The NLOS ereQy,s was
simulated as an Exponential random variable with ghrameteil uniformly distributed,

A € U(0,b) whereb > 0 is the maximum value of the uniform distributidfor each dis-
tance measurement a random value uniformly digitbetween 0 (exclusive) and 1 (in-
clusive) is chosen and if smaller or equal thameaigfined probability, d; gets increased
by NLOS error. For direct line of sight distanceaserements this probability is zero, thus
enros = 0. The performance of the localization algorithmgiien in terms ofmean abso-
lute error (MAE) which is the average of the difference betwehe real and estimated
locations. For all of our simulations we have omdooalized node which takes 100000
random positions on a square area and executesalgmiithm. The radio range is unlim-
ited in our simulations, so the unlocalized nodés glstance measurements to all anchor
nodes regardless of its current location.
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In our first simulation, we deploy 9 anchor nodesaosquare area of increasing size. The
side length of the area varies from 10 to 100 rsef€he anchor nodes are arranged in a
grid of 3x3 nodes in order that they cover the whalea. The anchor setup can be seen in
Fig. 1. There are only line of sight distance measients with standard deviation= 2.3.

Fig. 2 shows the results of this simulation whére vertical axis is the localization error
and the horizontal axis is the side length of thease area. The performance of NLLS,
LLS, LMS, and ICLA stays pretty much unaffectedaryincreased area size. The accuracy
of ICLA even shows an improvement of 20% until #ige length reaches 60 meters. The
performance of AML and Min-Max decreases lineadytlae side length grows, with Min-
Max showing the worst behavior.

NLLS —+— NLLS —+—
20 LLS —se— LLS ——
AML  —%— 3 AML  ——

Min-Max —e—
ICLA
15 IMS —»—

Min-Max —e—
ICLA

LMS —e—

Mean absolute error [m]
Mean absolute error [m]

0 0
100 90 80 70 60 50 40 30 20 10 1 0 2 4 G 8 10
Area coverage [%] Standard deviation
Fig. 3: Localization error to area coverage Fig. 4. Increasing measurement noise

In a second simulation, we deploy the 9 anchor sadghe same way on a 100x100 m?
area but continuously decrease the area the ancli®s span. This can be seen in Fig. 1.
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At the start, the anchors cover the white squaga.avhen reducing the covered area, the
anchors would be deployed on the edges of theggyasire area. In each step we reduce the
covered area by 10 percent. As a result of this,uhlocalized node will more and more
take positions outside the grid because the anarersot any longer the edges of the net-
work. This is a reasonable test because it's notiyd possible to have an ideal anchor
setup and the movement of mobile nodes is not avpagdictable in a real world deploy-
ment. Again, there are only line of sight distanteasurements with = 2.3. Fig. 3 shows
the results of this simulation where the verticekds the localization error and the hori-
zontal axis is the area coverage in percent irtioglgo the 100x100 m? area. In general,
AML and especially Min-Max are affected most by ttezluction of the covered area.
NLLS, LLS, LMS, and ICLA stay relatively unaffectedtil the coverage ratio drops be-
low a critical margin of 10%, with NLLS showing thest performance all the time. Area
coverage of 1% also isn’'t a reasonable setup bedhesresulting grid only has a dimen-
sion of 10x10 m? with a distance of 45 meters ® ¢kiges of the square area. However,
area coverage of 30% with a grid dimension of 5848% m2 and a distance of 22.6 meters
to the edges still sounds reasonable. In this stelwcalization accuracy drops by 12.3%
(NLLS), 17.4% (ICLA), 21.8% (LMS), and 26% (LLS) mpared to the initial situation,
whereas the accuracy of AML drops by 44.5% anddhin-Max by 206%.

In the next set of simulations, we set the sidgtlerof the square area to 50m and the area
coverage to 70% while sticking to the grid disttibo of anchor nodes.

