Freie Universität Berlin Institut für Mathematik Prof. Dr. K. Polthier, T. Kleiner

Differential Geometry III – Homework 1

Submission: 1. November 2024, until 8:15 am (start of the exercise class).

This sheet contains 6 bonus points.

1. Exercise

(6 points)

The Gauss-Bonnet theorem for a Riemannian surface M with boundary ∂M states that

$$\int_{M} K \,\mathrm{d}A + \int_{\partial M} k \,\mathrm{d}s = 2\pi \chi(M).$$

The first term is the integral of the Gauss curvature over M, the second term is the integral of the curvature k of the boundary curve ∂M and $\chi(M)$ denotes the Euler characteristic of M. If ∂M is a piece-wise geodesic curve, then one has

$$\int_{\partial M} k \, \mathrm{d}s = \sum_p \alpha_p,$$

where the right hand side is the sum of the angles α_p between adjacent tangents over all points p where the boundary curve ∂M is not differentiable.

Use the Gauss-Bonnet theorem to solve the following problems:

i) Prove, that a hyperbolic triangle T in the upper half-plane model \mathbb{H} satisfies

$$\operatorname{area}_{\mathbb{H}}(T) = \pi - (\alpha + \beta + \gamma), \tag{1}$$

where $\operatorname{area}_{\mathbb{H}}(T)$ is the area of T in \mathbb{H} and α, β, γ are the interior angles of T. Hint: The Euler characteristic satisfies $\chi(M) = 1$ if M is simply connected.

- ii) Derive a generalization of (1) and use it to calculate the area of a single spherical or hyperbolic tile with Schläfli symbol $\{p, q\}$.
- iii) Use (1) to calculate the hyperbolic area of the hyperbolic triangle T in \mathbb{H} with vertices i, 4 + i and 2 + 2i.

Hint: Recall, that all geodesics in \mathbb{H} are given by halfes of circles with midpoint on the real axis.

Please turn page!

Version: 1

2. Exercise

i) Determine all solutions of a regular tiling $\{p, q, r\}$ according to the theorem provided in the lecture. Which tile \mathbb{S}^3 , \mathbb{R}^3 , and \mathbb{H}^3 and why? Which of them are dual to each other?

Hint: The dihedral angle θ *of a regular solid* $\{p,q\}$ *fulfills* $\sin(\theta/2) = \frac{\cos(\pi/q)}{\sin(\pi/p)}$.

ii) The tilings {5,3,3}, {4,3,3}, and {3,4,3} are called 120-, 8-, and 24-cell, respectively. Calculate the number of vertices, edges, faces, and cells (regular solids) of each S³ tiling from i). What are the names of the tilings not mentioned above?

Hint: The tiling $\{3,3,3\}$ can be imagined by a complete graph on n vertices for some $n \in \mathbb{N}$. Further, the Euler characteristic of these tilings is $N_v - N_e + N_f - N_c = 0$, with N_v, N_e, N_f, N_c the numbers of vertices, edges, faces, and cells, respectively.

iii) Consider an octahedron {3,4} with edge length 2. Calculate the lengths and dihedral angles of its characteristic tetrahedron and provide a sketch of it inside the octahedron.

Total: 12

(6 points)