2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

The Geo-n Localization Algorithm

Heiko Will, Thomas Hillebrandt, Marcel Kyas
Freie Universitit Berlin
AG Computer Systems & Telematics
Berlin, Germany
Email: {heiko.will,thomas.hillebrandt,marcel.kyas} @fu-berlin.de

Abstract—We introduce Geo-n, a highly precise, distance-
based, general-purpose localization algorithm for use in cluttered
and indoor environments, where the estimated distances between
an unlocalized node and anchor nodes may contain large errors
due to NLOS signal propagation. Geo-n is very resilient to
outliers and to a wide range of geometrical constellations of
the nodes. Geo-n uses a two stage filtering technique to obtain
the most representative intersection points between every pair of
circles induced by anchor coordinates and distance measurements
and uses these to estimate the position of unlocalized nodes. If
no intersection exists between two circles, Geo-n approximates
one to further improve localization accuracy.

We compare Geo-n to LLS, NLLS, AML, Min-Max, and ICLA
using simulations and real world experiments, and show analysis
of the spatial distribution of position errors. Results demonstrate
that Geo-n outperforms the other algorithms. Like NLLS, its
spatial error distribution is very homogeneous. However, Geo-n
is much more robust and achieves lower average position error
while retaining reasonable computational complexity.

Index Terms—Indoor Localization, Localization Algorithm,
Radio Runtime Measurement, Distance Measurement, Wireless
Sensor Networks

I. INTRODUCTION

The precise spatial localization of a signal source is not
limited to computer science. A broad variety of other sciences
rely on localization algorithms. Psychologists want to detect
the precise spatial source of electric impulses in the human
brain, biologists want to track the position of birds equipped
with small sensor nodes and geologists want to detect the
source of an earthquake using seismic waves. Most of these
applications use the same principles: based on the measure-
ment of a physical value, the distance between the target and
some fixed points (anchors) is estimated and then the position
of the target is calculated with a localization algorithm. The
main differences between the variety of existing localization
algorithms are the handling of distance measurement errors
and their robustness to the geometrical constellation of unlo-
calized nodes and anchors.

The context of our exposition is indoor localization. We
assume that anchor nodes know their exact position and the
unlocalized node can measure the distances to at least three
anchor nodes. These measurements consist of the real distance
between the devices and an unknown error. This error may
have many different sources, depending on the measurement
system and the structure of the building in which the devices
are located. We sum up all these different errors and call
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them distance measurement errors. The distance between the
real node position and the calculated node position is called
position error. Previously, we have shown that the position
error not only depends on the distance measurement errors
but also heavily depends on the geometrical constellation of
node and anchors [1]. This observation is important for the
evaluation of lateration algorithms because using the average
position error as the only metric can lead to misleading
conclusions. For example, an algorithm with a remarkably low
average position error could perform very bad in real world
deployments if the low position error is mainly achieved in
regions out of the convex hull of the anchors but the anchors
are placed on the walls of a building and so the hull can never
be left by the node. We present an evaluation of the average
position error resulting in several large real world deployments
for all compared algorithms introduced in Section II. We
also present the spatial distribution of the position error for
all algorithms which we have calculated with the LS? [1]
simulation engine in Section IV.

The main contribution is the presentation of the Geo-n
localization algorithm in Section III, which is based on a
clustering like selection scheme of circle intersections. The
main design goals for Geo-n were robustness to outliers in
distance measurement errors, which mainly result from non-
line-of-sight (NLOS) distance estimations, and a homogeneous
spatial distribution of the position error. In addition, the
computational complexity of the algorithm should be low
enough for real time localization for Wireless Sensor Networks
(WSNs) with low power nodes to be possible.