Fig. 4 shows the result of a simulation where ihe bf sight measurement noise is in-
creased constantly. This is done by increasingstardard deviatiow of the zero mean
Gaussian measurement errefgs. All algorithms show a decreased performance rimse

of localization accuracy if the measurement nossméreased. The localization error of all
algorithms except ICLA rises linearly. ICLA suffemsost by an increased measurement
noise while NLLS and Min-Max show the best overarformance. Although Min-Max
doesn't start from the same level than the othgorghms it can even outperform AML in
the end. When there is no measurement error, @ibAland Min-Max don’t produce very
low estimation error. This is also expected sinda-Max does not produce an ideal solu-
tion of the equation system (by using bounding kdxiacluding anchor coordinates and
distances to each of them. ICLA, on the other hardasionally clusters more intersection
points than needed. This is the case when the alited node is close to anchors and the
resulting circles have small radii. As a resulgrehexist intersection points close to the
intersection points forming the ideal solution.

g NLLS —— 9 NLLS ——
7 LS —s— 3 LS s
AML  —— AML  ——

E 6 Min-Max —ea— E T | Min-Max —e—
S ICLA 5 6 ICLA
= 5 LMS —e— = LMS —e—
@ 5
© o 5
5 4 El
2 7 4
g £,
g 5 g
= = 2

1 1

0 0

0 20 40 60 80 100 0 50 100 150 200 250 300
Probability of NLOS distances Max. distance error [m]
Fig. 5: Increasing the probability of NLOS dis- Fig. 6: Increasing the maximum allowed distance
tances error

In our next simulation, we wanted to test the ieflae of NLOS errors to the chosen locali-
zation algorithms. Therefore, we set the line ghsierror toc = 2.3 and the upper bound
of the uniform distribution for parametrto 3. In each simulation run, we set the probabil-
ity p for having NLOS errors to a fixed value. Thus, éxpected percentage value of non-
line of sight distances is closepgoThe maximum allowed distance estimation error sets
to 30 meters. In this way all estimation errorgéarthan 30 m are cut off and reassigned to
30 m.Fig. 5 shows that the localization error of ICLAdaklin-Max increases gradually
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with the increase of NLOS distances, which demaitessr good NLOS error tolerance.

NLLS, LLS, and AML show large performance degraolatin terms of localization accu-

racy. As expected, LMS can outperform LLS due soaittack resistance in case of large
outliers. At 20% probability of NLOS distances LM$arts to perform better than LLS.

This observation even gets more obvious when lgpkina simulation run whose results
are displayed in Fig. 6. Here, the maximum allowlestance estimation error is increased
in steps of 30 meters and the probability of NLOSahces is kept fixed at 50%. LLS and
NLLS cannot withstand these large errors due to stimation in the cost function,

whereas ICLA and Min-Max stay completely unaffectgdlarger errors. Even the perfor-

mance of AML only slightly decreases and is bettan LMS in the end.

10 NLLS ——
1 6 2
— 8
E
5
& 6
=
=
9 . 7 2
5 % 4
5
= 2
4 ; 3 o]
3 4 5 5} 7 8 9
Anchor count
Fig. 7: Grid setup for anchor count simula- Fig. 8: Increasing the anchor count
tion

In our last simulation, we reposition the ancha@seen in Fig. 7 and modify the amount of
anchors to investigate its influence on the pertoroe of the algorithms. In the first simu-
lation run, we take anchor 1-3, in the second stimh run anchor 1-4 and so on. In this
way, there are no collinear anchors and the covarea is always nearly at maximum. All
other settings remain the same except that theapility of NLOS distances is set to 30%.
Fig. 8 shows the results of this simulation whére Yertical axis is the localization error
and the horizontal axis is the anchor count. ExéeptAML whose estimation error in-
creases temporarily when anchor count exceedsebedtimation error of the other algo-
rithms decreases. LMS performs better than LLS wheranchor count exceeds 5 because
only then can LMS build enough subsets of size filter out outliers. ICLA doesn’t seem
to work well with anchor counts below 5 to 6 bubgils the overall highest performance
gain of all algorithms and outperforms even NLLSta end.

