Differential Geometry I
Differential geometry studies local and global properties of curved spaces.
Topics of the lecture will be:
- Curves and surfaces in Euclidean space
- Metrics and (Riemannian) manifolds
- Surface tension and notions of curvature
- Vector fields, tensors, covariant derivative
- Geodesic curves, exponential map
- Gauß-Bonnet theorem, curvature and topology
- Connection to discrete differential geometry
Prerequisits: Analysis I, II and Linear Algebra I, II
(19202601)
Type | Lecture with exercise session |
---|---|
Instructor | Prof. Dr. Konrad Polthier, Eric Zimmermann |
Language | English |
Credit Points | 10 |
Start | Oct 17, 2023 | 12:15 PM |
end | Feb 15, 2024 | 02:00 PM |
Time |
|
Grades
Exercise Sheets
- Sheet 01
- Sheet 02
- Sheet 03
- Sheet 04
- Sheet 05
- Sheet 06
- Sheet 07
- Sheet 08
- Sheet 09
- Sheet 10
- Sheet 11
- Sheet 12
- Bonus Sheet | Solutions
Lecture Notes (Notes DG1 WS21/22)
- Lecture 01
- Lecture 02
- Lecture 03+04
- Lecture 05
- Lecture 06+07
- Lecture 08+09
- Lecture 10
- Lecture 11
- Lecture 12
- Lecture 13
- Lecture 14
- Lecture 15
- Lecture 16
- Lecture 17
- Lecture 18
- Lecture 19
- Lecture 20
- Lecture 21
- Lecture 22
- Lecture 23
- Lecture 24+25
- Lecture 26+27
- Lecture 28+29
- Lecture 30
Scripts