II. RELATED WORK

Several algorithms for distance-based position estimation
have been published in the last decades. Some have been
focused on low computational complexity for use in sen-
sor networks and most recent publications have focused on
resilience to measurement errors or filtering for use in in-
door scenarios. These algorithms are designed to reduce the
effect of distance measurement errors, e.g. ones caused by
the complicated indoor multi-path propagation, low signal-to-
noise ratio (SNR), severe multi-path effects, reflection and link
failures, and to improve the position error [2]-[6]. These algo-
rithms include iterative methods, which use gradient descent or
Newton method to calculate an estimated position. Grid-scan
methods [7], [8] divide the target field into several cells and
are using voting based methods to select a cell as an estimated
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position. Refined geometry relationship [5], [9] obtains the
target relative position rather than actual position, and the
method is still based on the range based measurements, in
which the distance measurement noise still causes estimation
errors.

We compare out Geo-n algorithm to well known and to new
algorithms. Three of them are well known algorithms and are
often used for performance comparison when proposing a new
localization algorithm: Multilateration using non-linear least
squares (NLLS) or linear least squares (LLS) [4], [6] and Min-
Max algorithm [10], [11]. The two new algorithms also use the
intersection points of circles for position estimation: Adapted
Multi-Lateration (AML) [12] and Iterative Clustering-based
Localization Algorithm (ICLA) [13].

1) Nonlinear Least Squares Multilateration: Given N an-
chor nodes with fixed positions at b; = (x;,y;) for i =
1,2,..., N and possibly noisy range measurements r; from
these nodes to a non-anchor node located at v = (z,y),
multilateration finds the most likely position of the unknown
node, denoted by . From this information we write a system
of equations:

(x—21)*+ (y —11)* =r?
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This problem is usually solved by using a least squares
method, that is, minimizing the sum of the squared residuals

between the observed ranges r; and the estimated distance
[l = bil:

N
11:aurgminE:(Hu—bZ-H—1”1-)2 (2)
=1

The minimization problem can be solved by using any of the
Newton type optimization algorithms [14]. These start from
an initial guess at the solution and then iterate to gradually
improve the estimated position until a local minimum of the
objective function in Eq. (2) is found. However, there is a
non-negligible probability of falling into a local minimum of
the error surface when solving Eq. (2). Therefore, to find an
estimate close to the global minimum, LS must run several
times with different initial starting points, which is expensive
in terms of computing overhead. For instance, our reference
implementation uses two starting points, the LLS solution and
the centroid of all anchor coordinates.

2) Linear Least Squares Multilateration: The nonlinear
least squares problem can be linearized by subtracting one
of the equations given in Eq. (1) from the remaining N — 1
equations. In matrix notation, the linear system can be ex-
pressed as Au = b and can be solved by the LS method to
provide an estimated location, as given by the closed form
solution shown in Eq. (3) (i.e., normal equations).
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3) Adapted Multi-Lateration: Similar to multilateration and
Geo-n, AML tries to estimate the position of an unlocalized
node using circle intersections. AML consists of three steps:
intersection and elimination, first estimation and refinement.
In the first step, two intersecting circles are arbitrarily chosen.
These circles may intersect at one or two points. If there is
more than one point, the point with the larger distance to
the third anchor is eliminated. In the first estimation step,
the previously computed intersection point is moved to the
middle of the line connecting it with the closest point of the
third anchor’s circle. This is done to compensate the errors
introduced by range measurements. The calculation is done
using the resemblance of triangles. In the last step, the position
can be further refined. Therefore, the anchors that were not
used in the previous steps are added to the position estimation
process with the same principle utilized in the second step.

4) Min-Max: The Min-Max algorithm, also known as
Bounding Box algorithm, is a simple and straightforward
method in contrast to the quite expensive number of floating
point operations required by LLS or NLLS. The main idea is to
build a square (bounding box) given by [z; —r;, y; —r;] X [z;+
i, y; + r;] around each anchor node using its location (z;, ;)
and distance estimate r;, and then to calculate the intersection
of these squares. The final position of the unlocalized node is
approximated by the center of the intersection box, which is
computed by taking the maximum of all coordinate minimums
and the minimum of all maximums:

