Freie Universität Berlin Institut für Mathematik Prof. Dr. K. Polthier, Dr. T. Kleiner

Differential Geometry III – Homework 2

Submission: 8. November 2024, until 8:15 am (start of the exercise class).

1. Exercise

Let $\hat{st}_n : S^n \to \hat{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$ denote the stereographic projection from the north pole $N = e_{n+1}$ (e_i denotes the *i*-th standard basis vector) where a point $x = (x_1, \ldots, x_n, x_{n+1})$ gets mapped to a point $y = \hat{st}_n(x) = (y_1, \ldots, y_n)$, i.e. (y, 0) is the point where the line through N and x intersects the hyperplane $\{x_{n+1} = 0\} \subset \mathbb{R}^{n+1}$.

- i) Derive the equations for \hat{st}_n and \hat{st}_n^{-1} .
- ii) Provide a brief description and sketch for each of the following questions:
 - a) What are the images of circles centered at $\pm e_3$ (lines of latitude) and circles through $\pm e_3$ (lines of longitude) under \hat{st}_2 ?
 - b) What are the images of circles centered at $\pm e_1$ and circles through $\pm e_1$ under \hat{st}_2 ?
 - c) How do horizontal lines $y_2 = \text{const}$ in $\hat{\mathbb{R}}^2$ look like under \hat{st}_2^{-1} ?
- iii) Let $d(x,y) = |\hat{st}_n^{-1}(x) \hat{st}_n^{-1}(y)|$ be a metric^I on $\hat{\mathbb{R}}^n$. Show that for $x, y \in \hat{\mathbb{R}}^n \setminus \{\infty\}$ $d(x,\infty) = \frac{2}{\sqrt{1+|x|^2}}$ and $d(x,y) = \frac{2|x-y|}{\sqrt{1+|x|^2}\sqrt{1+|y|^2}}.$

Note, $|\cdot|$ denotes the Euclidean norm.

2. Exercise

Show that the translation in S^3 given by

$$T_{zw}(s) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \cos(s) & -\sin(s)\\ 0 & 0 & \sin(s) & \cos(s) \end{pmatrix}$$

is conformal for all $s \in \mathbb{R}$.

Total: 8

(6 points)

Version: 1

(2 points)

^IThis metric is called the chordal metric. By definition \hat{st}_n^{-1} is an isometry from $\hat{\mathbb{R}}^n$ with the chordal metric to S^n with the Euclidean metric.