WiSe 2024/25

Freie Universität Berlin Institut für Mathematik Prof. Dr. K. Polthier, Dr. T. Kleiner

Differential Geometry III – Homework 13

Submission: 7. February 2025, until 8:15 am (start of the exercise class).

1. Exercise

A common way to define the Laplace-Beltrami operator on a discrete manifold M with underlying simplicial complex K with underlying abstract set of vertices \mathscr{V} operating on a function $f: \mathscr{V} \to \mathbb{R}$ is the cotan formula^I

$\Delta f(v) = \sum_{e=\{v,w\}\in K^{(1)}} \frac{\cot \alpha_e + \cot \beta_e}{2} (f(w) - f(v)) \qquad \text{for } v \in \mathscr{V}.$ (1)

Here α_e and β_e are the opposite inner angles of two triangles t and s, respectively, that are adjacent to the edge e. The sum ranges over all edges e that contain the vertex v.

In the following, we consider the octahedron, with vertices (1, 0, 0), (0, 1, 0) and so on, as the discrete manifold M.

- i) Calculate the matrix representation of the Laplace-Betrami operator on the octahedron using the cotan formula (1).
- ii) Determine the eigenvalues of the Laplace-Beltrami operator on the octahedron and find a basis for each eigenspace.

Hint: The eigenvectors correspond to oscillations on the octahedron and there are oscillations appearing in three different frequencies (corresponding to the eigenvalues). Taking a look at the geometry of the octahedron and its symmetries can help you guess the eigenvectors.

Please, turn the page!

1

Version: 1

(5 points)

^IThe cotan formula can be justified from linearly interpolating discrete functions $f: \mathscr{V} \to \mathbb{R}$ to continuous functions $f: M \to \mathbb{R}$.

2. Exercise

Consider the function $f\colon \mathbb{R}^2\to \mathbb{R}$ given by

$$f(x,t) = a_0 + \sum_{k \in \mathbb{N}} a_k \cos(kx) \cos(c_k t + e_k) + \sum_{k \in \mathbb{N}} b_k \sin(kx) \cos(d_k t + f_k) \quad \text{for } x, t \in \mathbb{R},$$

where $a_0, a_k, b_k, c_k, d_k, e_k, f_k \in \mathbb{R}$ and only a finite number of the a_k and b_k are non-zero. Recall, that $\{1, \cos(kx), \sin(kx) : k \in \mathbb{N}\}$ is a linearly independent set of functions in the variable x (and analogous for the variable t).

i) Determine c_k and d_k such that

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x,t) = \frac{\mathrm{d}^2}{\mathrm{d}t^2}f(x,t) \qquad \text{for all } x,t \in \mathbb{R}.$$

- ii) Prove that $a_k = 0$ must hold for all $k \in \mathbb{N}_0$ if f(0, t) = 0 for all $t \in \mathbb{R}$.
- iii) Prove that $a_k = 0$ or $e_k \in \pi(\mathbb{Z} + \frac{1}{2})$ must hold for all $k \in \mathbb{N}_0$ if f(-x, 0) = -f(x, 0) for all $x \in \mathbb{R}$.

Total: 8

(3 points)