Exercise Sheet 3

Submission: 21.05.2024, 12:15 PM (start of lecture)

Exercise 1.

(5 points)
Let (M, g) be a Riemannian manifold, $p \in M$ and E_{1}, \ldots, E_{n} be an orthonormal basis of $T_{p} M$. This basis induces an isomorphism $E: \mathbb{R}^{n} \rightarrow T_{p} M,\left(x_{1}, \ldots, x_{n}\right) \mapsto \sum_{i=1}^{n} x_{i} E_{i}$. On a (sufficiently) small neighborhood U of p where $\exp _{p}$ is bijective, $x:=E^{-1} \circ \exp _{p}^{-1}: U \rightarrow \mathbb{R}^{n}$ is called a normal coordinate system for M at p. Show:
i) The coordinates of p are $(0, \ldots, 0)$ and $g=\left(\delta_{i j}\right)$ at p.
ii) For any $V=\sum_{i=1}^{n} V_{i} \partial_{i} \in T_{p} M$, the geodesic c emanating from p with initial velocity V is given by $x(c(t))=\left(t V_{1}, \ldots, t V_{n}\right)$.
iii) The first partial derivatives of $g_{i j}$ and the Christoffel symbols vanish at p.

Exercise 2.

(4 points)
Let (M, g) be a Riemannian manifold with Levi Cività connection ∇. Let R be the (1,3)-curvature tensor

$$
R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

i) Show that R is tensorial in Z, i.e. $R(X, Y)(f Z)=f R(X, Y) Z$ for a C^{∞} function f.
ii) Determine the coordinates $R_{k i j}^{l}$ of R in the coordinate expression $R\left(\partial_{i}, \partial_{j}\right) \partial_{k}=\sum_{l} R_{k i j}^{l} \partial_{l}$.

Exercise 3.

Consider the open unit disk in \mathbb{R}^{2} given in polar coordinates $\{(r, \varphi) \in[0,1[\times[0,2 \pi[\}$ with the following metric

$$
g=\frac{4}{\left(1-r^{2}\right)^{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & r^{2}
\end{array}\right)
$$

i) Sketch ∂_{r} and ∂_{φ} and determine $\left|\partial_{r}\right|$ and $\left|\partial_{\varphi}\right|$.
ii) Determine $\nabla_{\partial_{r}} \partial_{r}, \nabla_{\partial_{r}} \partial_{\varphi}, \nabla_{\partial_{\varphi}} \partial_{r}, \nabla_{\partial_{\varphi}} \partial_{\varphi}$, and $\nabla_{V} W$ for $V=r \partial_{r}+r^{2} \partial_{\varphi}$ and $W=\varphi \partial_{r}+r \varphi \partial_{\varphi}$. Why do two of these derivatives coincide?