[12.%\[(% —74), 121%)5\[(% — 7)) %

[, min (2 + i), min (yi +73)]
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5) Iterative Clustering-based Localization Algorithm: In
ICLA, node localization is done by clustering intersection
points, which is claimed to be resistant to RSSI errors. The
algorithm consists of three main steps. In the first step all
intersection points between every two circles centered at the
anchors coordinates and with radii equal to the estimated dis-
tances are generated. These intersection points cluster around
the unlocalized node. In the second step the iterative clustering
model (ICM) is applied to get the most representative inter-
section points for localization. The final step of the algorithm
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Fig. 1. Motivation for using clustering like approach.

calculates the position of the unlocalized node by taking the
centroid of all intersection points of the biggest group that
ICM has produced. ICM is the central part of the algorithm.
Here, all intersection points are iteratively moved towards
their moving direction and merged if a collision occurs. The
collision area is a circular area with the radius equal to the size
of the moving step. Points with bigger weight exert a larger
attracting force to other points and influence their moving
direction. Initially, all points have the same weight. At the end
of the procedure, all points are classified into several different
clusters according to the left points.

III. THE GEO-N LOCALIZATION ALGORITHM

Let u be an unlocalized node and A, = {aj,az,...,an}
the set of N > 3 anchor nodes to which u estimes its distance.
Let C = {C1,C5,...,Cn} be a set of circles induced by
anchor coordinates a; € A, and distance measurement r;
(between u and a;) as the radius. For each u, Geo-n makes a
selection of all pairwise intersection points between the circles
in C' as detailed later. This way, only intersection points that
are probably beneficial for the localization task are kept. We
motivate the use of this approach using Fig. 1.

Figure 1 shows the unlocalized node « and all anchor nodes
in A, = {A,B,C,D, E}. The black circles have a radius
equal to error-prone distance measurements. The distance to
anchor D, for example, is measured a bit too short (its distance
estimate is less than the true distance from u) while the rest of
the anchors are measured too long (their distance estimates are
greater than their true distances from ). Especially anchor

has a very large positive distance measurement error. Without
any measurement error, all circles would intersect at node
u. However, we always have measurement errors in the real
world that result from the measuring processes using a noisy
channel and the NLOS error deriving from obstacles in the
direct paths. Thus, it is possible that no circle passes through
u. Two distinct circles intersect in at most two points. Due
to the geometry, in most cases one intersection point is close
to the location of u. Occasionally, both intersection points are
equidistant to it. As a consequence, the density of intersection
points is usually highest close to node u even when there is a
large measurement error. This is indicated by the seven solid
red and blue points in Fig. 1, whereas the second largest cluster
only consists of three points. Finding a good approximation of
this cluster and using it for localization is the central problem
solved in the Geo-n localization algorithm.

Geo-n uses different filtering methods to remove intersec-
tion points that do not contribute to the localization or are
suspected to increase the positioning error. Thus, it can locate
u with high accuracy and is resilient to a large number of
measurement error. We describe Geo-n in Algorithm 1. We
write C; for the circle centered at point a; with radius 7;
and D; to describe the closed disk bounded by C;. The
concatenation of two lists is denoted by .

In lines 1 to 2 the variables IP (the list of all intersection
points) and AIP (the list of all approximated intersection
points) are initialized to empty lists. Lines 3 to 12 populate
IP with all intersection points between every pair of circles
induced by the N anchor coordinates a; and distance mea-
surements 7; and AIP with approximated intersection points
if the circles do not intersect or one circle is contained within
the other.

Approximating Intersections

In line 9 an intersection point is approximated if there is
no real intersection point. The two possibilities are displayed
in Fig. 2a and Fig. 2b. In both cases, it is still possible to
approximate one intersection point: it is the middle of the line
connecting points P; and P» (highlighted in blue). Points P;
and P, are the closest intersection points of the two circles
and the line connecting anchors A and B and where P; and
P lie on different circles.

As a result of lines 3 to 12, the number of pairwise
intersections between the corresponding circles is not greater
than N2. For each pair of circles there exist at most two
intersection points and at least one (approximated) intersection
point, hence 5= < [P @ AIP| < N - (N —1).

