Version: 1

Freie Universität Berlin Institut für Mathematik Prof. Dr. K. Polthier, Dr. T. Kleiner

Differential Geometry III – Homework 11

Submission: 24. January 2025, until 8:15 am (start of the exercise class).

1. Exercise

(2 points)

Let $\mathscr{V} = \{v_0, v_1, v_2, v_3\}$ be an abstract vertex set consting of 4 distinct vertices.

- i) Write down the equivalence class $[v_0, v_1, v_2]$, i.e. the set of ordered simplexes formed from the simplex $\{v_0, v_1, v_2\}$ that have the same orientation as the ordered simplex $(v_0, v_1, v_2).$
- ii) Which of the following ordered simplices (v_0, v_1, v_2, v_3) , (v_1, v_2, v_3, v_0) , (v_0, v_2, v_1, v_3) and (v_2, v_1, v_4, v_0) have the same orientation?

Hint: The orientation of an ordered set of vertices flips whenever two consecutive vertices are swapped.

2. Exercise

Consider the simplicial complex $K = \{\{v_0, v_1\}, \{v_0, v_2\}, \{v_1, v_2\}, \{v_0\}, \{v_1\}, \{v_2\}, \emptyset\}$ over the abstract vertex set $\mathscr{V} = \{v_0, v_1, v_2\}$ consisting of 3 distinct vertices. Calculate the kernel and the image of the boundary operator $\partial_2 \colon C_2(K) \to C_1(K)$.

3. Exercise

Let K be a simplicial complex over an abstract set of vertices \mathscr{V} . How is the dimension of the space of p-chains $C_p(K)$ calculated from K?

Hint: Use the Lemma from the last lecture (14th January).

4. Exercise

Let K be a simplicial complex over an abstract set of vertices \mathscr{V} and for any $p \in \mathbb{N}$, let $\partial_p \colon C_p(K) \to C_{p-1}(K)$ denote the boundary operator. Prove, that the composition of two boundary operators is zero, i.e.

$$\partial_{p-1} \circ \partial_p = 0$$
 for $p \in \mathbb{N}, p \ge 2$.

Hint: It suffices to prove that $\partial_{p-1}(\partial_p(\sigma)) = 0$ for any simplex $\sigma = (v_0, \ldots, v_p) \in K$. To get an idea of the proof for general $p \in \mathbb{N}$, try the cases p = 1, 2 separately first.

Total: 8

(2 points)

(2 points)

(2 points)