Differential Geometry II Summer Semester 2024 Freie Universität Berlin

(5 points)

(7 points)

Exercise Sheet 3

Submission: 21.05.2024, 12:15 PM (start of lecture)

Exercise 1.

Let (M,g) be a Riemannian manifold, $p \in M$ and E_1, \ldots, E_n be an orthonormal basis of T_pM . This basis induces an isomorphism $E : \mathbb{R}^n \to T_pM$, $(x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i E_i$. On a (sufficiently) small neighborhood U of p where \exp_p is bijective, $x := E^{-1} \circ \exp_p^{-1} : U \to \mathbb{R}^n$ is called a *normal coordinate system* for M at p. Show:

- i) The coordinates of p are $(0, \ldots, 0)$ and $g = (\delta_{ij})$ at p.
- ii) For any $V = \sum_{i=1}^{n} V_i \partial_i \in T_p M$, the geodesic c emanating from p with initial velocity V is given by $x(c(t)) = (tV_1, \dots, tV_n)$.
- iii) The first partial derivatives of g_{ij} and the Christoffel symbols vanish at p.

Exercise 2. (4 points) Let (M, g) be a Riemannian manifold with Levi Cività connection ∇ . Let R be the (1, 3)-curvature tensor

$$R(X,Y)Z \coloneqq \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

- i) Show that R is tensorial in Z, i.e. R(X,Y)(fZ) = fR(X,Y)Z for a C^{∞} function f.
- ii) Determine the coordinates R_{kij}^l of R in the coordinate expression $R(\partial_i, \partial_j)\partial_k = \sum_l R_{kij}^l \partial_l$.

Exercise 3.

Consider the open unit disk in \mathbb{R}^2 given in polar coordinates $\{(r, \varphi) \in [0, 1[\times[0, 2\pi[\} \text{ with the following metric}]$

$$g = \frac{4}{(1-r^2)^2} \begin{pmatrix} 1 & 0\\ 0 & r^2 \end{pmatrix}.$$

- i) Sketch ∂_r and ∂_{φ} and determine $|\partial_r|$ and $|\partial_{\varphi}|$.
- ii) Determine $\nabla_{\partial_r}\partial_r$, $\nabla_{\partial_r}\partial_{\varphi}$, $\nabla_{\partial_{\varphi}}\partial_r$, $\nabla_{\partial_{\varphi}}\partial_{\varphi}$, and $\nabla_V W$ for $V = r\partial_r + r^2\partial_{\varphi}$ and $W = \varphi\partial_r + r\varphi\partial_{\varphi}$. Why do two of these derivatives coincide?