WiSe 2024/25

Version: 1

Differential Geometry III – Homework 14

Submission: 14. February 2025, until 8:15 am (start of the exercise class).

1. Exercise (3 points)

Let T be a non-degenerate triangle in the euclidean plane $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$ with vertices $v_1 = (0,0)$, $v_2 = (v_{2,x},0)$ and $v_3 = (v_{3,x},v_{3,y})$, where $v_{2,x} \neq 0$ and $v_{3,y} \neq 0$. Further, let f and g be linear functions $\mathbb{R}^2 \to \mathbb{R}$.

- i) Express the partial derivatives $\partial_x f$ and $\partial_y f$ in terms of the function values $f(v_i)$, i = 1, 2, 3 at the vertices of the triangle and the coordinates $v_{2,x}$, $v_{3,x}$, $v_{3,y}$.
- ii) Show that the scalar product can be written as

$$\langle \nabla f, \nabla g \rangle = \sum_{i,j=1,2,3} B_{ij} f(v_i) g(v_j)$$

with real constants $B_{ij} = B_{ji}$ for i, j = 1, 2, 3 that depend only on $v_{2,x}, v_{3,x}$ and $v_{3,y}$.

Please, turn the page!

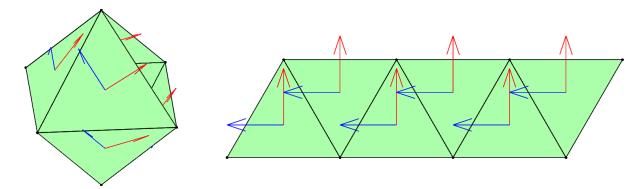


Figure 1: Left: Octahedron with two opposing triangles removed and two tangential vector fields X and Y drawn in red and blue, respectively. Right: The same vectors fields are drawn in an unfolding of the octahedron in the plane.

2. Exercise (5 points)

Let M be the discrete manifold that is obtained by removing two opposing triangles from an octahedron with edge lengths $\sqrt{2}$, resulting in a strip, as shown on the left in Figure 1. The unfolding of the strip is shown on the right. We define two triangle-wise constant tangential vector fields X and Y on the octahedron, by defining them as constant vector fields on the unfolding as indicated in Figure 1 in red and blue, respectively.

- i) Calculate the dimensions of the spaces $\mathscr{X}_h,\,\mathscr{H}_h,\,\mathscr{H}_{h,D}$ and $\mathscr{H}_{h,N}.^{\mathrm{I}}$
- ii) Prove that the space $\mathscr{H}_{h,D}$ respectively $\mathscr{H}_{h,N}$ of harmonic vector fields on M that are perpendicular respectively "almost tangential" to the boundary is generated by X respectively Y.

Hint: Use the formula for $\partial_x f$ from Exercise 1,i).

- iii) Give an example of a vector field $Z \in \mathcal{H}_h \setminus (\mathcal{H}_{h,D} \cup \mathcal{H}_{h,N})$.
- iv) Give an example of a vector field $Z \in \mathscr{X}_h \setminus \mathscr{H}_h$.

Total: 8

$$\mathcal{H}_h := \{ X \in \mathcal{X}_h : \forall \varphi \in \mathcal{L}_0, \psi \in \mathcal{F}_0 : \langle X, \nabla \varphi \rangle = \langle X, \mathcal{J} \nabla \psi \rangle = 0 \},$$

$$\mathcal{H}_{h,D} := \{ X \in \mathcal{H}_h : \forall \psi \in \mathcal{F} : \langle X, \mathcal{J} \nabla \psi \rangle = 0 \},$$

$$\mathcal{H}_{h,N} := \{ X \in \mathcal{H}_h : \forall \varphi \in \mathcal{L} : \langle X, \nabla \varphi \rangle = 0 \},$$

where \mathscr{X}_h is the set of piecewise constant vector fields on M (also denoted as $\Lambda_h(M)$) and

$$\mathcal{L} := \left\{ \varphi : \begin{smallmatrix} \varphi \mid_T \text{ linear on each triangle } T \text{ and} \\ \varphi \text{ globally continuous} \end{smallmatrix} \right\}, \qquad \mathcal{L}_0 := \left\{ \varphi \in \mathcal{L} : \begin{smallmatrix} \varphi(v_b) = 0 \text{ at all} \\ \text{boundary vertices } v_b \end{smallmatrix} \right\},$$

$$\mathcal{F} := \left\{ \psi : \begin{smallmatrix} \psi \mid_T \text{ linear on each triangle } T \text{ and} \\ \psi \text{ continuous at each midpoints} \end{smallmatrix} \right\}, \qquad \mathcal{F}_0 := \left\{ \psi \in \mathcal{L} : \begin{smallmatrix} \varphi(v_b) = 0 \text{ at all} \\ \text{boundary edge midpoints } m_{e_b} \end{smallmatrix} \right\}.$$

^IRecall the notations