WiSe 2024/25

Freie Universität Berlin Institut für Mathematik Prof. Dr. K. Polthier, Dr. T. Kleiner

Version: 1

(3 points)

Differential Geometry III – Homework 8

Submission: 20. Dezember 2024, until 8:15 am by e-mail (start of the exercise class).

Let $\Omega \subset \mathbb{R}^2$ be a domain (an open set). The divergence and the rotation^I of a vector field^{II} $v \colon \Omega \to \mathbb{R}^2$ are defined as

$$\operatorname{div} v = \partial_x v_x + \partial_y v_y, \qquad \operatorname{rot} v = -\partial_y v_x + \partial_x v_y,$$

respectively, where v is written as $v(x, y) = (v_x(x, y), v_y(x, y))$ with the standard coordinates x and y. The gradient of a scalar field $f: \Omega \to \mathbb{R}$ is the vector field

grad
$$f = (\partial_x f, \partial_y f),$$

where f = f(x, y). Further, define the 90°-rotation of a vector field by

$$\mathcal{J}v = (-v_y, v_x).$$

The rotated gradient \mathcal{J} grad f is also referred to as the cogradient. The Laplacian is denoted as $\Delta = \partial_x^2 + \partial_y^2$ and applied component wise to vector fields.

1. Exercise

Let $f: \Omega \to \mathbb{R}$ and $v: \Omega \to \mathbb{R}^2$.

i) Verify the equations

div grad
$$f = \Delta f$$
,
rot grad $f = 0$,
div \mathcal{J} grad $f = 0$,
rot \mathcal{J} grad $f = \Delta f$.

ii) Prove that any vector field v that is simultaneously divergence-free, i.e. div v = 0, and rotation-free, i.e. rot v = 0, is automatically harmonic, i.e. $\Delta v = 0$.

Please turn the page!

^IThe rotation is also referred to as "curl" is the literature.

^{II}All functions on this sheet can be assumed as infinitely differentiable (C^{∞}) .

2. Exercise

(5 points)

Let $\mathbb{T}^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2$ denote the flat two-dimensional torus. The Hodge-Helmholtz decomposition theorem states that any given vector field^{III} v on \mathbb{T}^2 can be decomposed as

$$v = v_1 + v_2 + v_3 \tag{1a}$$

with three fields v_i , i = 1, 2, 3 on \mathbb{T}^2 that satisfy

$$v_1 = \operatorname{grad} f,$$
 $v_2 = \mathcal{J} \operatorname{grad} g,$ $\operatorname{rot} v_3 = \operatorname{div} v_3 = 0.$ (1b)

Here f and g are scalar fields on \mathbb{T}^2 .

- i) Let f, g be scalar fields on \mathbb{T}^2 and set $u_1 = \text{grad } f$ and $u_2 = \mathcal{J} \text{grad } g$. Prove, for i = 1, 2, that $u_i = 0$ if u_i is a constant vector field.
- ii) Calculate a Hodge-Helmholtz decomposition for the vector field

$$v(x,y) = \begin{pmatrix} 1 + \cos x \\ \sin x + \sin y \end{pmatrix}.$$

That is, find scalar fields f, g and a vector fields v_i , i = 1, 2, 3 on \mathbb{T}^2 such that the set of Equations (1) is satisfied.

Total: 8

^{III}Functions $\mathbb{T}^2 \to X$ can be represented by x, y-periodic functions $\mathbb{R}^2 \to X$. A function $f: \mathbb{R}^2 \to X$ is called x, y-periodic if and only if $f(x, y) = f(x + 2\pi, y) = f(x, y + 2\pi)$ for all $x, y \in \mathbb{R}$. In the above $X = \mathbb{R}$ for scalar fields and $X = \mathbb{R}^2$ for vector fields.