
The FU Berlin Parallel Lateration-Algorithm
Simulation and Visualization Engine

Heiko Will
Freie Universität Berlin

AG Computer Systems & Telematics
Berlin, Germany

Email: hwill@inf.fu-berlin.de

Thomas Hillebrandt
Freie Universität Berlin

AG Computer Systems & Telematics
Berlin, Germany

Email: hillebra@inf.fu-berlin.de

Marcel Kyas
Freie Universität Berlin

AG Computer Systems & Telematics
Berlin, Germany

Email: marcel.kyas@fu-berlin.de

Abstract—We introduce a simulation engine to visually eval-
uate and compare distance based lateration algorithms and
deployments called the FU Berlin Parallel Lateration-Algorithm
Simulation and Visualization Engine (LS2). Our engine simulates
a scenario which consists of given anchor positions and evaluates
all positions of a playing field in parallel, instead of only
randomly selected positions. At the end of a simulation run,
the user is able to judge the strengths and weaknesses of the
algorithm in a picture that displays the spatial position error
distribution, a representation of positions in a plane with their
errors. Understanding spacial distribution of error is especially
valuable, because we observed that it depends on the placement
of anchor nodes. This enables the developer to optimize his
algorithm or aid him in selecting an algorithm for his application.

The simulator’s design separates the simulation engine, the
lateration algorithms, and the error models. The simulator can
be easily extended with additional lateration algorithms and error
models. The engine is written in GNU C99 and uses the SSE or
AVX vector extensions of modern microprocessors. Thus, it is
able to scale fully to all cores. Beside extendability, the main
focus is set on execution speed.

I. INTRODUCTION

A distance-based localization algorithm, or lateration algo-
rithm, uses m known locations, subsequently called anchors,
and m distances to these anchors to estimate the location of
a target node. Many algorithms have been proposed for this
task, e.g., trilateration, linear least-squares (LLS), non-linear
least-squares (NLLS), and Adapted Multi-Lateration (AML).
Also, there have been attempts at judging the quality of such
algorithms, usually by simulating them. The quality of an
algorithm is usually measured by the position error, i.e., the
distance between the calculated and the actual position. Since
the 1960’s there have been various approaches to analyze and
handle this error [1].

At first glance, the simulation of a localization algorithm
is a straightforward task. Commonly, the algorithm is run
a large number of times with preselected (or sometimes
random) anchor positions, random target positions, and a
random distance error, an error added to the input distance
measurements, computed from some error model. The result
is a statistical evaluation of the accumulated position errors.
At second glance, this approach has several flaws. For most
distance based algorithms, the position error is not only a result
of the errors of the distance measurements between the node

and the anchors. We claim that the biggest contribution to
the position error is a result of the node’s position relative to
the position of the anchors. For example, the position of the
node relative to the triangle formed by the three anchors is
much more important than the distance error for the simple
trilateration algorithm. For the same distance error, the position
error is much lower if the target node is located near the
triangle’s center of mass than if it is located far outside of
the triangle.

This observation indicates, that the distribution of the
position error depends on the position of the target node.
Consequently, we define the spatial distribution of errors as
a mapping from positions to error distributions. This spatial
distribution appears to be much more interesting than the
statistical distribution of errors at all locations.

Assuming that the spatial distribution of position errors
is not related to a statistical distribution but to geometric
shapes induced by the anchor positions, it appears to be
very likely that most real world scenarios get much better
results if the spatial distribution is taken into account in the
placement of anchors. For example, assume an algorithm with
an average position error of E, where one continuous area
has the error 0 and another one 2E. Then the best solution
is to plan the network in a way that mobile nodes stay in
the 0-error-shape. To do this, one has to gather a view of
the spatial error distribution, i.e., every possible position on a
given playing field has to be simulated thousands of times to
differentiate between outliers in distance errors and position
errors. Depending on the complexity of the algorithm and
the size of the discrete playing field, the main loop of a
simulation engine using the simulated algorithm has to be
executed billions of times. Even on modern CPUs this can
be a very time consuming task.