Line 13 and lines 22 to 31 specify a two stage filter
mechanism to the generated intersection points of the previous
step. Line 13 only keeps those intersection points of [P
contained in at least N — 2 closed disks D; (i € {1,...,N}).
From now on, we refer to this as Filter 1 (F1). Most of the
farther intersection points (see Fig. 1) are removed as a result
of applying F1, which may also reduce the total runtime of
the algorithm.
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Algorithm 1 Geo-n

Require: ranges r; and anchor positions a;, ¢ = 1,..., N,
N >3,Vi,j: a; #a; Vi=7j;
Ensure: the estimated position (Z, §)
1: IP < nil; > Intersection points
2: AIP <+ nil, > Approximated intersection points
3: fort<—1to N—1do
4: for j < i+ 1to N do
5: I+ C;nN Cj;
6: if I # nil then
7: IP +— IP & I;
8: else
9: AIP + AIP & [Approximate an intersection
point between C; and C}];
10: end if
11: end for
12: end for
13 IP+ [z €IP||{i|z€D;}| >N -2
14 WIP < nil; > Weighted intersection points

15: for all = € IP do

16: WIP <+ WIP & [(I,W[P)];
17: end for

18: for all x € AIP do

19: WIP + WIP @ [(z,Warp));
20: end for

21: if | WIP| > 3 then

22: distance[ | WIP|] < 0;
23: for i < 1 to |WIP| do

> Set all distances to zero

24: for j « 1 to |WIP| do

25: if ¢ # j then

26: distanceli] <« distanceli] + || WIP; —
WIP, I

27: end if

28: end for

29: end for

30: median < calculate median of distance;

31 WIP <« [x € WIP | distance of x < median];

32: end if

33: (&,9) < weighted centroid of WIP;
34: return (Z,9)

In our test runs described in Section V, around 60% of
the intersection points are removed on average. This leads
to a significant performance increase in terms of execution
time (between 20% and 60% depending on the number of
anchors V). Note, that approximated intersection points are
not affected by this filter. Keeping them will almost always
result in higher localization accuracy, especially when the
number of real intersection points tends to be small.

Before the second stage of the filter is applied, lines 14 to
20 merge IP and AIP into a new list named WIP containing
weighted intersection points for the final step of Geo-n. Real
intersection points are weighted with weight W;p and approx-
imated ones with weight W 4;p. In our experiments, assigning

’

(b)

Fig. 2. Approximated intersection points (drawn in blue) when there is no
intersection of the circles.

equal weight showed the best results whereas in simulations
weighting real intersection points three times higher than
approximated ones gave the best performance.

Lines 22 to 31 implement a median filter based on the inter-
point distances to further remove useless intersection points
not improving localization accuracy. First, for each point in
WIP, the sum of distances to all other points is calculated
and stored in the array distance. Next, line 30 obtains the
median of the distance array. Then the points whose value
in distance is larger than the median are eliminated in line
31. Note that this median filter is only applied if the number
of intersection points in WIP is not smaller than 3 because
otherwise filtering would only leave one weighted intersection
point that is probably farther from the true position than the
result using the whole list. From now on, we refer to this as
Filter 2 (F2). In total, the combination of both filters in this
order is beneficial for localization accuracy. Applying the first
filter leads to a performance increase of 13%-20% in our test
runs and simulations compared to using the second filter only.

Finally the position of the unlocalized node is estimated as
the weighted centroid of the remaining intersection points, as
expressed in Eq. (5).

. Z\WIP|w -1 Z\WIP| Y
((E,y) - ( Z‘Wlpl ) Z‘Wlpl (5)

The run-time complexity of Geo-n is in O(N*).