107
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106 | AML o
. Min-Max  —
2 ICLA ==
3105 LMS oo
£
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g
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18]
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3 8 9
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Fig. 9: Execution times of the six localization algorithms
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Another important aspect when comparing localizatidgorithms is their computational
complexity. Fig. 9 shows the average execution gimethe six algorithms needed for a
single localization with three, six, and nine anshm our simulation. Min-Max has the
smallest execution time since it applies only sengtithmetic operations. The same holds
for AML. The execution time of NLLS is much highttian that of LLS because of its itera-
tive approach, whereas LLS uses a closed formisaluThe execution time of LMS is
around 14 times higher than that of LLS except wtienanchor count is lower five be-
cause then LMS cannot build subsets of size fole. @xecution time of ICLA is extremely
large compared to all other algorithms.

4.2. Spatial Evaluation

- P :i;'-;z £ ,

7 i |

Fig. 10: The average spatial error distribution of thessirulated algorithms (1000 simulation runs).

The algorithms are from left to right: Min-Max (480average position error compared to expected
distance error), ICLA (408%), AML (340%), LMS (202%)S (188%) and NLLS (138%).

To evaluate the spatial distribution of the positarror we executed every algorithm 1000
times in the LS? simulation engine. LS? calculdtesposition error for every discrete point
on the simulated area using an error model andgamitom selected by the user. First, we
simulated every algorithm with a uniform grid laydar the anchors. We chose nine an-
chors whose convex hull covers 4% of the simulaticra. The resulting images consist of
up to three differently colored areas. The grewandicates a position error between 100%
and 250% of the expected distance measurement\alige; the darker the area, the higher
is the error. The green area (if present) indicatg®sition error lower than the expected
distance measurement error; the darker the aredower is the error. In the blue area the
error is higher than 250% of the position error andropped for better image contrast. The
anchors are represented by the small red squareschése a uniformly distributed error
with an expected value of 5% of the playing fiedddth for this simulation to minimize the
effect of the error model and to maximize the dffifcthe geometrical constellation of the
anchors and the influence of the algorithm. Otlesrenodels change the shapes very little
but lower the contrast of the resulting imageshsy are not as meaningful.

The green area is very important for cooperaticaliaation strategies in WNs, because the
position error stays in a reasonable range as &nthe node remains in the green area.
Otherwise the position error tends to grow muckefathan expected.

In Fig. 10 we display the spatial distribution betsix algorithms in descending order of
their average position error. As expected, Min-Mas the worst average error. But Min-
Max performs much better than all other algorithftee unlocalized node stays inside the
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convex hull of the anchors. If the node’s positisrmore than the inter-anchor distance
away from the convex hull, the error grows veryt.fA LS performs completely different.
Its overall error distribution is nearly uniformtdihe weaker regions are inside the convex
hull and not outside. This different behavior ctiomates that statistical measures like mean
error and standard deviation are less precisedhalyzing the spatial distribution. LLS and
LMS perform nearly similar with LLS having an ovbrbetter average result inside the
convex hull in this setup. The quality of AML an@UA is poor in every aspect in this
setup. They have no real strengths and get weakgrfast with rising distance to the an-
chors. It is also remarkable that the spatial edistribution of some algorithms is not
symmetric, although the anchors are set up symecadliri LMS for example performs
better in the lower right corner of the convex hh#n in the other three corners. Only Min-
Max and NNLS are nearly symmetric.

Especially the comparison between LLS and NLLS shthat LLS has its strengths and is
useful in some scenarios even if NLLS performs mioetter in the average case. Looking
only at this setup, the dynamic selection of alhons (e.g. between Min-Max and NLLS)
regarding a roughly estimated position would leatétter results.