The contribution of this paper is twofold. First, we introduce
the LS2 simulation engine, including a library with vectorized
implementations of the most common lateration algorithms
and error models. The simulation engine can easily be ex-
tended with other algorithms and error models. The results
of the simulation runs can be interpreted visually as two-
dimensional images. Second, we present a first overview of
the spatial distribution of position errors for four very common
lateration algorithms and discuss their consequences for real

world applications.
The paper is structured as follows. In Section II we intro-

duce the simulation engine and discuss its implementation.
In Section III we evaluate the performance of the simula-
tion engine and present benchmark results. In Section IV
we addresses the spatial error distributions of four common
lateration algorithms and their consequences for real world
applications. Related work is discussed in Section V and in
Section VI we present our conclusion and give an outlook to
further research and improvements.

II. THE SIMULATION ENGINE

The basic principle of LS2 is that m positions of fixed
anchors are placed on a user defined playing field and for every
possible discrete location on the playing field the position of
the node is calculated multiple times with a user provided
algorithm and a user provided error model. At the end of a
simulation run the simulator provides two sets of data. The first
set consists of the average position error for every location and
the second set of the highest position error for every location.

A. The Simulation Core

The LS2 core is a loop which iterates through all node
locations of a playing field of 1000× 1000 discrete positions.
For each location, the distance to all anchors is calculated and
an error conforming to the selected error model is added. The
anchor positions together with these erroneous distances are
passed to the selected algorithm to estimate a position. Then,
the error between the node location and the algorithm’s result
is accumulated. A simple dispatcher calls multiple instances
of the core as threads with a subset of the positions to be
calculated to make use of all cores of the used computer.
Due to the independence of the calculations it should scale
almost linearly with the number of CPU cores until the
memory bandwidth limit of the system is reached. For a single
simulation run, each location involves 1000 runs with different
distance errors. As a consequence, the algorithm is called
one billion times, in addition to one billion calls of the error
model per anchor. Each call of the error model function incurs
the generation of at least one pseudo-random number. To
handle this massive amount of calculations the whole core and
most of the provided algorithms are optimized for maximum
performance and parallel computation.

To make use of parallelization beyond the thread level, the
whole core utilizes the vector units of modern CPUs [2].
The core provides two vector models. The first one requires
a SSE2 unit that should be present on every 64-bit CPU
and is capable of calculating 4 single precision floating point
operations simultaneously. The second option requires a AVX
unit which is present in state-of-the-art Intel Sandy Bridge and
AMD Bulldozer architectures and is capable of calculating 8
floating point operations at once.

For best performance, all algorithms and error models
should also be optimized to use vector pipelines. Therefore, we
are providing a number of utility functions with the simulation
core. These utilities include some basic geometric functions

to use in algorithms and a parallel random number generator
to use in the error models. The random number generator is
based on a linear congruential generator [3] and also uses
vector pipelines through the whole generation process.

To minimize the overhead of function calls during the
simulation no function calls at all are made by the core and
all provided algorithms and error models. To achieve this goal
and still provide readable C code, all functions are inlined
and included in units of C-files. To build the LS2 engine,
GCC version 4.6 or later with link time optimization [4] (LTO)
is required. The C dialect is GNU C99 which enables us to
declare all variables as late as possible to minimize the number
of cache misses.

The simulator can be built in two versions with the included
makefile. The first version is a command line tool which
includes only one user selectable algorithm and only one error
model. This version provides the highest simulation speed and
could easily be scripted to generate simulation results for a
large number of simulations, e.g. for moving anchors, at a
batch. The second version builds to a dynamic library which
includes all algorithms and all error models but cannot totally
eliminate function calls. This library can easily be integrated
into other applications like graphical user interfaces (GUI).
With the LS2 engine we provide such a GUI application
written in Java which directly calls the shared library with
a remarkable low time overhead.

The result of a simulation run is written to disk as a
single file consisting of the two data sets. A very basic image
header (TGA) [5] is put in front of the data, so the results
could directly be viewed in most image viewers. For further
processing of the data the image header could simply be
skipped. All visualizations in this paper are directly generated
by the simulator.