Proof: The calculation of all intersection points in lines
3 to 12 has a runtime in O(N?). Line 13 removing farther
intersection points has runtime in O(N?3). Lines 14 to 20
combining both lists of intersection points again have runtime
in O(N?). Median filtering of the remaining intersection
points clearly dominates the runtime of Geo-n. Lines 22 to
29 calculating the sum of distances to all other points have
runtime in O(N*). Finding the median in line 30 has runtime
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in O(N?), if a method like BFPRT [15] is used. The runtime
of eliminating points with a distance sum larger than the
median in line 31 is again O(N?). The runtime of estimating
the final position by Eq. (5) is also in O(N?). ]

We note that in general the number of anchors from whom
a unlocalized node receives location references is low in most
scenarios, limited by technical limitations of radio communi-
cation and the distance intervals, hence the running time of
Geo-n is reasonable. This can also be seen in Fig. 3 where the
average execution time needed for a single localization with
three, six, nine, and twelve anchors is shown for Geo-n and
three of the reference algorithms. The LLS algorithm has the
smallest execution time because it has a closed form solution.
AML and Min-Max would have even smaller execution times
than LLS in this comparison, and therefore are not shown.
However, the execution time of NLLS is greater than the
execution time of Geo-n as long as the anchor count is below
12, although the run-time complexity of NLLS is in O(N?3).
The execution time of ICLA, an algorithm that also uses a
clustering approach, is extremely large compared to all other
algorithms.

The memory requirement of Geo-n is in ©(N?). The
memory required to store the two coordinates of the anchor
nodes and range measurements is linear, namely 3N registers.
Most memory is required to store the generated intersection
points of the circles of whom N - (N — 1) exist at most as
described earlier. The distance array has the same maximum
size. Thus the memory requirements of Geo-n are still modest.

107

[IESr———]
NLLS o

GEO-N  mom
ICLA o

Execution Time [ns]

Number of anchor nodes

Fig. 3. Average execution times of various localization algorithms computed
on a workstation.

IV. SPATIAL DISTRIBUTION

To evaluate the spatial distribution of the position error
we executed every algorithm 1000 times in the LS? [1], [16]
simulation engine. LS? calculates the position error for every
discrete point in the simulated area using an error model and
an algorithm selected by the user. In the first scenario we
chose a very basic anchor setup with four anchors placed in
the four corners of the playing field. The inter-anchor distance
is much higher than in most real world scenarios and shows

the performance of the evaluated algorithms in borderline sit-
uations. The resulting image consists of up to three differently
colored areas. The grey area indicates a position error between
100% and 250% of the expected distance measurement error
value; the darker the area, the higher the error. The green area
(if present) indicates a position error lower than the expected
distance measurement error; the darker the area, the lower
the error. In the blue area the error is higher than 500% of
the distance error and is cropped to achieve a better image
contrast. The anchors are represented by the small red squares.

The green area is very important for cooperative localization
strategies in WSNs, because the position error stays in a
reasonable range as long as the node remains in the green area.
Otherwise the position error tends to grow much faster than
expected because for each step of the recursive cooperation
strategy the resulting position error is added to the average
distance error. If the resulting position error is larger than the
average distance error this error function grows very fast.

For this simulation we chose a Gaussian distributed error
for the general noise simulation and an exponential distributed
error to simulate NLOS situations. The expected value of the
distance measurement error is 5% of the playing field width,
the standard deviation is 1.5%. A NLOS error occurs with a
probability of 10% and adds an exponential error with rate 2.

In Fig. 4 we present the results of the first simulation run.
Four anchors have been placed in the simulation area on the
edges of a quadrilateral. This setup simulates a very sparse
anchor distribution which often can be found in smaller rooms
in real world deployments. The Geo-n algorithm performs very
well in this setup. Nearly in the whole convex hull of the
anchors the position error is lower than the expected value
of the distance error. Even large areas outside the convex
hull show this behavior, which is important for real world
deployments for the handover to the anchors of adjacent
rooms. The average position error for the whole simulation
area is 101% of the expected distance error, which is a very
low value. NLLS (142% avg. error), LLS (144% avg. error),
and AML (182% avg. error) show good performance in the
center of the convex hull of the anchors and lose performance
in the corners of the simulation area. Min-Max (332% avg.
error) shows the typical spatial error distribution of bounding-
box algorithms [17]: inside the convex hull the performance is
very good but drops really fast to unusable results outside. For
most indoor scenarios Min-Max performs very well because
anchors are mounted at walls and so the hull cannot be left
by the nodes. The performance of ICLA (132% avg. error)
is approximately comparable with Geo-n, which is not very
surprising because it uses the same approach of clustering
circle intersections but a different clustering scheme. For this
anchor setup all algorithms should perform well in real world
deployments.

