Freie Universität Berlin Institut für Mathematik Prof. Dr. K. Polthier, Dr. T. Kleiner

Version: 1

Differential Geometry III – Homework 9

Submission: 10. January 2025, until 8:15 am (start of the exercise class).

This sheet contains 3 bonus points.

1. Exercise

(6 points)

Let $f: \Omega \to \mathbb{C}$ be a complex function on a complex domain $\Omega \subset \mathbb{C}$. Define the complex function $f: \overline{\Omega} \to \mathbb{C}$ by

$$f(z) := f(\overline{z})$$

and the vector field $w \colon \Omega_r \to \mathbb{R}^2$ on the domain $\Omega_r = \{(x, y) \in \mathbb{R}^2 : x + iy \in \Omega\}$ by

$$w(x,y) := (\Re f(x+iy), \Im f(x+iy)).$$

Further, denote the partial differential operators

$$\partial_z := \frac{1}{2}(\partial_x - i\partial_y), \qquad \qquad \partial_{\overline{z}} := \frac{1}{2}(\partial_x + i\partial_y).$$

Here, for a complex number z = x + iy, we denote the real part as $\Re z = x$, the imaginary part as $\Im z = y$ and the complex conjugate as $\overline{z} = x - iy$.

- i) Express $\partial_z f$ in terms of w, div and rot.
- ii) Prove, that f is holomorphic if and only if $\partial_{\overline{z}} f = 0$.
- iii) Prove, that the following three statements are equivalent:
 - a) The vector field w satisfies rot $w = \operatorname{div} w = 0$.
 - b) The function \overline{f} is holomorphic.
 - c) The function f is holomorphic.
- iv) Determine the complex function that corresponds to the vector field $\mathcal{J}w$.
- v) Calculate the vector fields w_i associated to the functions $f_1(z) = \overline{z}$ and $f_2(z) = i\overline{z}$ on the domain \mathbb{C} and $f_3(z) = 1/\overline{z}$ and $f_4(z) = i/\overline{z}$ on the domain $\Omega = \mathbb{C} \setminus \{0\}$.
- vi) Sketch the vector fields w_1 and w_2 on the square domain $\{(x, y) \in \mathbb{R}^2 : |x|, |y| \le 2\}$ and the vector fields w_3 and w_4 on the ring domain $\{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4\}$.

Please turn the page!

2. Exercise

Liouville's theorem states that if a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ is globally bounded, i.e. $\sup_{z \in \mathbb{C}} |f(z)| < \infty$, then f must be a constant. Use this theorem and the results from Exercise 1,iii) to characterize the nature of the vector fields v_3 that can appear in the Hodge-Helmholtz decomposition (1).

3. Exercise

(3 points)

Any non-constant complex polynomial p can be extended to a mapping $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ by setting $p(\infty) = \infty$, where $\widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ denotes the Riemann number sphere.

- i) What is the winding number of a polynomial p around the point ∞ ?
- ii) Calculate all branching points and the corresponding winding numbers for the polynomials $p_1(z) = z^k$ with $k \in \mathbb{N}$ and for $p_2(z) = (z+1)^2(z-1)^2$.

Total: 11