B. Provided Algorithms

The current release provides four different lateration algo-
rithms. For sake of analysis and benchmarking, we present a
short overview of four common algorithms. A fifth algorithm
called “const” always returns a fixed position on the playing
field and does not need any computation time. If used without
error model, this algorithm is used to benchmark the core of
the simulator itself.

1) Trilateration: Trilateration is a method to determine the
location of an object based on range measurements to anchor
nodes at known locations. At least three distances to non-
collinear anchors are required to calculate the coordinates
of the target on an Eucledian plane. The problem can be
expressed as finding the intersection of three circles, that is,
finding the solutions of the following system of quadratic
equations:

(x− x1)
2 + (y − y1)

2 = r1
2

(x− x2)
2 + (y − y2)

2 = r2
2

(x− x3)
2 + (y − y3)

2 = r3
2

where (x, y) is the coordinate of the target, (xi, yi), i = 1, 2, 3
are the coordinates of the anchors and ri the corresponding

distance. Because the known nodes’ coordinates and dis-
tances normally include measurement errors, the system has
no unique solution in general. However, a computationally
inexpensive closed-form solution exists and can be found in
[6] that correctly calculates the target position if it is unique.

2) Nonlinear Least Squares Multilateration: Multilatera-
tion works much like Trilateration but with the advantage
that it can incorporate more than three anchor nodes in the
position estimation process. Given m anchor nodes with fixed
positions at bi = (xi, yi) with i = 1, 2, . . . ,m and possibly
noisy range measurements ri from these nodes to a non-anchor
node located at u = (x, y), multilateration finds the most likely
position of the unknown node, denoted by û. Again, from the
given information we can write a system of equations as:

(x− x1)
2 + (y − y1)

2 = r1
2

(x− x2)
2 + (y − y2)

2 = r2
2

...

(x− xm)2 + (y − ym)2 = rm
2

(1)

where x and y are the only unknowns in the above nonlinear
equation system. This problem is usually solved by using
a least squares method, that is, minimizing the sum of the
squared residuals between the observed ranges ri and the
estimated distance ||u− bi||:

û = argmin
u

m∑
i=1

(
||u− bi|| − ri

)2
(2)

The minimization problem can be solved by using any of the
Newton type optimization algorithms [7]. These start from an
initial guess at the solution and then do a number of iterations.
Each iteration gradually improves the estimated position until
a local minimum of the objective function in Eq. (2) is found.

3) Linear Least Squares Multilateration: The nonlinear
least squares problem can be linearized by subtracting one
of the equations given in Eq. (1) from the remaining m − 1
equations. The linear system can be expressed as

Au = b

where

A =


x1 − xm y1 − ym
x1 − xm y1 − ym

...
...

xm−1 − xm ym−1 − ym


and

b =
1

2


x2
1 − x2

m + y21 − y2m + r2m − r21
x2
2 − x2

m + y22 − y2m + r2m − r22
...

x2
m−1 − x2

m + y2m−1 − y2m + r2m − r2m−1


This linear regression problem is known as linear least squares
and can be solved by the closed form solution shown in Eq.

(3).
û =

(
ATA

)−1
AT b (3)

To avoid trapping into local minimum when using NLLS it is
favorable to use the LLS solution as a starting point for the
NLLS optimization process because the linear estimation lies
beneath the global minimum [8].

4) Adapted Multi-Lateration: Similar to multilateration,
Adapted Multi-Lateration [9] tries to estimate the position
of an unlocalized node using circle intersections. In addition,
AML aims to reduce the computational overhead involved with
matrix calculations in multilateration, resulting in a runtime in
O(n3), using a heuristic approach to a runtime in O(n2) [9].
AML consists of three steps: intersection and elimination, first
estimation and refinement. At the first step two intersecting
circles are arbitrarily chosen. These circles may intersect at
one or two points. If there is more than one point, the point
with the larger distance to the third anchor is eliminated.

