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Summary: Indoor localization, especially in wireless networks (WN) has become an important re-
search focus in computer science during the past ten years. Several approaches exist to estimate a 
node’s position relative to other devices. Most approaches are based on distance measurements and 
localization algorithms. In this paper we provide an overview of common and new localization algo-
rithms. A detailed investigation on the error distribution and the real world behaviour of these algo-
rithms is presented. We also provide a discussion of the evaluation results that leads to open ques-
tions and future research approaches. 

1. Introduction 
With the broad success of location based services the demand for indoor localization func-
tionality has become bigger and bigger. In theory most techniques to satisfy this demand 
are well known. There are several ways to estimate distances in wireless networks and 
several algorithms to calculate positions with estimated distances and the position of the 
corresponding anchor devices in the network. The general usability of a digital positioning 
system has been proved since 1994 with the general public availability of the Global Posi-
tioning System (GPS). 

A positioning system for real world indoor use must have several differences to GPS. The 
main difference is the size of the ranging error that is part of every range estimation. While 
the GPS satellites use very precise and synchronized clocks, due to cost reasons, only 
common quartz clocks are used in WNs. Quartz clocks have higher jitter and drift, and 
consequently are not synchronized. Although there exist several high accuracy time syn-
chronization protocols for use in WN, the achievable accuracy is far too low for precise 
range estimation. Another big issue for indoor localization is that generally there is no di-
rect line of sight to the node whose distance is to be estimated; thus, multipath effects and 
signal reflection have a much bigger influence than in the GPS system. 

Concerning these issues, several approaches for more error tolerant and more robust algo-
rithms have been published. Because there are no standardized test cases and many re-
searches obviously do not have access to radio ranging hardware, many authors rely on 
simulations to prove their functionality (see Section 2 for examples) and only a small mi-
nority uses real world deployments for their evaluation. Moreover, each simulation works 
with its own settings of the simulation parameters: they all differ in the choice of playing 
field, placement of anchors, radio range, and ranging error model. With respect to simula-
tion results: we will show that the performance of location estimation methods depends on 
the experimental setting. Thus, choosing a suitable algorithm for a given scenario or de-
ployment is not possible based on these published results. It may even be impossible to 
conclude whether a method is consistently more precise than another one. 

We provide an overview and present a structured analysis of common localization algo-
rithms. The first two steps of our analysis are based on simulations and the third step is 
based on a real world deployment in an office building. All simulations and all test runs 
were conducted with the same parameter settings for all algorithms, so the results are com-
parable and strengths and weaknesses of the discussed algorithms can be seen easily. 

In Section 2, we review related work and motivate our approach. In Section 3, we introduce 
the algorithms that we consider and explain their basic properties. In Section 4, we present 
our evaluation by simulation. The first part is a quantitative simulation of these algorithms. 
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This simulation is similar to the simulations performed in the publications that introduce 
each algorithm to show their benefits. Instead of just reproducing the results of those pa-
pers, we simulate all algorithms using the same parameter settings to ensure that our com-
parisons are valid. 

In the second part of Section 4, we discuss the spatial properties of the selected algorithms. 
The quantitative evaluation in the first part measures the average performance of each algo-
rithm. Some algorithms show a harmonic performance, i.e., the position estimation error 
does not correlate well with the position and the placement of anchor nodes. Other algo-
rithms are less harmonic; they perform badly in some areas of the playing field and excep-
tionally well in other areas. Thus, analysing the distribution of the position error for each 
algorithm gives a refined view on the results obtained by our quantitative evaluation. We 
show that the error distribution doesn’t only depend on the error distribution of the meas-
ured distances, but also on the geometrical constellation between node and anchors and the 
characteristics of the algorithm. We present a new approach that shows that the algorithm 
itself has a much bigger influence on the resulting error than only viewing the geometrical 
constellation. 

In Section 5, we validate the simulation results using a large indoor deployment by execut-
ing every algorithm with real world data gathered in our office building. The combined 
analysis makes the algorithms much more comparable and delivers a much better under-
standing of the strength and weaknesses of the algorithms than the original papers where 
they have been published. In Section 6 we present our conclusion. 

2. Related Work 
Work on evaluating and comparing localization algorithms turns out to be heterogeneous. 
We are aware of surveys that explain different localization methods, e.g., (Mao, Fidan & 
Anderson 2007), and qualitative surveys, e.g., (Torres-Solis, Falk & Chau 2010), that re-
view existing algorithms and try to convey the context in which they are best applied. 
Those surveys are meta-studies and provide little quantitative evaluation. 

Surveys that focus on a quantitative comparison are attempted by Biaz & Ji (2005) and by 
Langendoen & Reijers (2003). Both survey multi-hop methods. Their results are not direct-
ly comparable to ours, since we do not limit the radio range. Biaz and Ji are vague on the 
ranging errors of their simulation, only stating “The actual range error is determined dy-
namically during the experiment by the production of the maximum variance and a 
rand[om] number between -1 and 1” but they do not state the used probability distribution. 
Indeed, Biaz and Ji compare algorithms based on their sensitivity to ranging errors using 
varying settings. We share some experimental setups with Langendoen and Reijers (a cen-
tred 3x3 grid) but work with different error models. 