In Fig. 5 we present the results of the second simulation
run. Four anchors have been placed in the simulation area
nearly on a line. This setup simulates a very sparse anchor
distribution which often can be found in hallways in real
world deployments. This setup is very challenging for most
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Fig. 4. Spatial distribution of the average position error with
four anchors positioned as a small quadrilateral.

algorithms because the anchors are nearly collinear and small
distance errors could lead to very large position errors. The
Geo-n algorithm shows a quite homogeneous error distribution
compared to the other algorithms. There are only two smaller
spots where it outperforms the distance error and some smaller
areas where the position error grows larger than 200%. The
average position error for the whole simulation area is 160% of
the expected distance error. NLLS (226% avg. error) shows a
very problematic spatial distribution: the weaknesses of NLLS
are inside the convex hull of the anchors and the strengths lie
outside. For most real world indoor deployments NLLS will
perform worse than the average error. LLS (290% avg. error)
shows a nearly homogeneous result but on a low level. AML
(198% avg. error) has a good average performance but suffers
the same weaknesses than NLLS for real world deployments.
Min-Max (358% avg. error) again performs as expected: inside
the convex hull the performance is very good but drops really
fast to unusable results outside. The results show that Min-
Max could again outperform any other algorithm but Geo-n
in many likely indoor deployments. ICLA (180% avg. error)
shows the same spatial distribution as AML but on a slightly
lower level.

The last simulation run is shown in Fig. 6. In this setup

(c) LLS (d) Min-Max
(e) AML (f) ICLA

Fig. 5. Spatial distribution of the average position error with
four anchors positioned nearly on a line.

we simulated a very dense anchor network with nine anchors.
Such a setup can be found in large buildings with drywalls
or in department stores, museums, etc.. In this scenario the
Geo-n algorithm shows its main advantages: if enough anchors
with no NLOS errors are present, it steadily filters out outliers
and computes very precise results. The spatial distribution
of the position error is very homogeneous on a very low
level. The average position error is only 66% of the expected
distance error. NLLS (124% avg. error), Min-Max (284% avg.
error), and LLS (136% avg. error) perform comparably to the
discussion of simulation run 1. AML (338% avg. error) drops
in performance if many anchors can be reached. We have
observed and discussed this behavior in recent publications
[18]. ICLA again performs very good with an average error of
88% but stays behind Geo-n. Especially the spatial distribution
of the position error is inhomogeneous compared to Geo-n
and so the algorithm will probably only compete with Geo-n
in very limited indoor scenarios with a dense anchor setup
mounted on all four walls of a building.

The presented results show that the Geo-n algorithm per-
forms very well in all three simulated situations and should
also perform well in real world indoor deployments. Geo-n
outperforms all other algorithms we have evaluated and shows
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Fig. 6. Spatial distribution of the average position error with
a dense anchor distribution of nine anchors.

very homogeneous results which is very important for cooper-
ative localization algorithms [10], [19], [20]. For non-general
cases, bounding box algorithms like Min-Max might provide
better or equal performance. For all simulated scenarios only
ICLA can nearly reach the low error results of Geo-n but for
the price of a much higher computation time as shown in
Section III

V. REAL WORLD EVALUATION

In order to measure the effectiveness of the six algorithms
with real sensor network data and to be able to compare the
results with the executed simulations, we recorded the data of
a series of different test runs. The experiments were carried out
using a modified version of the Modular Sensor Board (MSB)
A2 [21] node which is equipped with a Nanotron nanoPAN
5375 [22] transceiver. This hardware enables the sensor nodes
to measure inter-node ranges using time-of-flight (TOF) in the
2.4 GHz frequency band. The experiments took place on the
first and second floor of our Computer Science Department
during daytime. We conducted several test runs with different
paths on every floor to get representative samples of indoor
distance measurement conditions using varying anchor counts
and inter-anchor distances.