The different spatial distributions of the positierror of the six algorithms shows that
statistical methods like the Cramér-Rao Bound, doahot take the geometrical characteris-
tics of the algorithms into account, are often gasling or not very helpful.

Fig. 11: Worst case results for NLLS, AML, and Min-Max (ID8imulation runs).

For some applications where you have to guaramegpper bound of the position error,
e.g. in rescue scenarios, the worst case of thiabkp#stribution is more meaningful than
the average case. In Fig. 11 we show the highestigo error for every discrete location
out of the 1000 simulation runs. NLLS shows its kressses inside the convex hull more
clearly, but in contrast to the average resultkaks strictly symmetric. AMLs worst case
distribution looks completely different to the aage case distribution. The lower right half
of the convex hull was one of the weaker regionkig 10 and is the best region in Fig.
11. Again, AMLs performance is very poor in thisugecompared to the other algorithms.
Min-Max again is the best algorithm if the unloezali node stays inside the convex hull of
the anchor nodes and the worst case distributitinesr weakened compared to the aver-
age one.

For the next simulation run, we lowered the nundfeanchors to four and chose a different
layout, where the four anchors are not placed @dtiout nearly collinear. The resulting
spatial distribution of the position error in Fii2 has changed little. NLLS is weaker inside
the convex hull and stronger outside, but still aéme very homogenous. Min-Max remains
very good between the anchors and quickly getsevaith increasing distance to the an-
chors. Min-Max has still the lowest error for aljarithms inside the convex hull. LMS
and LLS perform nearly identically. They remainagood average level and do not seem
to suffer very much from the reduced anchor cotihe only outlier is AML, which is the
only algorithm of the six that performs better wittwer anchors in a worse layout. We
conclude that AML has some design weaknesses anddshe optimized to perform better
with more anchors, or at least should only uselsetuof the given anchors. In its original
paper, AML is mainly simulated in a setup with axmaum of four anchors, so their con-
clusion that AML performs very well seems reasoaaiily under these limited conditions.
ICLA once again is weak under these conditionss Eointradicts somewhat to the findings
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in its original publication where ICLA always shadvialf the error of Min-Max and also
to the previous subsection where ICLA showed betggformance. An explanation can be
seen in Fig. 4. Because the expected measuremenivers much higher in the simulations
using LS? than the other ones, the accuracy of I@xperienced a much larger degrada-
tion. This is of particular importance since, asviwusly mentioned, ICLA suffers the most
from an increased measurement noise.

Fig. 12: The average spatial error distribution of thessimulated algorithms (1000 simulation runs)
with 4 anchors. The algorithms are from left thtig CLA (406%), Min-Max (382%), LMS (262%),
LLS (261%), AML (220%) and NLLS (138%).

For the last simulation we placed 9 anchors onlfacivale. The results of this simulation
can be seen in Fig. 13. The most interesting obsiervfor this constellation is that the size
of the green area is significantly bigger for thgoathms with high average errors. This
leads to a new perspective in comparing these itthgas, especially for tracking applica-
tions where the current position can roughly bévesed. In the case shown in Fig. 13 one
could implement a simple algorithm which switchetween NLLS and Min-Max depend-
ing on the estimated node position.

F

S ﬁﬁ
Fig. 13: The average spatial error distribution of threewated algorithms (1000 simulation runs)
with 9 anchors. The algorithms are from left thtigNLLS (130%), LLS (160%) and Min-Max
(360%).

This observation is also useful for a general campa and evaluation of localization

algorithms. Concentrating only on the average fmosiérror as an evaluation metric could
lead to wrong conclusions if the spatial distribatis disregarded. The very different spa-
tial distributions of ranging errors for a giveresario also implies that the CRB, which
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does not consider the algorithm itself, can givy @avery vague estimation of the spatial
distribution of the position error. For example,nMVax has a worse average position er-
ror, but performs better in real world indoor dggleents because the inter-anchor distance
is normally low and the node can only move insiae tull of the anchors that are usually
mounted to walls. This behaviour can be predictethfthe spatial distribution.