Comparing published performance evaluations is difficult at best. Table 1 lists the evalua-
tion methods used by the sources to our algorithms. Each publication uses a different setup 
of the playing field and a different error model. Also the choice of algorithms they compare 
to varies. Linear Least Squares (LLS) and Bounding Box/Min-Max, (Savvides, Park & 
Srivastava 2002) (Langendoen & Reijers 2003), appear to be the most common choices. 
Thus, transferring results about, say, Adapted Multi-Lateration (AML) (Kuruoglu, Erol & 
Oktug 2009) to Least Median of Squares (LMS) (Li et al. 2005) actually requires a new 
simulation run, as the results were obtained in non-comparable settings. 

Surveys like the ones above usually compare algorithms based on statistical evaluations of 
simulations. Comparing such results is difficult, because they differ in error model, geomet-
ric placement of anchors and density of anchors. These vary, sometimes leading to contra-
dictory conclusions. Thus, we compare all algorithms under the same conditions. We high-
light that results can be manipulated by the choices, effectively favouring one algorithm 
over the other. 

Navidi, Murphy, Hereman (1998) make a very profound observation about two lateration 
approaches: trilateration and multilateration. They observe that anchor position influences 
the position estimation error and call for more research in the domain of anchor placement. 
This comment also inspired the work on a spatial simulation that we present in part two of 
Section 4. 
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Yang and Liu (2010) present a slightly similar approach to research the spatial error distri-
bution. Instead of calculating all possible positions on the playing field and visualizing the 
position error distribution, they calculate one position and visualize the probability for this 
node to be located on all other positions of the playing field. 

Some researchers use the Cramér-Rao Bound (CRB) for estimating the error distribution 
instead of using simulations. The CRB computes a lower bound on the covariance of the 
error, usually from the position of the anchors and the statistical error model. For example, 
an analysis of the CRB has been given by Yang & Scheuing (2005), where they apply it to 
compute optimal anchor positions. The CRB gives a lower bound on the covariance matrix 
of an idealised, unbiased position estimator, based on geometric properties of anchor nodes 
and statistical properties of the range measurement errors. It does not reference the algo-
rithm under consideration. Thus, the CRB only allows to state whether an algorithm is 
already optimal, provided that the algorithm is analysed analytically or statistically by a 
simulation similar to ours. This was both observed by Dulman et al. (2008) and Vaghefi 
and Buehrer (2012), which all observe that the CRB is an inadequate tool for localization. 
In addition, Yang and Scheuing observe in Proposition 2, that the CRB is a strict lower 
bound under any Gaussian error model, as no unbiased estimator will attain this bound. 

Table 1: Evaluation settings of common algorithms 
Algorithm Compared to Setup Error Model 

AML LLS, MIN-MAX 200m*200m, 40 an-
chors uniformly dis-

tributed 

zero mean Gaussian, 
variance = realDist * 10% 

LMS LLS 500m*500m, 30 an-
chors randomly dis-

tributed 

zero mean Gaussian, 
variance = 15², 20² 

ICLA Centroid, MIN-MAX 50m*50m, 10 anchors log Gaussian RSSI model; 
error from 10% to 60% 

MIN-MAX, LLS  6 beacons, 10 to 100 
ranging nodes, 15 m 

maximum range 

zero mean Gaussian; stand-
ard deviation 20mm 

3. Localization Algorithms 
For reasons of clarity and comprehensibility we focus our evaluation on six localization 
algorithms. Three of them are well known algorithms and often used for performance com-
parison when proposing a new localization algorithm: Multilateration using Nonlinear 
Least Squares (NLLS) or LLS and Min-Max algorithm. The other three algorithms are 
more recent and have never been benchmarked under consistent conditions till now: LMS, 
AML and Iterative Clustering-based Localization Algorithm (ICLA) (Haiyong et al. 2011). 

1) NLLS: Given � anchor nodes with fixed positions at �� = ��� , ��	 for 
 = 1,2, … ,� 
and possibly noisy range measurements �� from these nodes to a non-anchor node located 
at � = ��, �	, multilateration finds the most likely position of the unknown node, denoted 
by �� . From this information we write a system of equations: 

 �� − ��	² + �� − ��	² = ��²�� − ��	² + �� − ��	² = ��²⋮�� − ��	² + �� − ��	² = ��² (1) 

This problem is usually solved by using a least squares (LS) method, that is, minimizing 
the sum of the squared residuals between the observed ranges ��  and the estimated distanc-
es ‖� − ��‖: 
 �� = ���min�  �‖� − ��‖ − ��	²�

�!�  (2) 
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The minimization problem can be solved by using any of the Newton type optimization 
algorithms (Dennis & Schnabel 1996). These start from an initial guess at the solution and 
then iterate to gradually improve the estimated position until a local minimum of the objec-
tive function in Eq. (2) is found. However, there is a non-negligible probability of falling 
into a local minimum of the error surface when solving Eq. (2). Therefore, to find an esti-
mate close to the global minimum, LS must run several times with different initial starting 
points, which is expensive in terms of computing overhead. 