Fig. 7 shows one exemplary campaign of measurements
following a route among offices, laboratories and with a few
people walking around. For the reason of clarity, we plotted
only the results of Min-Max, NLLS and Geo-n. The starting
point is denoted by “S”, the endpoint is denoted by “E” and
the total length of the path was about 100 meters. In this
run, we used 17 anchors which were deployed throughout the
building. Most of the anchors were placed in office rooms with
doors closed. Only a small fraction of nodes was placed on the
hallway, in case of Fig. 7, there were four nodes. Ground truth
was measured with the aid of a robot system developed at our
Department using a Microsoft Kinect. This reference system
provides about 10 cm positioning accuracy. The robot also
carried the unlocalized node and followed a predefined path
with a predefined speed. We used the maximum movement
speed of the robot, which is 0.5 m/s. In total, we performed
over 21,700 localizations when adding up all test runs. The
nanoPAN achieves ranging precision of around 2.56 m on
average and the RMSE is 4.15 m. However, the distance error
can be as large as 30 m. We even encountered measurement
errors up to 75 m in rare cases. Fig. 8 shows the distribution
of the distance measurement error using all anchor nodes and
all runs. Less than 3% of all measurement errors are below
-1.57 m and also less than 3% are larger than 10.58 m.

The quantitative results of the four localization algorithms
are shown in Table I. The average anchor degree, which is
the average number of anchors seen at each location, was
9.14 throughout all experiments. As it can be seen, Geo-n
outperforms the other algorithms in terms of localization
accuracy with achieving an average error of 1.55 m. This
is about twice as good as ICLA, a more recent algorithm
following a similar approach of clustering intersection points
and the third-best algorithm with an average error of 2.80 m.
Only Min-Max shows a similarly good performance with an
average error of 2.01 m but the localization accuracy of Geo-n
is still 22.9% better. This relatively good performance of Min-
Max is not surprising because the inter-anchor distances were
relatively short (between 5 and 10 meters) and the mobile
node took mainly positions within the bounds of the network.
As we know from Section IV this is the optimal situation for
Min-Max algorithm. This fact is also stated by Savvides et
al. [10] and proved by Langendoen et al. [11]. Looking at a
challenging scenario where the mobile node is moving outside
the perimeter of the anchor nodes (Fig. 9) shows the strengths
of Geo-n when compared to Min-Max. The results of Geo-n
are plotted in blue and the results of Min-Max in orange. The
average anchor count in this run was 8.0 though only five
anchors are displayed in Fig. 9 and the distance error was
2.45 m on average. Geo-n achieves localization accuracy of
1.70 m while Min-Max only achieves 3.35 m. In this scenario
Geo-n clearly outperforms Min-Max by a factor of 2.

The fact that the RMSE of Geo-n and also Min-Max is
much smaller than the RMSE of the distance measurements
tells us that these algorithms performed very well relative
to the quality of the distance measurements available. ICLA,
NLLS, and AML, with an RMSE equal or only slightly larger



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

et [t

tot HH [ ¥ s @

w 150 ]
SiE —

W Ground truth
B Anchors

Min-Max
NLLS

5m
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are Kalman filtered.
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Fig. 8. Histogram of distance measurement error (all runs and anchors).
Negative values are a result of too short measurements, positive values of too
long measurements.

than the RMSE of the distance measurements, also showed
acceptable performance. The distribution of the localization
error of all algorithms is shown in Fig. 10. It can be seen that
Geo-n has the smallest spread among all algorithms and also
the lowest median of the error. Furthermore, the interquartile
range of Geo-n is very small compared to all other algorithms
and even the upper quartile lies below the median error of
all other algorithms. Obviously, the position accuracy could
be improved using some filtering techniques, such as Kalman
or particle filters, but the aim of this paper is to show and
compare the performance of the used localization algorithms
without using any of those filtering techniques.