5. Experimental Results

In order to measure the effectiveness of the siwrghms with real sensor network data
and to be able to compare the results with thewdggdcsimulations, we recorded the data of
a series of different test runs. The experimentewarried out using a modified version of
the Modular Sensor Board (MSB) A2 (Baar et al. 2008de which is equipped with a
Nanotron nanoPAN 5375 (Nanotron Technologies GmB6B2 transceiver. This hardware
enables the sensor nodes to measure inter-nodesrarsing time of flight (TOF) in the
2.4 GHz frequency band. The experiments took ptaccthe second floor of our Computer
Science Department during daytime.

Fig. 14 shows one exemplary campaign of measurenfelidwing a route among offices,

laboratories and with a few people walking arourdr the reason of clarity, we plotted
only the results of NLLS and Min-Max using a Kalnidter. The starting point is denoted

by “S”, the endpoint is denoted by “E” and the tdémgth of the path was about 100 me-
ters.

Il Actual position

I Anchors

Fig. 14: Position estimates on the second floor of our CderpBcience Department.

In each run, we used 17 anchors which were depltyedighout the building. Most of the
anchors were placed in office rooms with doorsetb©nly a small fraction of nodes was
placed on the hallway, in case of Fig. 14, thereeweur nodes. Ground truth was meas-
ured with the aid of a robot system developed atimpartment using a Microsoft Kinect.
This reference system provides about 10 cm positipaccuracy. The robot also carried
the unlocalized node and followed a predefined path a predefined speed. We used the
maximum movement speed of the robot, which is & i total, we performed over 5300
localizations when adding up all test runs. TheofN achieves ranging precision of
around 2.85 m in average and the RMSE is 4.32 mveder, the ranging error can be as
large as 20 m. We even encountered measuremen$ edo 75 m in rare cases. Fig. 15
shows the distribution of the distance measuremerr using all anchor nodes and all
runs.

The quantitative results of the six localizatiogaithms are shown in Table 2. The average
anchor degree throughout all experiments was A48t can be seen, Min-Max outper-
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forms the other algorithms in terms of localizatamturacy with achieving an average error
of 2.05 m. This is about twice as good as ICLA, skeond best algorithm with an average
error of 4.25 m. The good performance of Min-Maxni® surprising because the inter-

anchor distances were relative short (between 51@ndheters) and the mobile node took
mainly positions within the bounds of the netwols. we know from section 4 this is the

optimal situation for Min-Max algorithm. This behaw can also be seen in Fig. 16 where
the unfiltered estimated locations of Min-Max aispthyed. For instance when looking at
anchor 11 or 12, one can clearly see that the ertoounded by their coordinates.
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Fig. 16: Behavior of unfiltered Min-Max algorithm

The fact that the RMSE of NLLS, AML, and ICLA is lgrslightly larger than the RMSE
of the distance measurements tells us that thegeitlims performed well relative to the
quality of the distance measurements available. histegrams of localization errors of all
algorithms can be seen in Fig. 17 where the vérég is the absolute frequency and the
horizontal axis is the localization error. LLS atiwbrefore also LMS show poor perfor-
mance compared to the other algorithms. Also theSENs much larger than that of the
other algorithms. However, LMS can still achievétérelocalization accuracy than LLS as
expected from our simulations.

Table 2: Quantitative results for the localization task

ALGORITHM MAE [m] RMSE [m] MAX [m]

NLLS 4.49 5.35 30.34
LLS 8.92 20.41 461.63
AML 4.96 5.96 36.749
Min-Max 2.05 2.42 15.3¢
ICLA 4.25 6.01 45.52
LMS 7.37 17.47 449.09

Obviously, the position accuracy could be improusthg some filtering techniques, such
as Kalman or patrticle filters, but the aim of thaper is to show and compare the perfor-
mance of the used localization algorithms withasihg any of those filtering techniques.