2) LLS: The nonlinear least squares problem can be linearized by subtracting one of the 
equations given in Eq. (1) from the remaining � − 1 equations. In matrix notation, the 
linear system can be expressed as "� = � and can be solved by the LS method to provide 
an estimated location, as given by the closed form solution shown in Eq. (3) (i.e., normal 
equations). 

 �� = �"#"	$�"#� (3) 

with: 

" = % �� − �� �� − ���� − �� �� − ��⋮��$� − �� ⋮��$� − ��& , � =
12%
��� − ��� + ‖�� − �‖²��� − ��� + ‖�� − �‖²⋮��� − ��$�� + ‖��$� − �‖²& (4) 

3) AML: Similar to multilateration, Adapted Multi-Lateration tries to estimate the posi-
tion of an unlocalized node using circle intersections. AML consists of three steps: intersec-
tion and elimination, first estimation and refinement. At the first step two intersecting cir-
cles are arbitrarily chosen. These circles may intersect at one or two points. If there is more 
than one point, the point with the larger distance to the third anchor is eliminated. At the 
first estimation step the previously computed intersection point is moved to the middle of 
the line connecting it with the closest point of the third anchor’s circle. This is done to 
compensate the errors introduced by range measurements. The calculation is done using the 
resemblance of triangles. At the last step the position can be further refined. Therefore, the 
anchors that were not used in the previous steps are added to the position estimation pro-
cess with the same principle utilized in the second step. 

4) Min-Max: The Min-Max algorithm, also known as Bounding Box algorithm, is a sim-
ple and straightforward method in contrast to the quite expensive number of floating point 
operations of LLS or NLLS that is required. The main idea is to build a square (bounding 
box) given by '�� − �� , �� − ��( × '�� + �� , �� + ��( around each anchor node 
 using its 
location ��� , ��	 and distance estimate ��, and then to calculate the intersection of these 
squares. The final position of the unlocalized node is approximated by the center of the 
intersection box which is computed by taking the maximum of all coordinate minimums 
and the minimum of all maximums: 

 '������ − ��	,������ − ��	( × '�
*��� + ��	,�
*��� + ��	( (5) 

5) ICLA: The ICLA algorithm transforms node localization to an issue of clustering inter-
section points, which is claimed to be resistant to RSSI errors. The algorithm consists of 
three main steps. In the first step all intersection points between every two circles centered 
at the anchors coordinates and with radii equal to the estimated distances are generated. 
These intersection points cluster around the unlocalized node. In the second step the itera-
tive clustering model (ICM) is applied to get the most representative intersection points for 
localization. The final step of the algorithm calculates the position of the unlocalized node 
by taking the centroid of all intersection points of the biggest group that ICM has produced. 
ICM is the central part of the algorithm. Here, all intersection points are iteratively moved 
towards their moving direction and merged if a collision occurs. The collision area is a 
circular area with the radius equal to the size of the moving step. Points with bigger weight 
exert a larger attracting force to other points and influence their moving direction. Initially, 
all points have the same weight. At the end of the procedure, all points are classified into 
several different clusters according to the left points. 
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6) LMS: Multilateration using LLS or NLLS is vulnerable to attacks because of its non-
robustness to “outliers”. Due to the summation in the cost function shown in Eq. (2), a 
single outlier may ruin the estimation. Therefore, Li et al. (2005) propose to minimize the 
median of residue squares instead, based on the method introduced by Rousseeuw 
(Rousseeuw & Leroy 1987). In this way a single outlier has little influence on the cost 
function, and won’t bias the estimate considerably. Finding the exact solution of this non-
linear optimization problem is computationally expensive. Thus, the authors suggest the 
following procedure for implementing an approximated solution as the robust LMS algo-
rithm: 

1) Set * = 4 as the appropriate subset size. 

2) Set , = - 20, 
/	1 > 64567, 89ℎ;�<
=; as the appropriate total number of subsets. 

3) Randomly draw , subsets of size * from the set of available anchors >���, ��	, … , ��5 , �5	?. Estimate a position ���@, ��@	A for each subset B = 1, 2, … ,, 
using LLS and calculate the median of the estimation residuals ��A�  to each anchor 
 = 1, 2, … , 1. 

4) Define � = ���minA�;��C��A�D, then ���@, ��@	� is the position estimate with the 
least median of all medians among all subsets. 

5) Calculate the scale estimate =@ = 1.4826 G1 + H5$�IJ�;������ . 

