Differential Geometry II Summer Semester 2024 Freie Universität Berlin

Exercise Sheet 9

Submission: 09.07.2024, 12:15 PM (start of lecture)

Exercise 1. (3 points)

Show that the fundamental group of a symmetric space is abelian.

Exercise 2. (3 points)

Show that a homogeneous manifold is geodesically complete.

Exercise 3. (8 points)

Let $\mathcal{Q}\coloneqq\{z=a+ib+jc+kd\mid a,b,c,d\in\mathbb{R}\}$ be the set of quaternions where

$$i^2 = j^2 = k^2 = -1, ij = k = -ji, jk = i = -kj, ki = j = -ik.$$

 \mathbb{R}^4 equipped with this multiplication is called *Hamiltonian quaternions*. The imaginary part of $z \in \mathcal{Q}$ is equal to bi + jc + kd and the conjugate element of z is $\bar{z} = a - ib - jc - kd$.

- i) Show that $z\bar{z}=|z|^2$ for $z\in\mathcal{Q}$ and the Euclidean norm.
- ii) Conclude that $\mathbb{S}^3 = \{z \in \mathcal{Q} \mid z\bar{z} = 1\}$ equipped with the multiplication mentioned above is a Lie group.
- iii) Consider $Q_8 := \{z \in \mathcal{L} \mid |z| = 1\} \subseteq \mathcal{L} := \{z \in \mathcal{Q} \mid a,b,c,d \in \mathbb{Z}\}$. Describe the object given by the points in Q_8 . Can you give it a suitable name?