At the first estimation step the previously computed inter-
section point is moved to the middle of the line connecting it
with the closest point of the third anchor’s circle. This is done
to compensate the errors introduced by range measurements.
The calculation is done using the resemblance of triangles.

At the last step the position can be further refined. There-
fore, the anchors that were not used in the previous steps
are added to the position estimation process with the same
principle utilized in the second step.

C. Error Models

The current release provides three error models. Beside
a simple model based on a uniform distribution where the
maximum error is the only variable there are two Gaussian
distributed models. The first one is configurable by mean and
variance. The second one adds a configurable possibility for
a non-line-of-sight (NLOS) error. If the error is considered
as NLOS it is multiplied with a configurable constant. The
modeling of NLOS errors is described and discussed by
Heidari and Pahlavan [10].

III. PERFORMANCE ANALYSIS AND DISCUSSION

To analyze the performance of the simulator we have run
several test simulations. We varied the number of anchors, the
number of used CPU cores and the used algorithms. For a
general rating of the results we have also run all tests with
a performance optimized Java library we used for automatic
testing of our C implementations. All benchmarks were run
on an Intel XEON E31245 quad core which possesses four
physical cores and eight logical cores due to hyper-threading.
The core speed was 3.3 GHz. The playing field always had
a size of 1000 × 1000 discrete positions and every position
was calculated 1000 times. So every algorithm was called
one billion times and due to the usage of the simple error
model one billion random numbers were needed per anchor.
Every simulation run was conducted ten times and the average
runtime was taken.

Table I shows the relation between the number of threads
and the runtime of the simulated algorithms. Except NLLS

TABLE I
CPU BENCHMARK

Algorithm 1 Thread 2 Threads 4 Threads 8 Threads
Const 0.77 s (100%) 0.40 s (104%) 0.23 s (119%) 0.18 s (187%)
Trilateration 6.23 s (100%) 3.25 s (104%) 1.69 s (109%) 1.48 s (190%)
LLS 17.41 s (100%) 9.09 s (104%) 4,80 s (110%) 3.77 s (173%)
AML 83.23 s (100%) 42.97 s (103%) 22.68 s (109%) 17.65 s (170%)
NLLS 230.58 s (100%) 129.99 s (113%) 71.59 s (124%) 37.5 s (187%)

The table shows the ability of the simulation engine to scale with the number of used CPU
cores. All benchmarks were run on a four core CPU with hyper-threading enabled. In brackets
we show the overall consumed CPU time as a ratio to the one thread version.

TABLE II
THE CORRELATION BETWEEN EXECUTION TIME AND THE NUMBER OF

ANCHORS.

Algorithm 3 Anchors 6 Anchors 9 Anchors
Trilateration 1.48 s 1.83 s (124%) 2.35 s (159%)
LLS 3.77 s 5.79 s (154%) 7.89 s (209%)
AML 17.65 s 37.75 s (213%) 59.07 s (334%)
NLLS 56.90 s 87.62 s (154%) 114.11 s (201%)

Percentages represent overhead to 3 anchors.

all other algorithms are scaling nearly proportional until the
number of threads reaches the number of CPU cores. The
runtime of const consists of the big simulation loop and the
write-back of the result file. Because no expensive calculations
are done in the loop and the write-back time remains constant
the scaling to more than two threads stays slightly behind the
scaling of the other ones. NLLS does not scale as good as the
other ones because the dispatching to threads is done statically
and not related to the resulting amount of calculations. The
iteration of NLLS terminates related to the error which leads
to the observation that a thread which computes a region of the
playing field with less error has to compute much more than
one working on a region with higher error. The scalability to
eight threads is very poor because only the CPU which does
the interrupt handling for the operating system will interrupt a
simulation thread and make any use of the faster task switching
due to hyper-threading. We analyzed with a profiler that this
observation is not caused by memory bandwidth limitations.