6) Assign a weight <� to each anchor according to the formula 

<� = -1, KLMNOK ≤ 2.50, 89ℎ;�<
=;, whereas �� = J��� − ��@	² + ��� − ��@	² − �� is the residue 

of the i-th anchor for the location estimate ���@, ��@	�. 

7) Do LLS with weights ><�? and all anchors to compute the final position estimate ���@, ��@	. This corresponds to executing LLS with only the anchors with a weight 
of <� = 1. 

The main idea of LMS is that at least one subset among all subsets contains only small or 
no measurement errors. Although smaller subsets increase the probability to have at least 
one good subset, * = 4 is chosen to reduce the chance that the samples are too close to 
each other to produce a numerically stable position estimate (Li et al. 2005). 

4. Simulation 
In this section we give a detailed analysis of the six localization algorithms introduced in 
section 3. First, we give a quantitative analysis of the algorithms using a common error 
model for the distance measurement procedure. This way, we are able to compare our re-
sults with the results of other research papers. Second, we give an insight in the spatial error 
distribution by analyzing all algorithms with the LS² (Will, Hillebrandt & Kyas 2012) 
simulation engine. This simulator produces images of the error distribution by calculating 
the position error for every discrete point on the simulated area which easily shows the 
strengths and weaknesses of a given algorithm. Throughout the simulations we stick mostly 
to a grid layout of nine anchor nodes to be able to compare the results of the two approach-
es. 

4.1. Quantitative Evaluation 

We present simulation results that demonstrate the performance of the selected localization 
algorithms in different scenarios. We model each measured distance �� between the unlo-
calized node and the anchor node 
 as, 

 �� = �R� + STUV + S5TUV (6) 

where �R� is the real distance, which is contaminated by measuring errors and non-line of 
sight (NLOS) errors. The measuring error STUV results from the measuring processes in a 
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noisy channel and the NLOS error S5TUV derives from the blocking of the direct paths. For 
the sake of comparison, we model STUV by a zero mean Gaussian distribution 1�0, W	 be-
cause this is done by the majority of the related research papers. The NLOS error S5TUV was 
simulated as an Exponential random variable with the parameter X uniformly distributed, 
X ∈ Z�0, �	 where � 2 0 is the maximum value of the uniform distribution. For each dis-
tance measurement a random value uniformly distributed between 0 (exclusive) and 1 (in-
clusive) is chosen and if smaller or equal than a predefined probability [, �� gets increased 
by NLOS error. For direct line of sight distance measurements this probability is zero, thus 
S5TUV � 0. The performance of the localization algorithms is given in terms of mean abso-
lute error (MAE) which is the average of the difference between the real and estimated 
locations. For all of our simulations we have one unlocalized node which takes 100000 
random positions on a square area and executes each algorithm. The radio range is unlim-
ited in our simulations, so the unlocalized node gets distance measurements to all anchor 
nodes regardless of its current location. 

 

 
Fig. 1: 3x3 grid setup 

 
Fig. 2: Localization error to area size 

 

In our first simulation, we deploy 9 anchor nodes on a square area of increasing size. The 
side length of the area varies from 10 to 100 meters. The anchor nodes are arranged in a 
grid of 3x3 nodes in order that they cover the whole area. The anchor setup can be seen in 
Fig. 1. There are only line of sight distance measurements with standard deviation W � 2.3. 
Fig. 2 shows the results of this simulation where the vertical axis is the localization error 
and the horizontal axis is the side length of the square area. The performance of NLLS, 
LLS, LMS, and ICLA stays pretty much unaffected by an increased area size. The accuracy 
of ICLA even shows an improvement of 20% until the side length reaches 60 meters. The 
performance of AML and Min-Max decreases linearly as the side length grows, with Min-
Max showing the worst behavior. 

 

 
Fig. 3: Localization error to area coverage 

 
Fig. 4: Increasing measurement noise 

 

In a second simulation, we deploy the 9 anchor nodes in the same way on a 100x100 m² 
area but continuously decrease the area the anchor nodes span. This can be seen in Fig. 1. 
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At the start, the anchors cover the white square area. When reducing the covered area, the 
anchors would be deployed on the edges of the grey square area. In each step we reduce the 
covered area by 10 percent. As a result of this, the unlocalized node will more and more 
take positions outside the grid because the anchors are not any longer the edges of the net-
work. This is a reasonable test because it’s not always possible to have an ideal anchor 
setup and the movement of mobile nodes is not always predictable in a real world deploy-
ment. Again, there are only line of sight distance measurements with W = 2.3. Fig. 3 shows 
the results of this simulation where the vertical axis is the localization error and the hori-
zontal axis is the area coverage in percent in relation to the 100x100 m² area. In general, 
AML and especially Min-Max are affected most by the reduction of the covered area. 
NLLS, LLS, LMS, and ICLA stay relatively unaffected until the coverage ratio drops be-
low a critical margin of 10%, with NLLS showing the best performance all the time. Area 
coverage of 1% also isn’t a reasonable setup because the resulting grid only has a dimen-
sion of 10x10 m² with a distance of 45 meters to the edges of the square area. However, 
area coverage of 30% with a grid dimension of 54.8x54.8 m² and a distance of 22.6 meters 
to the edges still sounds reasonable. In this scenario localization accuracy drops by 12.3% 
(NLLS), 17.4% (ICLA), 21.8% (LMS), and 26% (LLS) compared to the initial situation, 
whereas the accuracy of AML drops by 44.5% and that of Min-Max by 206%. 

