Exercise Sheet 4

Submission: 28.05.2024, 12:15 PM (start of lecture)

Exercise 1.

(5 points)
Let X, U, V, W be vector fields on a Riemannian manifold. Show that the Riemannian curvature tensor R fulfills the following properties:
i) $R(U, V) W+R(V, W) U+R(W, U) V=0$,
ii) $\left(\nabla_{U} R\right)(V, W) X+\left(\nabla_{V} R\right)(W, U) X+\left(\nabla_{W} R\right)(U, V) X=0$,
iii) $g(R(U, V) W, X)=-g(R(U, V) X, W)$, and
iv) $g(R(U, V) W, X)=g(R(W, X) U, V)$.

Exercise 2.

Let ∇ and $\tilde{\nabla}$ be two connections on a manifold M. Show that $\nabla-\tilde{\nabla}$ is a $(1,2)$-tensor field on M. Show that the assignment $(X, Y) \mapsto \nabla_{X} Y$ is not a (1,2)-tensor for vector fields X, Y.

Exercise 3.
Let (M, g) be a Riemannian manifold with normal coordinates $\left(U, x_{i}\right)$ around $p \in M$ (see previous exercise sheet). For $W=\sum_{i=0}^{n} W_{i} \partial_{i} \in T_{p} M$ show that the Jacobi field along a radial geodesic γ (i.e. $\gamma(0)=p$) with $J(0)=0$ and $J^{\prime}(0)=W$ is given by $J(t)=t \sum_{i=1}^{n} W_{i} \partial_{i}$ for all t.