Table II shows an analysis of the individual steps of Geo-n
when compared to the centroid method of all intersection
points [23] which is the starting situation after line 12 when
not approximating intersections. Thus, the centroid method

TABLE I
QUANTITATIVE RESULTS FOR THE LOCALIZATION TASK

[ Algorithm [ MAE [m] [ RMSE [m] [ MAX [m] ]
LLS 6.54 11.09 461.63
NLLS 3.68 4.40 32.55
AML 4.30 5.23 36.76
Min-Max 2.01 243 20.50
ICLA 2.80 4.03 45.52
Geo-n 1.55 1.91 30.51

Cr 7 1
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. Geo-n 2m

Fig. 9. Comparison between Geo-n and Min-Max on the first floor of
our Computer Science Department when being outside the perimeter of the
anchors.

serves as a reference for the improvements achieved by the
different steps contained in Geo-n. Approximating intersection
points raises localization accuracy from 4.10 m to 3.52 m
which is an improvement of over 14%. Additionally applying
F2 gives an average accuracy of 1.78 m which is already
a very good value when compared to the other algorithms.
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Fig. 10. The distribution of the position error for the selected algorithms.
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TABLE II
ANALYZING GEO-N

[ Algorithm [ MAE [m] | Improvement [m] |
Centroid 4.10 -
Geo-n (approx.) 3.52 0.58 (14.1%)
Geo-n (approx. + F1) 2.15 1.95 (47.6%)
Geo-n (approx. + F2) 1.78 2.32 (56.6%)
Geo-n (F1 + F2) 2.69 1.41 (34.4%)
Geo-n (full) 1.55 2.55 (62.2%)

Also the simple filter F1 leads to good results with 2.15 m
when applied additionally. Combining both filters, first F1
and then F2, finally gives localization accuracy of 1.55 m
which is an improvement of 62.2% when compared to the
centroid method. Using F1 removes intersection points not
beneficial for the localization which helps F2 to better identify
the set of intersection points close to the unlocalized node
u because the median value gets lowered. Furthermore, it
is remarkable that the filtering procedure seems to profit
disproportionately from the approximation of intersections,
in many cases more than expected. This becomes evident
when looking at the improvement of 0.58 m from Centroid to
Geo-n (approx.) compared to the improvement of Geo-n (F1
+ F2) to Geo-n (full) which is 1.14 m. As mentioned earlier,
this disproportional profit is present in about 50% of the
runs conducted. Without approximation Geo-n would achieve
localization accuracy of 2.69 m which is slightly better than
the results of ICLA but in the same dimension.

Summarizing the presented results, it can be stated that the
Geo-n algorithm showed the overall best performance of all
algorithms tested under real world conditions as indicated by
the simulations presented in Section IV. Geo-n’s performance
is very homogeneous in nearly all situations which is also
supported by the fact of having only very little outliers as
seen in Fig. 10.

VI. CONCLUSION

We presented Geo-n as a precise, distance-based localization
algorithm for use in indoor scenarios. Using LS? we have
shown that Geo-n has a very homogeneous spatial distribution
of position errors, especially when the anchor count is large.
In both simulations and real experiments, Geo-n outperforms
all other tested algorithms. The algorithm ICLA is similar to
Geo-n and is outperformed by 44.6% and even Min-Max, an
algorithm working very well in common indoor deployments,
is still outperformed by 22.9%. The commonly used NLLS
algorithm is outperformed by 57.9%. Compared to ICLA, the
runtime of Geo-n is reasonable and low enough for use on
low power WSN nodes although having asymptotic run-time
in O(N*). It even outperforms NLLS which has run-time in
O(N3) for typical 3 to 12 anchors found in the transmission
range in indoor deployments.

We propose Geo-n as a new general purpose localization
algorithm, especially for indoor deployments. The source code
of the algorithm is freely available together with the LS?
package [16]. Future work should address the integration of a
weighting component for the generated intersection points of
the last step based on the distance error distribution into the
algorithm to gain even higher performance improvements.
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