In the next set of simulations, we set the side length of the square area to 50m and the area 
coverage to 70% while sticking to the grid distribution of anchor nodes. 

Fig. 4 shows the result of a simulation where the line of sight measurement noise is in-
creased constantly. This is done by increasing the standard deviation W of the zero mean 
Gaussian measurement errors STUV. All algorithms show a decreased performance in terms 
of localization accuracy if the measurement noise is increased. The localization error of all 
algorithms except ICLA rises linearly. ICLA suffers most by an increased measurement 
noise while NLLS and Min-Max show the best overall performance. Although Min-Max 
doesn’t start from the same level than the other algorithms it can even outperform AML in 
the end. When there is no measurement error, only ICLA and Min-Max don’t produce very 
low estimation error. This is also expected since Min-Max does not produce an ideal solu-
tion of the equation system (by using bounding boxes) including anchor coordinates and 
distances to each of them. ICLA, on the other hand, occasionally clusters more intersection 
points than needed. This is the case when the unlocalized node is close to anchors and the 
resulting circles have small radii. As a result, there exist intersection points close to the 
intersection points forming the ideal solution. 

 

 
Fig. 5: Increasing the probability of NLOS dis-

tances 

 
Fig. 6: Increasing the maximum allowed distance 

error 

 

In our next simulation, we wanted to test the influence of NLOS errors to the chosen locali-
zation algorithms. Therefore, we set the line of sight error to W = 2.3 and the upper bound 
of the uniform distribution for parameter X to 3. In each simulation run, we set the probabil-
ity [ for having NLOS errors to a fixed value. Thus, the expected percentage value of non-
line of sight distances is close to [. The maximum allowed distance estimation error was set 
to 30 meters. In this way all estimation errors larger than 30 m are cut off and reassigned to 
30 m. Fig. 5 shows that the localization error of ICLA and Min-Max increases gradually 
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with the increase of NLOS distances, which demonstrates good NLOS error tolerance. 
NLLS, LLS, and AML show large performance degradation in terms of localization accu-
racy. As expected, LMS can outperform LLS due to its attack resistance in case of large 
outliers. At 20% probability of NLOS distances LMS starts to perform better than LLS. 
This observation even gets more obvious when looking at a simulation run whose results 
are displayed in Fig. 6. Here, the maximum allowed distance estimation error is increased 
in steps of 30 meters and the probability of NLOS distances is kept fixed at 50%. LLS and 
NLLS cannot withstand these large errors due to the summation in the cost function, 
whereas ICLA and Min-Max stay completely unaffected by larger errors. Even the perfor-
mance of AML only slightly decreases and is better than LMS in the end. 

 

 

In our last simulation, we reposition the anchors as seen in Fig. 7 and modify the amount of 
anchors to investigate its influence on the performance of the algorithms. In the first simu-
lation run, we take anchor 1-3, in the second simulation run anchor 1-4 and so on. In this 
way, there are no collinear anchors and the covered area is always nearly at maximum. All 
other settings remain the same except that the probability of NLOS distances is set to 30%. 
Fig. 8 shows the results of this simulation where the vertical axis is the localization error 
and the horizontal axis is the anchor count. Except for AML whose estimation error in-
creases temporarily when anchor count exceeds 5, the estimation error of the other algo-
rithms decreases. LMS performs better than LLS when the anchor count exceeds 5 because 
only then can LMS build enough subsets of size 4 to filter out outliers. ICLA doesn’t seem 
to work well with anchor counts below 5 to 6 but shows the overall highest performance 
gain of all algorithms and outperforms even NLLS in the end. 

 
Fig. 9: Execution times of the six localization algorithms 

 
Fig. 7: Grid setup for anchor count simula-

tion 

 
Fig. 8: Increasing the anchor count 
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Another important aspect when comparing localization algorithms is their computational 
complexity. Fig. 9 shows the average execution times of the six algorithms needed for a 
single localization with three, six, and nine anchors in our simulation. Min-Max has the 
smallest execution time since it applies only simple arithmetic operations. The same holds 
for AML. The execution time of NLLS is much higher than that of LLS because of its itera-
tive approach, whereas LLS uses a closed form solution. The execution time of LMS is 
around 14 times higher than that of LLS except when the anchor count is lower five be-
cause then LMS cannot build subsets of size four. The execution time of ICLA is extremely 
large compared to all other algorithms. 

