Differential Geometry II Summer Semester 2024 Freie Universität Berlin

Exercise Sheet 7

Submission: 25.06.2024, 12:15 PM (start of lecture)

Note: This sheet contains 4 bonus points.

Exercise 1.

Consider the manifold $U = \{p \in \mathbb{R}^n \mid ||p|| < 1\}$ equipped with the hyperbolic metric

(6 points)

$$g_{ij}|_p \coloneqq \frac{4}{(1-\|p\|^2)^2}\delta_{ij}.$$

Determine the Ricci curvature Ric and the scalar curvature¹ S of (U, g) explicitly.

Exercise 2.

Let M be a manifold, $p \in M$ a point and denote by $\pi_1(M, p)$ the first fundamental group of M at p.

- i) Proof that the group multiplication on $\pi_1(M, p)$ is associative.
- ii) Give examples for M and p such that
 - a) $\pi_1(M,p)$ is Abelian,
 - b) $\pi_1(M, p)$ is not Abelian.

Justify your solutions.

Exercise 3.

(8 points)

Let M and \tilde{M} be two geodesically complete, connected Riemannian manifolds and let $\pi : \tilde{M} \to M$ be a *local isometry*, i.e. for each point $p \in \tilde{M}$, there exists an open neighborhood $U \subseteq \tilde{M}$ of p such that $\pi|_U$ is an isometry.

- i) Show that π fulfills the *lifting property for geodesics*: for every geodesic $\gamma : [0,1] \to M$ and each point $p \in \tilde{M}$ with $\pi(p) = \gamma(0)$ there exists a unique geodesic $\tilde{\gamma} : [0,1] \to \tilde{M}$ such that $\pi(\tilde{\gamma}) = \gamma$ and $\tilde{\gamma}(0) = p$.
- ii) Show that π is surjective.
- iii) Conclude that π is a smooth covering map, i.e. is a smooth surjective map with the property that every $p \in M$ has a connected neighborhood V such that each component of $\pi^{-1}(V)$ is mapped diffeomorphically onto V by π .

 $^{^1 \}rm For \ Ricci \ and \ Scalar \ curvature see also the script dealing with sectional curvature.$