In Table II we show the correlation between execution time
and the number of anchors. As trilateration only uses the first
three of the given anchors the time penalty for more anchors
is only resulting in the error model which is always applied
to all calculated ranges regardless of the used algorithm. The
overhead which would be produced by eliminating this penalty
for trilateration would result in much bigger overhead for all
other algorithms which are all capable of using all of the
anchors. Also remarkable is that the implementation of AML
performs really poor compared to LLS which is not this more
complex than AML. The reason for that behavior is that AML
could not really be vectorized which means that in case of
the SSE implementation every run has to calculate 4 times
more operations than the other algorithms. In section II-B4
we bounded AML with O(n2) but the benchmark shows that
the average case could be bounded with O(n).

Table III compares the runtime of an optimized Java ref-

TABLE III
COMPARISON BETWEEN JAVA AND C IMPLEMENTATION

Algorithm Runtime Java Runtime SSE Speedup
Trilateration 4.577 s 0.277 s 16.5
LLS 80.688 s 0.685 s 117.8
NLLS 449.257 s 11.971 s 37.5
AML 10.610 s 6.027 s 1.8

erence implementation of the algorithm and the C imple-
mentation of the simulator, optimized for cache line usage,
vector units and branch prediction hits. The benchmark shows
that the improvement of the optimized implementation is
massive. Only the AML algorithm which uses nearly the same
implementation in C and in Java has a small speedup of
1.8. The other algorithms gain speedups up to 117.8 and are
showing the very heterogeneous optimization capabilities of
the Java environment.

IV. VALIDATION AND EXPERIMENTS

To validate the functionality of the simulation engine we ran
some simple experiments and discuss them here. All images
are taken directly out of the simulator, only the red anchor
dots have been resized for a better visibility in this paper.
All images are showing the spatial error distribution for each
experiment. The bigger the amount of the error gets the darker
the position in the image is colored. If the error is below the
expected value of the distance error the location is colored
yellow, or orange if the error is below 80% of the expected
distance error. If the error is more than 500% of the expected
distance error the location is colored blue to keep the contrast
of the picture as low as needed. All color boundaries are freely
configurable. The anchors are painted in red if not otherwise
specially mentioned.

The boundary between lower position errors than the ex-
pected distance error and higher position errors than the
expected distance error is very important for scenarios where
the whole localization process is done recursively, e.g. in
multi-hop scenarios. In those scenarios one can calculate
the lateration with known anchor positions and recursively
estimated distances or with recursively gathered positions
and measured one-hop distances. The quality of those two
approaches is directly derived from this observation. If every
node which is part of the recursion is inside the yellow
area then the recursion over the positions has a lower error,
otherwise it’s vice versa.

(a) LLS (b) NLLS

(c) Trilateration (d) AML

Fig. 1. Spatial distribution of the position error with four different algorithms
(average case).

All simulation runs are done with 1000 iterations per
position and a uniform error distribution with a maximum of
10% of the playing field length. The error is defined to be
positive only because our real world anchor nodes only suffer
positive distance error. The playing field is 1000× 1000 units
in size.

A. Comparing Algorithms

Figure 1 shows the spatial distribution of the average posi-
tion error with four different algorithms. We used 9 anchors
placed in the middle of the playing field for every algorithm
whereas trilateration used the three anchors spanning the
largest triangle area. The average position error for each
algorithm is:

• LLS - 65 simulation units
• NLLS - 63 simulation units
• Trilateration - 83 simulation units
• AML - 75 simulation units
In a commonly used statistical evaluation trilateration would

have been the worst performing algorithm followed by AML
and LLS and NLLS on the top position. A look on the
spatial distribution of the position error could lead to different
conclusions. Looking at the spatial distribution one could
easily see that there is a large region where trilateration
performs much better than NLLS and an even larger region
where LLS performs much better than all other algorithms.
This observation could be very important for scenarios where
one can choose from a number of anchors and the position of

(a) AML - average case (b) AML - worst case

(c) AML - average case (d) AML - worst case

Fig. 2. Spatial error of AML with exchanged anchor positions

the mobile node is roughly known. This is the case in nearly
all tracking applications.

For most indoor applications only the area inside the convex
hull of the anchors is of interest because some anchors are
normally mounted around the building to receive GPS signals.
For such setups it is very important to place the anchors in a
way that the area of interest is inside the colored region. In
mobile ad-hoc networks (MANET) NLLS could be a better
choice because it has a very steady spatial distribution.