4.2. Spatial Evaluation 
 

 

 
Fig. 10: The average spatial error distribution of the six simulated algorithms (1000 simulation runs). 
The algorithms are from left to right: Min-Max (480% average position error compared to expected 

distance error), ICLA (408%), AML (340%), LMS (202%), LLS (188%) and NLLS (138%). 

 

To evaluate the spatial distribution of the position error we executed every algorithm 1000 
times in the LS² simulation engine. LS² calculates the position error for every discrete point 
on the simulated area using an error model and an algorithm selected by the user. First, we 
simulated every algorithm with a uniform grid layout for the anchors. We chose nine an-
chors whose convex hull covers 4% of the simulation area. The resulting images consist of 
up to three differently colored areas. The grey area indicates a position error between 100% 
and 250% of the expected distance measurement error value; the darker the area, the higher 
is the error. The green area (if present) indicates a position error lower than the expected 
distance measurement error; the darker the area, the lower is the error. In the blue area the 
error is higher than 250% of the position error and is cropped for better image contrast. The 
anchors are represented by the small red squares. We chose a uniformly distributed error 
with an expected value of 5% of the playing field length for this simulation to minimize the 
effect of the error model and to maximize the effect of the geometrical constellation of the 
anchors and the influence of the algorithm. Other error models change the shapes very little 
but lower the contrast of the resulting images, so they are not as meaningful. 

The green area is very important for cooperative localization strategies in WNs, because the 
position error stays in a reasonable range as long as the node remains in the green area. 
Otherwise the position error tends to grow much faster than expected. 

In Fig. 10 we display the spatial distribution of the six algorithms in descending order of 
their average position error. As expected, Min-Max has the worst average error. But Min-
Max performs much better than all other algorithms if the unlocalized node stays inside the 
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convex hull of the anchors. If the node’s position is more than the inter-anchor distance 
away from the convex hull, the error grows very fast. NLLS performs completely different. 
Its overall error distribution is nearly uniform but the weaker regions are inside the convex 
hull and not outside. This different behavior corroborates that statistical measures like mean 
error and standard deviation are less precise than analyzing the spatial distribution. LLS and 
LMS perform nearly similar with LLS having an overall better average result inside the 
convex hull in this setup. The quality of AML and ICLA is poor in every aspect in this 
setup. They have no real strengths and get weaker very fast with rising distance to the an-
chors. It is also remarkable that the spatial error distribution of some algorithms is not 
symmetric, although the anchors are set up symmetrically. LMS for example performs 
better in the lower right corner of the convex hull than in the other three corners. Only Min-
Max and NNLS are nearly symmetric. 

Especially the comparison between LLS and NLLS shows that LLS has its strengths and is 
useful in some scenarios even if NLLS performs much better in the average case. Looking 
only at this setup, the dynamic selection of algorithms (e.g. between Min-Max and NLLS) 
regarding a roughly estimated position would lead to better results. 

The different spatial distributions of the position error of the six algorithms shows that 
statistical methods like the Cramér-Rao Bound, that do not take the geometrical characteris-
tics of the algorithms into account, are often misleading or not very helpful. 
 

 
Fig. 11: Worst case results for NLLS, AML, and Min-Max (1000 simulation runs). 

 

For some applications where you have to guarantee an upper bound of the position error, 
e.g. in rescue scenarios, the worst case of the spatial distribution is more meaningful than 
the average case. In Fig. 11 we show the highest position error for every discrete location 
out of the 1000 simulation runs. NLLS shows its weaknesses inside the convex hull more 
clearly, but in contrast to the average results, it looks strictly symmetric. AMLs worst case 
distribution looks completely different to the average case distribution. The lower right half 
of the convex hull was one of the weaker regions in Fig. 10 and is the best region in Fig. 
11. Again, AMLs performance is very poor in this setup compared to the other algorithms. 
Min-Max again is the best algorithm if the unlocalized node stays inside the convex hull of 
the anchor nodes and the worst case distribution is linear weakened compared to the aver-
age one. 

For the next simulation run, we lowered the number of anchors to four and chose a different 
layout, where the four anchors are not placed optimal but nearly collinear. The resulting 
spatial distribution of the position error in Fig. 12 has changed little. NLLS is weaker inside 
the convex hull and stronger outside, but still remains very homogenous. Min-Max remains 
very good between the anchors and quickly gets worse with increasing distance to the an-
chors. Min-Max has still the lowest error for all algorithms inside the convex hull. LMS 
and LLS perform nearly identically. They remain on a good average level and do not seem 
to suffer very much from the reduced anchor count. The only outlier is AML, which is the 
only algorithm of the six that performs better with fewer anchors in a worse layout. We 
conclude that AML has some design weaknesses and should be optimized to perform better 
with more anchors, or at least should only use a subset of the given anchors. In its original 
paper, AML is mainly simulated in a setup with a maximum of four anchors, so their con-
clusion that AML performs very well seems reasonable only under these limited conditions. 
ICLA once again is weak under these conditions. This contradicts somewhat to the findings 
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in its original publication where ICLA always showed half the error of Min-Max and also 
to the previous subsection where ICLA showed better performance. An explanation can be 
seen in Fig. 4. Because the expected measurement error was much higher in the simulations 
using LS² than the other ones, the accuracy of ICLA experienced a much larger degrada-
tion. This is of particular importance since, as previously mentioned, ICLA suffers the most 
from an increased measurement noise. 
 