Summarizing the results of the simulations and erpnts, it can be stated that NLLS
shows the overall best performance no matter tha size and coverage ratio. Its spatial
error distribution is very uniform which is provég the simulations done in section 4. It is
also among the best algorithms of the real experimdowever, if the measurement noise
is not that high, ICLAs performance is very closehat of NLLS. When the average an-
chor degree is greater than 5 and when operatingdiomor environments where the per-
centage of NLOS distances is certainly higher 8@% in most of the cases, ICLA outper-
forms the other localization schemes in terms a@uescy and shows a much better re-
sistance to NLOS errors, even than NLLS. Howevds, advantage comes at the expense
of increased calculation costs compared to allradhgorithms.
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Min-Max has the advantage of being computationeligap and insensitive to errors, but it
requires a good constellation of anchors; in paldic the desired localization error of Min-
Max can be easily adjusted by placing the anchbtBeaedges of the network and having
small inter-anchor distances. This fact is alstestédy Savvides et al. (2002) and proved by
Langendoen et al. (2003). AML works best when thmber of used anchors lies between
4 and 5. This corresponds to the findings of Kutuag al. (2009) and is the reason why
they limit the number of used anchors to 4 whenmaming AML with LLS and Min-Max.
They identify the refinement phase of their alduritas the reason for this behavior. Like
Min-Max, AML also profits from a good constellatiaf anchors, although the impact is
not as high as that of Min-Max. We could also prévat LLS performs better than LMS
when the attack strength is low (less than 20% N@&nces), which is stated by Li et al.
(2005). That's the reason why they implemented fficient switched LLS-LMS localiza-
tion scheme to overcome this situation. The desitesign goal of being more robust
against large distance measurement error due tdimmiof sight signal propagation could
be validated by our studies. Nevertheless, LMS otontperform NLLS unless the dis-
tance measurement error is abnormally high whidulkim't be the case even in indoor
deployments.
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Fig. 17: Histograms of localization errors in a real enmim@nt, the second floor of our Computer
Science Department.

6. Conclusion

We showed that the error distribution doesn't atépend on the error distribution of the
measured distances, but also on the geometricaitelation between node and anchors
and the characteristics of the algorithm. We priesemnesults from both simulations and
real experiments that corroborate our theory.

The NLLS algorithm is the best general purposerélym of the tested localization algo-
rithms, because its spatial error distribution ésywhomogenous even if the anchor place-
ment isn’t optimal. ICLA, on the other hand, shoveedbiguous behavior. While the algo-
rithm performed weakly in the spatial error disttion analysis, the real experiments and
other simulations showed opposite behavior. Weadisied that ICLA is very susceptible
to high measurement noise which is the reasonhmpbor performance in section 4.2. If
we know the error distribution of the distance nueasient device and the operation envi-
ronment (e.g. indoors), then ICLA provides a gotidraative to NLLS. If the errors are
large and the unlocalized node is in the convekdfithe anchors, Min-Max also is a good
choice for localization. Especially in dense netiggowith small inter-anchor distances Min-
Max outperforms all other algorithms as shown leyekperiments in section 5.

The optimal solution for the localization task wadbldle to use a selection algorithm which is
capable of analyzing the current situation at gawiht in time and then applying the ideal
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method for achieving the lowest positioning errosgible.

Future work should address the development of gorighm that is optimized for geomet-
ric constellations typically found in real world gleyments. For indoor environments an
algorithm should focus on low inter-anchor distaneed the performance inside the con-
vex hull of the anchors. For cooperative localmatalgorithms one should try to achieve a
very homogeneous error distribution with positioroes lower than the average distance
error. To develop such algorithms or an adaptivenltination of several algorithms, it
would be helpful to get simple estimation for thepected quality of the current anchor
setup with the current algorithm.
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