In the simulated setup with many anchors AML only has
its strength outside the convex hull. If it would be possible to
get a mathematical description of the spatial distribution even
a dynamic choice of the lateration algorithm is thinkable.

B. Analyzing an Algorithm

In Figure 2 you can see the results of two runs of the AML
algorithm with exchanged anchor positions. In Fig. 2c and
Fig. 2d the coordinates of the blue and the green anchor have
been swapped. In Fig. 2a and Fig. 2c you can see the average
position error and in Fig. 2b and Fig. 2d you can see the
maximum position error. Obviously, AML is not independent
of the order of the anchors passed to the algorithm. If
we exchange the anchor coordinates the resulting image is
diagonally mirrored. This behavior can be explained with the
first step of the AML algorithm. Because our implementation
arbitrarily picks the first intersecting circles as recommended
in [9], AML performs differently with the same input. This fact
can be easily seen with our simulator but not when comparing
the average position error which is the difference between the
estimated and true locations. The average position error of both

images is 81.21 simulation units. Thus, AML might be further
improved by implementing a better strategy of choosing the
initial anchors.

V. RELATED WORK

The error distribution of lateration algorithms is a problem
which is discussed for years now. Several research approaches
have focused on the statistical distribution of the position error
[11]–[14]. Some researchers discussed the relation between the
number of anchors and the position error [15], [16].

Few approaches discuss the relationship between anchor
placement and node position. Savvides et al. are presenting
an evaluation of multi-hop localization and the influence of
anchor position on the position error [17]. They are showing
some graphics about the spatial error distribution, but not very
fine grained and they are not providing a structured simulation
environment.

Yang et al. are presenting a slightly similar approach to
research the spatial error distribution. Instead of calculating
every possible node position on the playing field and visualiz-
ing the error distribution, they are calculating one position on
the playing field and visualizing the possibility for this node
to be located on all other positions of the playing field [12].

In the science journal Navidi et al. are giving a very
profound discussion about two of the main lateration ap-
proaches, trilateration and multilateration. They conclude with
the finding that further research to the domain of anchor
placement and about the influence of anchor position to the
lateration result would be valuable [18].

For steady error distributions in some publications the
Cramer-Rao Bound (CRB) is calculated instead of a simulation
approach. Dulman et al. are showing in their paper that the
CRB does not fit for the localization problem [19].

VI. CONCLUSION

We have presented LS2 as a parallel lateration algorithm
simulation engine with a focus on the evaluation of the spatial
position error distribution. We showed that a visualization of
the spatial position error distribution could lead to a different
quality estimation of lateration algorithms than the evaluation
of those algorithms with statistical approaches. Together with
the simulation engine we provide an performance optimized
library with common lateration algorithms. The whole soft-
ware package is freely available under an open source license
[20].

We suggest LS2 as a general tool for the comparison and
analysis of lateration algorithms.

Future work should address the integration of new algo-
rithms and more sophisticated error models. A map based error
model and the possibility to integrate a propagation model
would also be a step forward. The random number generator
should make use of the next processor generation hardware
random number generators to improve performance and to
enhance the random number distribution.

REFERENCES

[1] J. Powers, “Range trilateration error analysis,” Aerospace and Electronic
Systems, IEEE Transactions on, no. 4-Suppl, pp. 572–585, 1966.

[2] A. J. Bik, Software Vectorization Handbook, The: Applying Intel Multi-
media Extensions for Maximum Performance. Intel Press, 2004.