 

 
Fig. 12: The average spatial error distribution of the six simulated algorithms (1000 simulation runs) 
with 4 anchors. The algorithms are from left to right: ICLA (406%), Min-Max (382%), LMS (262%), 

LLS (261%), AML (220%) and NLLS (138%). 
 

For the last simulation we placed 9 anchors on a half circle. The results of this simulation 
can be seen in Fig. 13. The most interesting observation for this constellation is that the size 
of the green area is significantly bigger for the algorithms with high average errors. This 
leads to a new perspective in comparing these algorithms, especially for tracking applica-
tions where the current position can roughly be estimated. In the case shown in Fig. 13 one 
could implement a simple algorithm which switches between NLLS and Min-Max depend-
ing on the estimated node position. 

 

 
Fig. 13: The average spatial error distribution of three simulated algorithms (1000 simulation runs) 

with 9 anchors. The algorithms are from left to right: NLLS (130%), LLS (160%) and Min-Max 
(360%). 

 

This observation is also useful for a general comparison and evaluation of localization 
algorithms. Concentrating only on the average position error as an evaluation metric could 
lead to wrong conclusions if the spatial distribution is disregarded. The very different spa-
tial distributions of ranging errors for a given scenario also implies that the CRB, which 
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does not consider the algorithm itself, can give only a very vague estimation of the spatial 
distribution of the position error. For example, Min-Max has a worse average position er-
ror, but performs better in real world indoor deployments because the inter-anchor distance 
is normally low and the node can only move inside the hull of the anchors that are usually 
mounted to walls. This behaviour can be predicted from the spatial distribution. 

5. Experimental Results 
In order to measure the effectiveness of the six algorithms with real sensor network data 
and to be able to compare the results with the executed simulations, we recorded the data of 
a series of different test runs. The experiments were carried out using a modified version of 
the Modular Sensor Board (MSB) A2 (Baar et al. 2008) node which is equipped with a 
Nanotron nanoPAN 5375 (Nanotron Technologies GmbH 2009) transceiver. This hardware 
enables the sensor nodes to measure inter-node ranges using time of flight (TOF) in the 
2.4 GHz frequency band. The experiments took place on the second floor of our Computer 
Science Department during daytime. 

Fig. 14 shows one exemplary campaign of measurements following a route among offices, 
laboratories and with a few people walking around. For the reason of clarity, we plotted 
only the results of NLLS and Min-Max using a Kalman filter. The starting point is denoted 
by “S”, the endpoint is denoted by “E” and the total length of the path was about 100 me-
ters. 
 

 
  Actual position  NLLS 
     

  Anchors  Min-Max 
     

Fig. 14: Position estimates on the second floor of our Computer Science Department. 

 

In each run, we used 17 anchors which were deployed throughout the building. Most of the 
anchors were placed in office rooms with doors closed. Only a small fraction of nodes was 
placed on the hallway, in case of Fig. 14, there were four nodes. Ground truth was meas-
ured with the aid of a robot system developed at our Department using a Microsoft Kinect. 
This reference system provides about 10 cm positioning accuracy. The robot also carried 
the unlocalized node and followed a predefined path with a predefined speed. We used the 
maximum movement speed of the robot, which is 0.5 m/s. In total, we performed over 5300 
localizations when adding up all test runs. The nanoPAN achieves ranging precision of 
around 2.85 m in average and the RMSE is 4.32 m. However, the ranging error can be as 
large as 20 m. We even encountered measurement errors up to 75 m in rare cases. Fig. 15 
shows the distribution of the distance measurement error using all anchor nodes and all 
runs. 

The quantitative results of the six localization algorithms are shown in Table 2. The average 
anchor degree throughout all experiments was 7.48. As it can be seen, Min-Max outper-
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forms the other algorithms in terms of localization accuracy with achieving an average error 
of 2.05 m. This is about twice as good as ICLA, the second best algorithm with an average 
error of 4.25 m. The good performance of Min-Max is not surprising because the inter-
anchor distances were relative short (between 5 and 10 meters) and the mobile node took 
mainly positions within the bounds of the network. As we know from section 4 this is the 
optimal situation for Min-Max algorithm. This behavior can also be seen in Fig. 16 where 
the unfiltered estimated locations of Min-Max are displayed. For instance when looking at 
anchor 11 or 12, one can clearly see that the error is bounded by their coordinates. 

