Differential Geometry II Summer Semester 2024 Freie Universität Berlin

Exercise Sheet 5

Submission: 04.06.2024, 12:15 PM (start of lecture)

Exercise 1. (3 points)

Let (M,g) be a Riemannian manifold with a unit-speed geodesic $\gamma:I\to M$. A Jacobi field J along γ with $J\perp\dot{\gamma}$ everywhere is called a *normal* Jacobi field along γ . Show that $\ddot{J}+CJ=0$ for any normal Jacobi field if (M,g) has constant sectional curvature $C\in\mathbb{R}$.

Exercise 2. (4 points)

Consider the upper half plane $\{(x,y) \in \mathbb{R} \times]0, \infty[\}$ equipped with the metric

$$g = \frac{1}{y^2} (\delta_{ij}).$$

Let γ be a parametrization of constant speed of $\{(x_0, y) : y \in]0, \infty[\}$ for fixed x_0 .

- i) Sketch the situation and show that γ is a geodesic.
- ii) Show that $J = \partial_x$ is a Jacobi field along γ .

Exercise 3. (4 points)

Let (M,g) be a Riemannian manifold and $\bar{M} \subset M$ a submanifold of codimension 1 with normal field N. You may use without proof that $\bar{\nabla}_V W = \nabla_V W + b(V,W)N$ where $b(V,W) \coloneqq \langle \nabla_V N, W \rangle = -\langle \nabla_V W, N \rangle$.

- i) Show that $\langle \bar{R}(V,W)X,Y\rangle = \langle R(V,W)X,Y\rangle + b(V,Y)b(W,X) b(V,X)b(W,Y)$.
- ii) Deduce that for a plane $\Pi_p \subset T_p \bar{M} \subset T_p M$ it is $\bar{K}(\Pi_p) = K(\Pi_p) + \det b \mid_{\Pi_p}$.