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Exercise 1. (9 points)
Consider the special orthogonal group SO(3) consisting of all orthogonal matrices whose determinant is
equal to 1. Show the following parts to show that SO(3) is a 3-manifold:

i) Consider the Cayley map given by

Cay : R3 → SO(3),

a
b
c

 7→ (I3 +A) · (I3 −A)−1,

where A =

 0 a b
−a 0 c
−b −c 0

 is skew symmetric and I3 denotes the 3× 3 identity matrix.

a) Show that Cay(A) ∈ SO(3) for arbitrary (a, b, c)T ∈ R3.

b) Show that Cay is injective.

ii) Characterize all elements of SO(3) not lying in the image of Cay.

iii) Use exercise 1 from exercise sheet 1 to cover these elements and construct an atlas for SO(3).

Exercise 2. (2 points)
Show that the tangent space TpSO(3) of the special orthogonal group

SO(3) =
{
A ∈ R3×3 | A ·AT = id,detA = 1

}
at the point p = id ∈ SO(3) can be identi�ed with the set of skew-symmetric 3× 3 matrices.

Exercise 3. (4 points)
By considering the covering S2 → RP 2, prove that π1(RP 2) contains a non-contractible loop. Show
further that any non-contractible loop in RP 2 is null-homotopic in RP 2 if it is passed through twice.
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