 

The fact that the RMSE of NLLS, AML, and ICLA is only slightly larger than the RMSE 
of the distance measurements tells us that these algorithms performed well relative to the 
quality of the distance measurements available. The histograms of localization errors of all 
algorithms can be seen in Fig. 17 where the vertical axis is the absolute frequency and the 
horizontal axis is the localization error. LLS and therefore also LMS show poor perfor-
mance compared to the other algorithms. Also the RMSE is much larger than that of the 
other algorithms. However, LMS can still achieve better localization accuracy than LLS as 
expected from our simulations. 

 
Table 2: Quantitative results for the localization task 

ALGORITHM MAE [m] RMSE [m] MAX [m]  

NLLS 4.49 5.35 30.39 

LLS 8.92 20.41 461.63 

AML 4.96 5.96 36.76 

Min-Max 2.05 2.42 15.39 

ICLA 4.25 6.01 45.52 

LMS 7.37 17.47 449.09 

 

Obviously, the position accuracy could be improved using some filtering techniques, such 
as Kalman or particle filters, but the aim of this paper is to show and compare the perfor-
mance of the used localization algorithms without using any of those filtering techniques. 

Summarizing the results of the simulations and experiments, it can be stated that NLLS 
shows the overall best performance no matter the area size and coverage ratio. Its spatial 
error distribution is very uniform which is proved by the simulations done in section 4. It is 
also among the best algorithms of the real experiment. However, if the measurement noise 
is not that high, ICLAs performance is very close to that of NLLS. When the average an-
chor degree is greater than 5 and when operating in indoor environments where the per-
centage of NLOS distances is certainly higher than 30% in most of the cases, ICLA outper-
forms the other localization schemes in terms of accuracy and shows a much better re-
sistance to NLOS errors, even than NLLS. However, this advantage comes at the expense 
of increased calculation costs compared to all other algorithms. 

 
Fig. 15: Histogram of distance measure-

ment error (all runs and anchors) 

 
Fig. 16: Behavior of unfiltered Min-Max algorithm 
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Min-Max has the advantage of being computationally cheap and insensitive to errors, but it 
requires a good constellation of anchors; in particular, the desired localization error of Min-
Max can be easily adjusted by placing the anchors at the edges of the network and having 
small inter-anchor distances. This fact is also stated by Savvides et al. (2002) and proved by 
Langendoen et al. (2003). AML works best when the number of used anchors lies between 
4 and 5. This corresponds to the findings of Kuruoglu et al. (2009) and is the reason why 
they limit the number of used anchors to 4 when comparing AML with LLS and Min-Max. 
They identify the refinement phase of their algorithm as the reason for this behavior. Like 
Min-Max, AML also profits from a good constellation of anchors, although the impact is 
not as high as that of Min-Max. We could also prove that LLS performs better than LMS 
when the attack strength is low (less than 20% NLOS distances), which is stated by Li et al. 
(2005). That’s the reason why they implemented an efficient switched LLS-LMS localiza-
tion scheme to overcome this situation. The desired design goal of being more robust 
against large distance measurement error due to non-line of sight signal propagation could 
be validated by our studies. Nevertheless, LMS cannot outperform NLLS unless the dis-
tance measurement error is abnormally high which shouldn’t be the case even in indoor 
deployments. 

 

 
Fig. 17: Histograms of localization errors in a real environment, the second floor of our Computer 

Science Department. 

6. Conclusion 
We showed that the error distribution doesn't only depend on the error distribution of the 
measured distances, but also on the geometrical constellation between node and anchors 
and the characteristics of the algorithm. We presented results from both simulations and 
real experiments that corroborate our theory. 

The NLLS algorithm is the best general purpose algorithm of the tested localization algo-
rithms, because its spatial error distribution is very homogenous even if the anchor place-
ment isn’t optimal. ICLA, on the other hand, showed ambiguous behavior. While the algo-
rithm performed weakly in the spatial error distribution analysis, the real experiments and 
other simulations showed opposite behavior. We discovered that ICLA is very susceptible 
to high measurement noise which is the reason for the poor performance in section 4.2. If 
we know the error distribution of the distance measurement device and the operation envi-
ronment (e.g. indoors), then ICLA provides a good alternative to NLLS. If the errors are 
large and the unlocalized node is in the convex hull of the anchors, Min-Max also is a good 
choice for localization. Especially in dense networks with small inter-anchor distances Min-
Max outperforms all other algorithms as shown by the experiments in section 5. 

The optimal solution for the localization task would be to use a selection algorithm which is 
capable of analyzing the current situation at each point in time and then applying the ideal 
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method for achieving the lowest positioning error possible. 

Future work should address the development of an algorithm that is optimized for geomet-
ric constellations typically found in real world deployments. For indoor environments an 
algorithm should focus on low inter-anchor distances and the performance inside the con-
vex hull of the anchors. For cooperative localization algorithms one should try to achieve a 
very homogeneous error distribution with position errors lower than the average distance 
error. To develop such algorithms or an adaptive combination of several algorithms, it 
would be helpful to get simple estimation for the expected quality of the current anchor 
setup with the current algorithm. 
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