[3] H. Leeb and S. Wegenkittl, “Inversive and linear congruential
pseudorandom number generators in empirical tests,” ACM Trans.
Model. Comput. Simul., vol. 7, pp. 272–286, April 1997. [Online].
Available: http://doi.acm.org/10.1145/249204.249208

[4] The GNU project, “Link-time optimization in gcc: Requirements
and high-level design,” November 2005. [Online]. Available:
http://gcc.gnu.org/projects/lto/lto.pdf

[5] Truevision, Inc., “Truevision tga file format spec-
ification version 2.0,” 1991. [Online]. Available:
http://www.dca.fee.unicamp.br/m̃artino/disciplinas/ea978/tgaffs.pdf

[6] R. Mardeni and S. N. Othman, “Node positioning in zigbee network
using trilateration method based on the received signal strength indicator
(rssi),” European Journal of Scientific Research, vol. 46, pp. 048–061,
2010.

[7] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations (Classics in Applied
Mathematics, 16). Soc for Industrial & Applied Math, 1996.

[8] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust statistical methods
for securing wireless localization in sensor networks,” in IPSN
2005. Fourth International Symposium on Information Processing in
Sensor Networks, 2005. IEEE, 2005, pp. 91–98. [Online]. Available:
http://dx.doi.org/10.1109/IPSN.2005.1440903

[9] G. S. Kuruoglu, M. Erol, and S. Oktug, “Localization in wireless sen-
sor networks with range measurement errors,” Advanced International
Conference on Telecommunications, vol. 0, pp. 261–266, 2009.

[10] M. Heidari and K. Pahlavan, “A new statistical model for the behavior of
ranging errors in toa-based indoor localization,” in Wireless Communi-
cations and Networking Conference, 2007. WCNC 2007. IEEE. IEEE,
2007, pp. 2564–2569.

[11] J. Hightower and G. Borriello, “Location systems for ubiquitous
computing,” Computer, vol. 34, pp. 57–66, August 2001. [Online].
Available: http://dx.doi.org/10.1109/2.940014

[12] Z. Yang and Y. Liu, “Quality of Trilateration: Confidence Based
Iterative Localization,” icdcs, vol. 0, pp. 446–453, 2008. [Online].
Available: http://dx.doi.org/10.1109/ICDCS.2008.59

[13] I. Guvenc, C. Chong, and F. Watanabe, “Analysis of a linear least-
squares localization technique in los and nlos environments,” in Vehicu-
lar Technology Conference, 2007. VTC2007-Spring. IEEE 65th. IEEE,
2007, pp. 1886–1890.

[14] S. Slijepcevic, S. Megerian, and M. Potkonjak, “Characterization
of location error in wireless sensor networks: analysis and
applications,” in Proceedings of the 2nd international conference
on Information processing in sensor networks, ser. IPSN’03. Berlin,
Heidelberg: Springer-Verlag, 2003, pp. 593–608. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1765991.1766032

[15] J. N. Ash and R. L. Moses, “On optimal anchor node placement in
sensor localization by optimization of subspace principal angles,” in
Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP 2008, March 30 - April 4, 2008, Caesars
Palace, Las Vegas, Nevada, USA. IEEE, 2008, pp. 2289–2292.

[16] S. Yi, S. Hongchi, and A. Ahmed, “Performance study of localization
methods for ad-hoc sensor networks,” in 2004 IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, 2004, pp. 184 –
193.

[17] A. Savvides, W. Garber, S. Adlakha, R. Moses, and M. Srivastava, “On
the error characteristics of multihop node localization in ad-hoc sensor
networks,” in Information Processing in Sensor Networks, ser. Lecture
Notes in Computer Science, F. Zhao and L. Guibas, Eds. Springer
Berlin / Heidelberg, 2003, vol. 2634, pp. 555–555.

[18] W. Navidi, W. S. Murphy, and W. Hereman, “Statistical methods in
surveying by trilateration,” Computational Statistics & Data Analysis,
vol. 27, no. 2, pp. 209–227, April 1998. [Online]. Available:
http://ideas.repec.org/a/eee/csdana/v27y1998i2p209-227.html

[19] S. Dulman, P. Havinga, A. Baggio, and K. Langendoen, “Revisiting the
cramer-rao bound for localization algorithms,” 4th IEEE/ACM DCOSS
Work-in-progress paper, 2008.

[20] “LS2 - lateration simulator.” [Online]. Available: http://inf.fu-
berlin.de/groups/ag-tech/Projects/ls2

